1
|
Su Z, Gao S, Zheng Z, Stiller J, Hu S, McNeil MD, Shabala S, Zhou M, Liu C. Transcriptomic insights into shared responses to Fusarium crown rot infection and drought stresses in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:34. [PMID: 38286831 PMCID: PMC10824894 DOI: 10.1007/s00122-023-04537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024]
Abstract
KEY MESSAGE Shared changes in transcriptomes caused by Fusarium crown rot infection and drought stress were investigated based on a single pair of near-isogenic lines developed for a major locus conferring tolerance to both stresses. Fusarium crown rot (FCR) is a devastating disease in many areas of cereal production worldwide. It is well-known that drought stress enhances FCR severity but possible molecular relationship between these two stresses remains unclear. To investigate their relationships, we generated several pairs of near isogenic lines (NILs) targeting a locus conferring FCR resistance on chromosome 2D in bread wheat. One pair of these NILs showing significant differences between the two isolines for both FCR resistance and drought tolerance was used to investigate transcriptomic changes in responsive to these two stresses. Our results showed that the two isolines likely deployed different strategies in dealing with the stresses, and significant differences in expressed gene networks exist between the two time points of drought stresses evaluated in this study. Nevertheless, results from analysing Gene Ontology terms and transcription factors revealed that similar regulatory frameworks were activated in coping with these two stresses. Based on the position of the targeted locus, changes in expression following FCR infection and drought stresses, and the presence of non-synonymous variants between the two isolines, several candidate genes conferring resistance or tolerance to these two types of stresses were identified. The NILs generated, the large number of DEGs with single-nucleotide polymorphisms detected between the two isolines, and the candidate genes identified would be invaluable in fine mapping and cloning the gene(s) underlying the targeted locus.
Collapse
Affiliation(s)
- Zhouyang Su
- CSIRO Agriculture and Food, St Lucia, QLD, 4067, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, 7250, Australia
| | - Shang Gao
- CSIRO Agriculture and Food, St Lucia, QLD, 4067, Australia
| | - Zhi Zheng
- CSIRO Agriculture and Food, St Lucia, QLD, 4067, Australia
| | - Jiri Stiller
- CSIRO Agriculture and Food, St Lucia, QLD, 4067, Australia
| | - Shuwen Hu
- CSIRO Agriculture and Food, St Lucia, QLD, 4067, Australia
| | | | - Sergey Shabala
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 5280, Guangdong, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, 7250, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, St Lucia, QLD, 4067, Australia.
| |
Collapse
|
2
|
Fan H, Xu J, Ao D, Jia T, Shi Y, Li N, Jing R, Sun D. QTL Mapping of Trichome Traits and Analysis of Candidate Genes in Leaves of Wheat ( Triticum aestivum L.). Genes (Basel) 2023; 15:42. [PMID: 38254932 PMCID: PMC10815787 DOI: 10.3390/genes15010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Trichome plays an important role in heat dissipation, cold resistance, water absorption, protection of leaves from mechanical damage, and direct exposure to ultraviolet rays. It also plays an important role in the photosynthesis, transpiration, and respiration of plants. However, the genetic basis of trichome traits is not fully understood in wheat. In this study, wheat DH population (Hanxuan 10 × Lumai 14) was used to map quantitative trait loci (QTL) for trichome traits in different parts of flag leaf at 10 days after anther with growing in Zhao County, Hebei Province, and Taigu County, Shanxi Province, respectively. The results showed that trichome density (TD) was leaf center > leaf tip > leaf base and near vein > middle > edge, respectively, in both environments. The trichome length (TL) was leaf tip > leaf center > leaf base and edge > middle > near vein. Significant phenotypic positive correlations were observed between the trichome-related traits of different parts. A total of 83 QTLs for trichome-related traits were mapped onto 18 chromosomes, and each one accounted for 2.41 to 27.99% of the phenotypic variations. Two QTL hotspots were detected in two marker intervals: AX-95232910~AX-95658735 on 3A and AX-94850949~AX-109507404 on 7D. Six possible candidate genes (TraesCS3A02G406000, TraesCS3A02G414900, TraesCS3A02G440900, TraesCS7D02G145200, TraesCS7D02G149200, and TraesCS7D02G152400) for trichome-related traits of wheat leaves were screened out according to their predicted expression levels in wheat leaves. The expression of these genes may be induced by a variety of abiotic stresses. The results provide the basis for further validation and functional characterization of the candidate genes.
Collapse
Affiliation(s)
- Hua Fan
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
- Experimental Teaching Center, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Jianchao Xu
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Dan Ao
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Tianxiang Jia
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Yugang Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Ning Li
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Ruilian Jing
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100000, China;
| | - Daizhen Sun
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| |
Collapse
|
3
|
Wang S, Wang C, Lv F, Chu P, Jin H. Genome-wide identification of the OMT gene family in Cucumis melo L. and expression analysis under abiotic and biotic stress. PeerJ 2023; 11:e16483. [PMID: 38107581 PMCID: PMC10725674 DOI: 10.7717/peerj.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/27/2023] [Indexed: 12/19/2023] Open
Abstract
Background O-methyltransferase (OMT)-mediated O-methylation is a frequent modification that occurs during natural product biosynthesis, and it increases the diversity and stability of secondary metabolites. However, detailed genome-wide identification and expression analyses of OMT gene family members have not been performed in melons. In this study, we aimed to perform the genome-wide identification of OMT gene family members in melon to identify and clarify their actions during stress. Methods Genome-wide identification of OMT gene family members was performed using data from the melon genome database. The Cucumis melo OMT genes (CmOMTs) were then compared with the genes from two representative monocotyledons and three representative dicotyledons. The basic information, cis-regulatory elements in the promoter, predicted 3-D-structures, and GO enrichment results of the 21 CmOMTs were analyzed. Results In our study, 21 CmOMTs (named CmOMT1-21) were obtained by analyzing the melon genome. These genes were located on six chromosomes and divided into three groups composed of nine, six, and six CmOMTs based on phylogenetic analysis. Gene structure and motif descriptions were similar within the same classes. Each CmOMT gene contains at least one cis-acting element associated with hormone transport regulation. Analysis of cis-acting elements illustrated the potential role of CmOMTs in developmental regulation and adaptations to various abiotic and biotic stresses. The RNA-seq and quantitative real-time PCR (qRT-PCR) results indicated that NaCl stress significantly induced CmOMT6/9/14/18 and chilling and high temperature and humidity (HTH) stresses significantly upregulated CmOMT14/18. Furthermore, the expression pattern of CmOMT18 may be associated with Fusarium oxysporum f. sp. melonis race 1.2 (FOM1.2) and powdery mildew resistance. Our study tentatively explored the biological functions of CmOMT genes in various stress regulation pathways and provided a conceptual basis for further detailed studies of the molecular mechanisms.
Collapse
Affiliation(s)
| | - Chuang Wang
- Liaocheng Vocational & Technical College, Liaocheng, China
| | - Futang Lv
- Liaocheng University, Liaocheng, China
| | | | - Han Jin
- Liaocheng University, Liaocheng, China
| |
Collapse
|
4
|
Meng Y, Lyu X, Liu J, Gao W, Ma Y, Liao N, Li Z, Bo Y, Hu Z, Yang J, Zhang M. Structural variation of GL1 gene determines the trichome formation in Brassica juncea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:75. [PMID: 36952042 DOI: 10.1007/s00122-023-04301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
A 448 kb region on chromosome B02 was delimited to be associated with trichome trait in Brassica juncea, in which the BjuVB02G54610 gene with a structural variation of 3 kb structure variation (SV) encoding a MYB transcription factor was predicted as the possible candidate gene. Mustards (Brassica juncea) are allopolyploid crops in the worldwide, and trichomes are essential quality attributes that significantly influence its taste and palpability in vegetable-use cultivars. As important accessory tissues from specialized epidermal cells, trichomes also play an important role in mitigating biotic and abiotic stresses. In this study, we constructed a F2 segregating population using YJ27 with intensive trichome leaves and 03B0307 with glabrous leaves as parents. By bulked segregant analysis (BSA-seq), we obtained a 2.1 Mb candidate region on B02 chromosome associated with the trichome or glabrous trait formation. Then, we used 13 Kompetitive Allele Specific PCR (KASP) markers for fine mapping and finally narrowed down the candidate region to about 448 kb in length. Interestingly, among the region, there was a 3 kb sequence deletion that located on the BjuVB02G54610 gene in the F2 individuals with trichome leaves. Genotyping results of F2 populations confirmed this deletion (R2 = 81.44%) as a major QTL. Natural population re-sequencing analysis and genotyping results further validated the key role of the 3 kb structure variation (SV) of insertion/deletion type in trichome development in B. juncea. Our findings provide important information on the formation of trichomes and potential target gene for breeding vegetable mustards.
Collapse
Affiliation(s)
- Yiqing Meng
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiagolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiaqi Liu
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, People's Republic of China
| | - Wei Gao
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, People's Republic of China
| | - Yuyuan Ma
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Nanqiao Liao
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhangping Li
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yongming Bo
- Ningbo Weimeng Seed Industry Co.Ltd, Ningbo, People's Republic of China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China.
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, People's Republic of China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, People's Republic of China.
| |
Collapse
|
5
|
Zheng Z, Hu H, Gao S, Zhou H, Luo W, Kage U, Liu C, Jia J. Leaf thickness of barley: genetic dissection, candidate genes prediction and its relationship with yield-related traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1843-1854. [PMID: 35348823 DOI: 10.1007/s00122-022-04076-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In this first genetic study on assessing leaf thickness directly in cereals, major and environmentally stable QTL were detected in barley and candidate genes underlying a major locus were identified. Leaf thickness (LT) is an important characteristic affecting leaf functions which have been intensively studied. However, as LT has a small dimension in many plant species and technically difficult to measure, previous studies on this characteristic are often based on indirect estimations. In the first study of detecting QTL controlling LT by directly measuring the characteristic in barley, large and stable loci were detected from both field and glasshouse trials conducted in different cropping seasons by assessing a population of 201 recombinant inbred lines. Four loci (locating on chromosome arms 2H, 3H, 5H and 6H, respectively) were consistently detected for flag leaf thickness (FLT) in each of these trials. The one on 6H had the largest effect, with a maximum LOD 9.8 explaining up to 20.9% of phenotypic variance. FLT does not only show strong interactions with flag leaf width and flag leaf area but has also strong correlations with fertile tiller number, spike row types, kernel number per spike and heading date. Though with reduced efficiency, these loci were also detectable from assessing second last leaf of fully grown plants or even from assessing the third leaves of seedlings. Taking advantage of the high-quality genome assemblies for both parents of the mapping population used in this study, three candidate genes underlying the 6H QTL were predicted based on orthologous analysis. These results do not only broaden our understanding on genetic basis of LT and its relationship with other traits in cereal crops but also form the bases for cloning and functional analysis of genes regulating LT in barley.
Collapse
Affiliation(s)
- Zhi Zheng
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Haiyan Hu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Shang Gao
- School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Hong Zhou
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Wei Luo
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Udaykumar Kage
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia.
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Bhattarai R, Liu H, Siddique KHM, Yan G. Characterisation of a 4A QTL for Metribuzin Resistance in Wheat by Developing Near-Isogenic Lines. PLANTS (BASEL, SWITZERLAND) 2021; 10:1856. [PMID: 34579389 PMCID: PMC8466451 DOI: 10.3390/plants10091856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 09/05/2021] [Indexed: 11/17/2022]
Abstract
Wheat (Triticum aestivum L.) production is constantly affected by weeds in the farming system. Chemical-based weed management is widely practiced; broad-spectrum herbicides such as metribuzin have been successfully used to control weeds in Australia and elsewhere of the world. Breeding metribuzin-resistant wheat through genetic improvement is needed for effective control of weeds. Quantitative trait loci (QTLs) mapping efforts identified a major QTL on wheat chromosome 4A, explaining up to 20% of the phenotypic variance for metribuzin resistance. The quantitative nature of inheritance of this QTL signifies the importance of near-isogenic lines (NILs), which can convert a quantitative trait into a Mendelian factor for better resolution of the QTL. In the current study, NILs were developed using a heterogeneous inbred family method combined with a fast generation-cycling system in a population of Chuan Mai 25 (resistant) and Ritchie (susceptible). Seven pairs of NILs targeting the 4A QTL for metribuzin resistance were confirmed with a molecular marker and phenotyping. The resistant allele from the resistant parent increased metribuzin resistance by 63-85% (average 69%) compared with the susceptible allele from the susceptible parent. Segregation analysis in the NIL pairs for thousand grain weight (TGW) (g), biomass per plant (kg), tillers per plant, plant height (cm), yield per plant, and powdery mildew visual score (0-9) indicated that these traits were linked with metribuzin resistance. Similarly, TGW was observed to co-segregate with metribuzin resistance in most confirmed NILs, signifying that the two traits are controlled by closely linked genes. The most contrasting NILs can be further characterised by transcriptomic and proteomic analyses to identify the candidate genes responsible for metribuzin resistance.
Collapse
Affiliation(s)
- Rudra Bhattarai
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (R.B.); (K.H.M.S.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (R.B.); (K.H.M.S.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Kadambot H. M. Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (R.B.); (K.H.M.S.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (R.B.); (K.H.M.S.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|