1
|
Kartseva T, Aleksandrov V, Alqudah AM, Schierenbeck M, Tasheva K, Börner A, Misheva S. Exploring Novel Genomic Loci and Candidate Genes Associated with Plant Height in Bulgarian Bread Wheat via Multi-Model GWAS. PLANTS (BASEL, SWITZERLAND) 2024; 13:2775. [PMID: 39409644 PMCID: PMC11479123 DOI: 10.3390/plants13192775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
In the context of crop breeding, plant height (PH) plays a pivotal role in determining straw and grain yield. Although extensive research has explored the genetic control of PH in wheat, there remains an opportunity for further advancements by integrating genomics with growth-related phenomics. Our study utilizes the latest genome-wide association scan (GWAS) techniques to unravel the genetic basis of temporal variation in PH across 179 Bulgarian bread wheat accessions, including landraces, tall historical, and semi-dwarf modern varieties. A GWAS was performed with phenotypic data from three growing seasons, the calculated best linear unbiased estimators, and the leveraging genotypic information from the 25K Infinium iSelect array, using three statistical methods (MLM, FarmCPU, and BLINK). Twenty-five quantitative trait loci (QTL) associated with PH were identified across fourteen chromosomes, encompassing 21 environmentally stable quantitative trait nucleotides (QTNs), and four haplotype blocks. Certain loci (17) on chromosomes 1A, 1B, 1D, 2A, 2D, 3A, 3B, 4A, 5B, 5D, and 6A remain unlinked to any known Rht (Reduced height) genes, QTL, or GWAS loci associated with PH, and represent novel regions of potential breeding significance. Notably, these loci exhibit varying effects on PH, contribute significantly to natural variance, and are expressed during seedling to reproductive stages. The haplotype block on chromosome 6A contains five QTN loci associated with reduced height and two loci promoting height. This configuration suggests a substantial impact on natural variation and holds promise for accurate marker-assisted selection. The potentially novel genomic regions harbor putative candidate gene coding for glutamine synthetase, gibberellin 2-oxidase, auxin response factor, ethylene-responsive transcription factor, and nitric oxide synthase; cell cycle-related genes, encoding cyclin, regulator of chromosome condensation (RCC1) protein, katanin p60 ATPase-containing subunit, and expansins; genes implicated in stem mechanical strength and defense mechanisms, as well as gene regulators such as transcription factors and protein kinases. These findings enrich the pool of semi-dwarfing gene resources, providing the potential to further optimize PH, improve lodging resistance, and achieve higher grain yields in bread wheat.
Collapse
Affiliation(s)
- Tania Kartseva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| | - Vladimir Aleksandrov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Matías Schierenbeck
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstraße 3, 06466 Seeland, OT Gatersleben, Germany; (M.S.); (A.B.)
- CONICET CCT La Plata, 8 n°1467, La Plata 1900, Argentina
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstraße 3, 06466 Seeland, OT Gatersleben, Germany; (M.S.); (A.B.)
| | - Svetlana Misheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| |
Collapse
|
2
|
Qiao L, Li Y, Wang L, Gu C, Luo S, Li X, Yan J, Lu C, Chang Z, Gao W, Zhang X. Identification of Salt-Stress-Responding Genes by Weighted Gene Correlation Network Analysis and Association Analysis in Wheat Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:2642. [PMID: 39339617 PMCID: PMC11435117 DOI: 10.3390/plants13182642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
The leaf is not only the main site of photosynthesis, but also an important organ reflecting plant salt tolerance. Discovery of salt-stress-responding genes in the leaf is of great significance for the molecular improvement of salt tolerance in wheat varieties. In this study, transcriptome sequencing was conducted on the leaves of salt-tolerant wheat germplasm CH7034 seedlings at 0, 1, 6, 24, and 48 h after NaCl treatment. Based on weighted gene correlation network analysis of differentially expressed genes (DEGs) under salt stress, 12 co-expression modules were obtained, of which, 9 modules containing 4029 DEGs were related to the salt stress time-course. These DEGs were submitted to the Wheat Union database, and a total of 904,588 SNPs were retrieved from 114 wheat germplasms, distributed on 21 wheat chromosomes. Using the R language package and GAPIT program, association analysis was performed between 904,588 SNPs and leaf salt injury index of 114 wheat germplasms. The results showed that 30 single nucleotide polymorphisms (SNPs) from 15 DEGs were associated with salt tolerance. Then, nine candidate genes, including four genes (TaBAM, TaPGDH, TaGluTR, and TaAAP) encoding enzymes as well as five genes (TaB12D, TaS40, TaPPR, TaJAZ, and TaWRKY) encoding functional proteins, were identified by converting salt tolerance-related SNPs into Kompetitive Allele-Specifc PCR (KASP) markers for validation. Finally, interaction network prediction was performed on TaBAM and TaAAP, both belonging to the Turquoise module. Our results will contribute to a further understanding of the salt stress response mechanism in plant leaves and provide candidate genes and molecular markers for improving salt-tolerant wheat varieties.
Collapse
Affiliation(s)
- Linyi Qiao
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yijuan Li
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Liujie Wang
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Chunxia Gu
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shiyin Luo
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xin Li
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jinlong Yan
- Millet Research Institute, Shanxi Agricultural University, Changzhi 046011, China
| | - Chengda Lu
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Zhijian Chang
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Wei Gao
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaojun Zhang
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
3
|
Gao Y, Qiao L, Mei C, Nong L, Li Q, Zhang X, Li R, Gao W, Chen F, Chang L, Zhang S, Guo H, Cheng T, Wen H, Chang Z, Li X. Mapping of a Major-Effect Quantitative Trait Locus for Seed Dormancy in Wheat. Int J Mol Sci 2024; 25:3681. [PMID: 38612492 PMCID: PMC11011268 DOI: 10.3390/ijms25073681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
The excavation and utilization of dormancy loci in breeding are effective endeavors for enhancing the resistance to pre-harvest sprouting (PHS) of wheat varieties. CH1539 is a wheat breeding line with high-level seed dormancy. To clarify the dormant loci carried by CH1539 and obtain linked molecular markers, in this study, a recombinant inbred line (RIL) population derived from the cross of weak dormant SY95-71 and strong dormant CH1539 was genotyped using the Wheat17K single-nucleotide polymorphism (SNP) array, and a high-density genetic map covering 21 chromosomes and consisting of 2437 SNP markers was constructed. Then, the germination percentage (GP) and germination index (GI) of the seeds from each RIL were estimated. Two QTLs for GP on chromosomes 5A and 6B, and four QTLs for GI on chromosomes 5A, 6B, 6D and 7A were identified. Among them, the QTL on chromosomes 6B controlling both GP and GI, temporarily named QGp/Gi.sxau-6B, is a major QTL for seed dormancy with the maximum phenotypic variance explained of 17.66~34.11%. One PCR-based diagnostic marker Ger6B-3 for QGp/Gi.sxau-6B was developed, and the genetic effect of QGp/Gi.sxau-6B on the RIL population and a set of wheat germplasm comprising 97 accessions was successfully confirmed. QGp/Gi.sxau-6B located in the 28.7~30.9 Mbp physical position is different from all the known dormancy loci on chromosomes 6B, and within the interval, there are 30 high-confidence annotated genes. Our results revealed a novel QTL QGp/Gi.sxau-6B whose CH1539 allele had a strong and broad effect on seed dormancy, which will be useful in further PHS-resistant wheat breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xin Li
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China; (Y.G.)
| |
Collapse
|
4
|
Chen J, Zhang L, Liu Y, Shen X, Guo Y, Ma X, Zhang X, Li X, Cheng T, Wen H, Qiao L, Chang Z. RNA-Seq-Based WGCNA and Association Analysis Reveal the Key Regulatory Module and Genes Responding to Salt Stress in Wheat Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:274. [PMID: 38256827 PMCID: PMC10818790 DOI: 10.3390/plants13020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Soil salinization is the main abiotic stressor faced by crops. An improved understanding of the transcriptional response to salt stress in roots, the organ directly exposed to a high salinity environment, can inform breeding strategies to enhance tolerance and increase crop yield. Here, RNA-sequencing was performed on the roots of salt-tolerant wheat breeding line CH7034 at 0, 1, 6, 24, and 48 h after NaCl treatment. Based on transcriptome data, a weighted gene co-expression network analysis (WGCNA) was constructed, and five gene co-expression modules were obtained, of which the blue module was correlated with the time course of salt stress at 1 and 48 h. Two GO terms containing 249 differentially expressed genes (DEGs) related to osmotic stress response and salt-stress response were enriched in the blue module. These DEGs were subsequently used for association analysis with a set of wheat germplasm resources, and the results showed that four genes, namely a Walls Are Thin 1-related gene (TaWAT), an aquaporin gene (TaAQP), a glutathione S-transfer gene (TaGST), and a zinc finger gene (TaZFP), were associated with the root salt-tolerance phenotype. Using the four candidate genes as hub genes, a co-expression network was constructed with another 20 DEGs with edge weights greater than 0.6. The network showed that TaWAT and TaAQP were mainly co-expressed with fifteen interacting DEGs 1 h after salt treatment, while TaGST and TaZFP were mainly co-expressed with five interacting DEGs 48 h after salt treatment. This study provides key modules and candidate genes for understanding the salt-stress response mechanism in wheat roots.
Collapse
Affiliation(s)
- Jiating Chen
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China; (J.C.); (X.Z.); (X.L.); (T.C.); (H.W.)
| | - Lei Zhang
- Department of Biology, Taiyuan Normal University, Taiyuan 030031, China;
| | - Yingxi Liu
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China; (J.C.); (X.Z.); (X.L.); (T.C.); (H.W.)
| | - Xinyao Shen
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China; (J.C.); (X.Z.); (X.L.); (T.C.); (H.W.)
| | - Yujing Guo
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China; (J.C.); (X.Z.); (X.L.); (T.C.); (H.W.)
| | - Xiaofei Ma
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Xiaojun Zhang
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China; (J.C.); (X.Z.); (X.L.); (T.C.); (H.W.)
| | - Xin Li
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China; (J.C.); (X.Z.); (X.L.); (T.C.); (H.W.)
| | - Tianling Cheng
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China; (J.C.); (X.Z.); (X.L.); (T.C.); (H.W.)
| | - Huiqin Wen
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China; (J.C.); (X.Z.); (X.L.); (T.C.); (H.W.)
| | - Linyi Qiao
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China; (J.C.); (X.Z.); (X.L.); (T.C.); (H.W.)
| | - Zhijian Chang
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China; (J.C.); (X.Z.); (X.L.); (T.C.); (H.W.)
| |
Collapse
|