1
|
Krizanac M, Mass Sanchez PB, Weiskirchen R, Schröder SK. Overview of the expression patterns and roles of Lipocalin 2 in the reproductive system. Front Endocrinol (Lausanne) 2024; 15:1365602. [PMID: 38645429 PMCID: PMC11026566 DOI: 10.3389/fendo.2024.1365602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
The 25 kDa-sized protein Lipocalin 2 (LCN2) was originally isolated from human neutrophil granulocytes more than 30 years ago. LCN2 is an emerging player in innate immune defense, as it reduces bacterial growth due to its ability to sequester iron-containing bacterial siderophores. On the other hand, LCN2 also serves as a transporter for various hydrophobic substances due to its β-barrel shaped structure. Over the years, LCN2 has been detected in many other cell types including epithelial cells, astrocytes, and hepatocytes. Studies have clearly shown that aberrant expression of LCN2 is associated with a variety of disorders and malignancies, including several diseases of the reproductive system. Furthermore, LCN2 was proposed as a non-invasive prognostic and/or diagnostic biomarker in this context. Although several studies have shed light on the role of LCN2 in various disorders of the female and male reproductive systems, including tumorigenesis, a comprehensive understanding of the physiological function of LCN2 in the reproductive tract is still lacking. However, there is evidence that LCN2 is directly related to fertility, as global depletion of Lcn2 in mice has a negative effect on their pregnancy rate. Since LCN2 expression can be regulated by steroid hormones, it is not surprising that its expression fluctuates greatly during remodeling processes in the female reproductive tract, especially in the uterus. Well-founded details about the expression and regulation of LCN2 in a healthy reproductive state and also about possible changes during reproductive aging could contribute to a better understanding of LCN2 as a target in various diseases. Therefore, the present review summarizes current knowledge about LCN2 in the reproductive system, including studies in rodents and humans, and discusses changes in LCN2 expression during pathological events. The limited data suggest that LCN2 is expressed and regulated differently in healthy male and female reproductive organs.
Collapse
Affiliation(s)
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
2
|
Sheng Z, Gao N, Fan D, Wu N, Zhang Y, Han D, Zhang Y, Tan W, Wang P, An J. Zika virus disrupts the barrier structure and Absorption/Secretion functions of the epididymis in mice. PLoS Negl Trop Dis 2021; 15:e0009211. [PMID: 33667230 PMCID: PMC7968736 DOI: 10.1371/journal.pntd.0009211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 03/17/2021] [Accepted: 02/07/2021] [Indexed: 11/25/2022] Open
Abstract
Several studies have demonstrated that Zika virus (ZIKV) damages testis and leads to infertility in mice; however, the infection in the epididymis, another important organ of male reproductive health, has gained less attention. Previously, we detected lesions in the epididymis in interferon type I and II receptor knockout male mice during ZIKV infection. Herein, the pathogenesis of ZIKV in the epididymis was further assessed in the infected mice after footpad inoculation. ZIKV efficiently replicated in the epididymis, and principal cells were susceptible to ZIKV. ZIKV infection disrupted the histomorphology of the epididymis, and the effects were characterized by a decrease in the thickness of the epithelial layer and an increase in the luminal diameter, especially at the proximal end. Significant inflammatory cell infiltration was observed in the epididymis accompanied by an increase in the levels of interleukin (IL)-6 and IL-28. The expression of tight junction proteins was downregulated and associated with disordered arrangement of the junctions. Importantly, the expression levels of aquaporin 1 and lipocalin 8, indicators of the absorption and secretion functions of the epididymis, were markedly reduced, and the proteins were redistributed. These events synergistically altered the microenvironment for sperm maturation, disturbed sperm transport downstream, and may impact male reproductive health. Overall, these results provide new insights into the pathogenesis of the male reproductive damage caused by ZIKV infection and the possible contribution of epididymal injury into this process. Therefore, male fertility of the population in areas of ZIKV epidemic requires additional attention. Unlike other mosquito-transmitted flaviviruses, ZIKV can persistently replicate in the male reproductive system and is sexually transmitted. ZIKV infection was reported to damage testis. However, ZIKV-induced epididymal injury was not investigated in detail. Clinically, epididymitis is closely associated with male infertility. In this study, a mouse model was used to demonstrate that ZIKV causes histomorphological and functional changes in the epididymis, which may alter the microenvironment of sperm maturation and movement and finally lead to male infertility. Therefore, long-term investigation of male reproductive health may be needed in the areas of ZIKV epidemic.
Collapse
Affiliation(s)
- Ziyang Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Na Gao
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dongying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Na Wu
- Laboratory Animal Center, Capital Medical University, Beijing, China
| | - Yingying Zhang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Daishu Han
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yun Zhang
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, Jiangsu, China
| | - Weilong Tan
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, Jiangsu, China
| | - Peigang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- * E-mail: (PW); (JA)
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
- * E-mail: (PW); (JA)
| |
Collapse
|
3
|
Impaired sperm maturation in conditional Lcn6 knockout mice†. Biol Reprod 2017; 98:28-41. [DOI: 10.1093/biolre/iox128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 10/12/2017] [Indexed: 12/23/2022] Open
|
4
|
Watanabe H, Takeo T, Tojo H, Sakoh K, Berger T, Nakagata N, Mak TW, Kondoh G. Lipocalin 2 binds to membrane phosphatidylethanolamine to induce lipid raft movement in a PKA-dependent manner and modulates sperm maturation. Development 2014; 141:2157-64. [PMID: 24803661 DOI: 10.1242/dev.105148] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mammalian sperm undergo multiple maturation steps after leaving the testis in order to become competent for fertilization, but the molecular mechanisms underlying this process remain unclear. In terms of identifying factors crucial for these processes in vivo, we found that lipocalin 2 (Lcn2), which is known as an innate immune factor inhibiting bacterial and malarial growth, can modulate sperm maturation. Most sperm that migrated to the oviduct of wild-type females underwent lipid raft reorganization and glycosylphosphatidylinositol-anchored protein shedding, which are signatures of sperm maturation, but few did so in Lcn2 null mice. Furthermore, we found that LCN2 binds to membrane phosphatidylethanolamine to reinforce lipid raft reorganization via a PKA-dependent mechanism and promotes sperm to acquire fertility by facilitating cholesterol efflux. These observations imply that mammals possess a mode for sperm maturation in addition to the albumin-mediated pathway.
Collapse
Affiliation(s)
- Hitomi Watanabe
- Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Hsu MC, Wang JY, Lee YJ, Jong DS, Tsui KH, Chiu CH. Kisspeptin modulates fertilization capacity of mouse spermatozoa. Reproduction 2014; 147:835-45. [PMID: 24567427 DOI: 10.1530/rep-13-0368] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Kisspeptin acts as an upstream regulator of the hypothalamus-pituitary-gonad axis, which is one of the main regulatory systems for mammalian reproduction. Kiss1 and its receptor Kiss1r (also known as G protein-coupled receptor 54 (Gpr54)) are expressed in various organs, but their functions are not well understood. The purpose of this study was to investigate the expression profiles and functions of kisspeptin and KISS1R in the reproductive tissues of imprinting control region mice. To identify the expression pattern and location of kisspeptin and KISS1R in gonads, testes and ovarian tissues were examined by immunohistochemical or immunofluorescent staining. Kisspeptin and KISS1R were expressed primarily in Leydig cells and seminiferous tubules respectively. KISS1R was specifically localized in the acrosomal region of spermatids and mature spermatozoa. Kisspeptin, but not KISS1R, was expressed in the cumulus-oocyte complex and oviductal epithelium of ovarian and oviductal tissues. The sperm intracellular calcium concentrations significantly increased in response to treatment with kisspeptin 10 in Fluo-4-loaded sperm. The IVF rates decreased after treatment of sperm with the kisspeptin antagonist peptide 234. These results suggest that kisspeptin and KISS1R might be involved in the fertilization process in the female reproductive tract. In summary, this study indicates that kisspeptin and KISS1R are expressed in female and male gametes, respectively, and in mouse reproductive tissues. These data strongly suggest that the kisspeptin system could regulate mammalian fertilization and reproduction.
Collapse
Affiliation(s)
- Meng-Chieh Hsu
- Department of Animal Science and TechnologyCollege of Bio-Resources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Road, Taipei 10673, TaiwanDepartment of Obstetrics and GynecologyKaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
| | - Jyun-Yuan Wang
- Department of Animal Science and TechnologyCollege of Bio-Resources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Road, Taipei 10673, TaiwanDepartment of Obstetrics and GynecologyKaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
| | - Yue-Jia Lee
- Department of Animal Science and TechnologyCollege of Bio-Resources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Road, Taipei 10673, TaiwanDepartment of Obstetrics and GynecologyKaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
| | - De-Shien Jong
- Department of Animal Science and TechnologyCollege of Bio-Resources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Road, Taipei 10673, TaiwanDepartment of Obstetrics and GynecologyKaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
| | - Kuan-Hao Tsui
- Department of Animal Science and TechnologyCollege of Bio-Resources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Road, Taipei 10673, TaiwanDepartment of Obstetrics and GynecologyKaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
| | - Chih-Hsien Chiu
- Department of Animal Science and TechnologyCollege of Bio-Resources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Road, Taipei 10673, TaiwanDepartment of Obstetrics and GynecologyKaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
| |
Collapse
|
6
|
Kuo CW, Chen CM, Lee YC, Chu ST, Khoo KH. Glycomics and proteomics analyses of mouse uterine luminal fluid revealed a predominance of Lewis Y and X epitopes on specific protein carriers. Mol Cell Proteomics 2008; 8:325-42. [PMID: 18941134 DOI: 10.1074/mcp.m800320-mcp200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sperm motility and maturation are known to be affected by a host of factors encountered en route in both male and female genital tracts prior to fertilization. Using a concerted proteomics and glycomics approach with advanced mass spectrometry-based glycan sequencing capability, we show in this work that 24p3, an abundant mouse uterine luminal fluid (ULF) glycoprotein also called lipocalin 2 (Lcn2), is highly fucosylated in the context of carrying multiple Lewis X and Y epitopes on complex type N-glycans at its single glycosylation site. The predominance of Lewis X/Y along with Neu5Acalpha2-6 sialylation was found to be a salient feature of the ULF glycome, and several other protein carriers were additionally identified including the highly abundant lactotransferrin, which is N-glycosylated at two sites, both with a similar range of highly fucosylated N-glycans. A comparative glycomics analysis of the male genital tract fluids revealed that there is a gradient of glycomic complexity from the cauda to caput regions of the epididymis, varying from high mannose to sialylated complex type N-glycans but mostly devoid of fucosylation. The seminal vesicle fluid glycome, on the other hand, carries equally abundant multimeric Lewis X structures but is distinctively lacking in additional fucosylation of the terminal galactose to give the Lewis Y epitope typifying the glycome of female ULF. One-dimensional shotgun proteomics analysis identified over 40 proteins in the latter, many of which are reported for the first time, and a majority are notably involved in immune defense and antigen processing. Further sperm binding and motility assays suggest that the Lewis X/Y epitopes do contribute to the sperm motility-enhancing activity of 24p3, whereas lactotransferrin is largely inactive in this context despite being similarly glycosylated. These findings underline the importance of glycoproteomics in delineating both the specific glycan structures and their carriers in assigning glycobiological functions.
Collapse
Affiliation(s)
- Chu-Wei Kuo
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | |
Collapse
|