1
|
Tan H, Liu Y, Guo H. The biogenesis, regulation and functions of transitive siRNA in plants. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39376148 DOI: 10.3724/abbs.2024160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Small RNA (sRNA)-mediated RNA interference (RNAi) is a sequence-specific gene silencing mechanism that modulates gene expression in eukaryotes. As core molecules of RNAi, various sRNAs are encoded in the plant genome or derived from invading RNA molecules, and their biogenesis depends on distinct genetic pathways. Transitive small interfering RNAs (siRNAs), which are sRNAs produced from double-strand RNA (dsRNA) in a process that depends on RNA-dependent RNA polymerases (RDRs), can amplify and spread silencing signals to additional transcripts, thereby enabling a phenomenon termed "transitive RNAi". Members of this class of siRNAs function in various biological processes ranging from development to stress adaptation. In Arabidopsis thaliana, two RDRs participate in the generation of transitive siRNAs, acting cooperatively with various siRNA generation-related factors, such as the RNA-induced silencing complex (RISC) and aberrant RNAs. Transitive siRNAs are produced in diverse subcellular locations and structures under the control of various mechanisms, highlighting the intricacies of their biogenesis and functions. In this review, we discuss recent advances in understanding the molecular events of transitive siRNA biogenesis and its regulation, with a particular focus on factors involved in RDR recruitment. We aim to provide a comprehensive description of the generalized mechanism governing the biogenesis of transitive siRNAs. Additionally, we present an overview of the diverse biological functions of these siRNAs and raise some pressing questions in this area for further investigation.
Collapse
Affiliation(s)
- Huijun Tan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuelin Liu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
2
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
3
|
Leibman D, Pashkovsky E, Shnaider Y, Shtarkman M, Gaba V, Gal-On A. Analysis of the RNA-Dependent RNA Polymerase 1 (RDR1) Gene Family in Melon. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11141795. [PMID: 35890429 PMCID: PMC9320487 DOI: 10.3390/plants11141795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 05/14/2023]
Abstract
RNA-dependent RNA polymerase 1 (RDR1) plays a crucial defense role against plant viruses by secondary amplification of viral double-stranded RNA in the gene-silencing pathway. In this study, it was found that melon (Cucumis melo) encodes four RDR1 genes (CmRDR1a, b, c1 and c2) similar to the CsRDR1 gene family of cucumber (C. sativus). However, in contrast to cucumber, melon harbors a truncated CmRDR1b gene. In healthy plants, CmRDR1a was expressed, whereas the expression of CmRDR1c1/c2 was not detected. CmRDR1a expression level increased 20-fold upon cucumber mosaic virus (CMV) infection and was not increased in melon plants infected with zucchini yellow mosaic virus (ZYMV), cucumber vein yellowing virus (CVYV) and cucumber green mottle mosaic virus (CGMMV). The expression of CmRDR1c1/c2 genes was induced differentially by infection with viruses from different families: high levels of ~340-, 172- and 115-fold increases were induced by CMV, CVYV and CGMMV, respectively, and relatively low-level increases by potyvirus infection (4- to 6-fold). CMV mutants lacking the viral silencing suppressor 2b protein did not cause increased CmRDR1c/c2 expression; knockout of CmRDR1c1/c2 by CRISPR/Cas9 increased susceptibility to CMV but not to ZYMV. Therefore, it is suggested that the sensitivity of melon to viruses from different families is a result of the loss of function of CmRDR1b.
Collapse
|
4
|
Diao P, Zhang Q, Sun H, Ma W, Cao A, Yu R, Wang J, Niu Y, Wuriyanghan H. miR403a and SA Are Involved in NbAGO2 Mediated Antiviral Defenses Against TMV Infection in Nicotiana benthamiana. Genes (Basel) 2019; 10:E526. [PMID: 31336929 PMCID: PMC6679004 DOI: 10.3390/genes10070526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 11/18/2022] Open
Abstract
RNAi (RNA interference) is an important defense response against virus infection in plants. The core machinery of the RNAi pathway in plants include DCL (Dicer Like), AGO (Argonaute) and RdRp (RNA dependent RNA polymerase). Although involvement of these RNAi components in virus infection responses was demonstrated in Arabidopsis thaliana, their contribution to antiviral immunity in Nicotiana benthamiana, a model plant for plant-pathogen interaction studies, is not well understood. In this study, we investigated the role of N. benthamiana NbAGO2 gene against TMV (Tomato mosaic virus) infection. Silencing of NbAGO2 by transient expression of an hpRNA construct recovered GFP (Green fluorescent protein) expression in GFP-silenced plant, demonstrating that NbAGO2 participated in RNAi process in N. benthamiana. Expression of NbAGO2 was transcriptionally induced by both MeSA (Methylsalicylate acid) treatment and TMV infection. Down-regulation of NbAGO2 gene by amiR-NbAGO2 transient expression compromised plant resistance against TMV infection. Inhibition of endogenous miR403a, a predicted regulatory microRNA of NbAGO2, reduced TMV infection. Our study provides evidence for the antiviral role of NbAGO2 against a Tobamovirus family virus TMV in N. benthamiana, and SA (Salicylic acid) mediates this by induction of NbAGO2 expression upon TMV infection. Our data also highlighted that miR403a was involved in TMV defense by regulation of target NbAGO2 gene in N. Benthamiana.
Collapse
Affiliation(s)
- Pengfei Diao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qimeng Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hongyu Sun
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenjie Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Aiping Cao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jiaojiao Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
5
|
Pan X, Nichols RL, Li C, Zhang B. MicroRNA-target gene responses to root knot nematode (Meloidogyne incognita) infection in cotton (Gossypium hirsutum L.). Genomics 2018; 111:383-390. [PMID: 29481843 DOI: 10.1016/j.ygeno.2018.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) are a large class of small regulatory RNA molecules, however no study has been performed to elucidate the role of miRNAs in cotton (Gossypium hirsutum) response to the root knot nematode (RKN, Meloidogyne incognita) infection. We selected 28 miRNAs and 8 miRNA target genes to investigate the miRNA-target gene response to M. incognita infection. Our results show that RKN infection significantly affected the expression of several miRNAs and their targeted genes. After 10 days of RKN infection, expression fold changes on miRNA expressions ranged from down-regulated by 33% to upregulated by 406%; meanwhile the expression levels of miRNA target genes were 45.8% to 231%. Three miRNA-target pairs, miR159-MYB, miR319-TCP4 and miR167-ARF8, showed inverse expression patterns between gene targets and their corresponded miRNAs, suggesting miRNA-mediated gene regulation in cotton roots in response to RKN infection.
Collapse
Affiliation(s)
- Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | | | - Chao Li
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
6
|
Qin L, Mo N, Zhang Y, Muhammad T, Zhao G, Zhang Y, Liang Y. CaRDR1, an RNA-Dependent RNA Polymerase Plays a Positive Role in Pepper Resistance against TMV. FRONTIERS IN PLANT SCIENCE 2017; 8:1068. [PMID: 28702034 PMCID: PMC5487767 DOI: 10.3389/fpls.2017.01068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
RNA silencing functions as a major natural antiviral defense mechanism in plants. RNA-dependent RNA polymerases (RDRs) that catalyze the synthesis of double-stranded RNAs, are considered as a fundamental element in RNA silencing pathways. In Arabidopsis thaliana, RDR1, 2 and 6 play important roles in anti-viral RNA silencing. Expression of RDR1 can be elevated following plant treatment with defense hormones and virus infection. RDR1 has been studied in several crop species, but not in pepper (Capsicum annuum L.). Here, a RDR1 gene was isolated from Capsicum annuum L., designated as CaRDR1. The full-length cDNA of CaRDR1 was 3,351 bp, encoding a 1,116-amino acid protein, which contains conserved regions, such as the most remarkable motif DLDGD. The transcripts of CaRDR1 could be induced by salicylic acid (SA), abscisic acid (ABA), H2O2, and tobacco mosaic virus (TMV). Silencing of CaRDR1 in pepper resulted in increased susceptibility to TMV as evident by severe symptom, increased of TMV-CP transcript, higher malondialdehyde (MDA) content and lower antioxidant enzymes activities compared with that of control plants. CaRDR1-overexpressing in Nicotiana benthamiana showed mild disease symptom and reduced TMV-CP transcripts than that of empty vector (EV) following TMV inoculation. The RNA silencing related genes, including NbAGO2, NbDCL2, NbDCL3, and NbDCL4 elevated expression in overexpressed plants. Alternative oxidase (AOX), the terminal oxidase of the cyanide (CN)-resistant alternative respiratory pathway, catalyze oxygen-dependent oxidation of ubiquinol in plants. It has an important function in plant defense against TMV. In addition, CaRDR1 overexpression promoted the expression of NbAOX1a and NbAOX1b. In conclusion, these results suggest that CaRDR1 plays a positive role in TMV resistance by regulating antioxidant enzymes activities and RNA silencing-related genes expression to suppress the replication and movement of TMV.
Collapse
|
7
|
Zhang B, Qin Y, Han Y, Dong C, Li P, Shang Q. Comparative proteomic analysis reveals intracellular targets for bacillomycin L to induce Rhizoctonia solani Kühn hyphal cell death. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1152-1159. [PMID: 27267622 DOI: 10.1016/j.bbapap.2016.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/29/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
Bacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activity against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. To further understand its antifungal actions, proteomes were comparatively studied within R. solani hyphal cells treated with or without bacillomycin L. The results show that 39 proteins were alternatively expressed within cells in response to this lipopeptide, which are involved in stress response, carbohydrate, amino acid and nucleotide metabolism, cellular component organization, calcium homeostasis, protein degradation, RNA processing, gene transcription, and others, suggesting that, in addition to inducing cell membrane permeabilization, iturin exhibits antibiotic activities by targeting intracellular molecules. Based on these results, a model of action of bacillomycin L against R. solani hyphal cells was proposed. Our study provides new insight into the antibiotic mechanisms of iturins.
Collapse
Affiliation(s)
- Bao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuxuan Qin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100083, China
| | - Yuzhu Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chunjuan Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pinglan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100083, China.
| | - Qingmao Shang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Salicylic Acid Signaling in Plant Innate Immunity. PLANT HORMONE SIGNALING SYSTEMS IN PLANT INNATE IMMUNITY 2015. [DOI: 10.1007/978-94-017-9285-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Liou LC, Ren Q, Gao Q, Zhang Z. Sro7 and Sro77, the yeast homologues of the Drosophila lethal giant larvae (Lgl), regulate cell proliferation via the Rho1-Tor1 pathway. MICROBIOLOGY-SGM 2014; 160:2208-2214. [PMID: 25061043 DOI: 10.1099/mic.0.080234-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Saccharomyces cerevisiae Sro7 and Sro77 are homologues of the Drosophila tumour suppressor lethal giant larvae (Lgl), which regulates cell polarity in Drosophila epithelial cells. Here, we showed that double mutation of SRO7/SRO77 was defective in colony growth. The colony of the SRO7/SRO77 double deletion was much smaller than the WT and appeared to be round with a smooth surface, compared with the WT. Analysis using transmission electron microscopy revealed multiple defects of the colony cells, including multiple budding, multiple nuclei, cell lysis and dead cells, suggesting that the double deletion caused defects in cell polarity and cell wall integrity (CWI). Overexpression of RHO1, one of the central regulators of cell polarity and CWI, fully recovered the sro7Δ/sro77Δ phenotype. We further demonstrated that sro7Δ/sro77Δ caused a decrease of the GTP-bound, active Rho1, which in turn caused an upregulation of TOR1. Deletion of TOR1 in sro7Δ/sro77Δ (sro7Δ/sro77Δ/tor1Δ) recovered the cell growth and colony morphology, similar to WT. Our results suggested that the tumour suppressor homologue SRO7/SRO77 regulated cell proliferation and yeast colony development via the Rho1-Tor1 pathway.
Collapse
Affiliation(s)
- Liang-Chun Liou
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Qun Ren
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Qiuqiang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
10
|
Gao Q, Liou LC, Ren Q, Bao X, Zhang Z. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA. MICROBIAL CELL (GRAZ, AUSTRIA) 2014; 1:94-99. [PMID: 28357227 PMCID: PMC5349227 DOI: 10.15698/mic2014.01.131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/26/2014] [Indexed: 11/13/2022]
Abstract
The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ0). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.
Collapse
Affiliation(s)
- Qiuqiang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liang-Chun Liou
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Qun Ren
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
11
|
Kim J, Choi B, Park YH, Cho BK, Lim HS, Natarajan S, Park SU, Bae H. Molecular characterization of ferulate 5-hydroxylase gene from kenaf (Hibiscus cannabinus L.). ScientificWorldJournal 2013; 2013:421578. [PMID: 24204204 PMCID: PMC3800569 DOI: 10.1155/2013/421578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/16/2013] [Indexed: 01/08/2023] Open
Abstract
The purpose of this study is to clone and characterize the expression pattern of a F5H gene encoding ferulate 5-hydroxylase in the phenylpropanoid pathway from kenaf (Hibiscus cannabinus L.). Kenaf is a fast-growing dicotyledonous plant valued for its biomass. F5H, a cytochrome P450-dependent monooxygenase (CYP84), is a key enzyme for syringyl lignin biosynthesis. The full length of the F5H ortholog was cloned and characterized. The full-length F5H ortholog consists of a 1,557-bp open reading frame (ORF) encoding 518 amino acids (GenBank Accession number JX524278). The deduced amino acid sequence showed that kenaf F5H had the highest similarity (78%) with that of Populus trichocarpa. Transcriptional analysis of F5H ortholog was conducted using quantitative real-time PCR during the developmental stages of various tissues and in response to various abiotic stresses. The highest transcript level of the F5H ortholog was observed in immature flower tissues and in early stage (6 week-old) of stem tissues, with a certain level of expression in all tissues tested. The highest transcript level of F5H ortholog was observed at the late time points after treatments with NaCl (48 h), wounding (24 h), cold (24 h), abscisic acid (24 h), and methyl jasmonate (24 h).
Collapse
Affiliation(s)
- Jonggeun Kim
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Bosung Choi
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Young-Hwan Park
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Byoung-Kwan Cho
- Department of Biosystems and Machinery Engineering, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Savithiry Natarajan
- Soybean Genomics and Improvement Laboratory, US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Sang-Un Park
- Department of Crop Science, Chungnam National University, Daejeon 305-754, Republic of Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
12
|
Xu T, Zhang L, Zhen J, Fan Y, Zhang C, Wang L. Expressional and regulatory characterization of Arabidopsis RNA-dependent RNA polymerase 1. PLANTA 2013; 237:1561-9. [PMID: 23503757 DOI: 10.1007/s00425-013-1863-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/23/2013] [Indexed: 05/07/2023]
Abstract
RNA-dependent RNA polymerase 1 (RDR1), a component of gene silencing, participates in plant pathogen defense. However, there are few reports on its expression pattern or regulatory mechanism. To clarify how the Arabidopsis RDR1 gene is regulated at the transcriptional level in response to various stresses, its native 1,303 bp promoter sequence upstream of the translational start site and five truncated regions were inserted upstream of a fused reporter gene (β-glucuronidase-green fluorescent protein) in Arabidopsis. Histochemical staining and fluorescent signal detection revealed that AtRDR1 was expressed primarily in the plant vascular tissue system and its expression was specifically localized in phloem cell layers in roots. Stress experiments showed that the AtRDR1 promoter has a broad-spectrum response to various stresses and is sensitive to 1-naphthaleneacetic acid, abscisic acid, and salicylic acid. Analysis of promoter derivatives revealed that the -1,088 to -690 region was involved in auxin and dehydration responsiveness, that -690 to -434 was responsive to cold treatment, and the intron in the 5'-untranslated region (5'-UTR) responded to jasmonic acid molecules. The 5'-UTR intron was functional in transcript accumulation. Together, our findings suggest that AtRDR1-associated pathogen defense is conducted mainly in the plant vascular tissue system and is under complex regulation.
Collapse
Affiliation(s)
- Tao Xu
- Biotechnology Research Institute/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Science, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
13
|
Ren Q, Liou LC, Gao Q, Bao X, Zhang Z. Bir1 deletion causes malfunction of the spindle assembly checkpoint and apoptosis in yeast. Front Oncol 2012; 2:93. [PMID: 22908045 PMCID: PMC3414729 DOI: 10.3389/fonc.2012.00093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/22/2012] [Indexed: 12/24/2022] Open
Abstract
Cell division in yeast is a highly regulated and well studied event. Various checkpoints are placed throughout the cell cycle to ensure faithful segregation of sister chromatids. Unexpected events, such as DNA damage or oxidative stress, cause the activation of checkpoint(s) and cell cycle arrest. Malfunction of the checkpoints may induce cell death. We previously showed that under oxidative stress, the budding yeast cohesin Mcd1, a homolog of human Rad21, was cleaved by the caspase-like protease Esp1. The cleaved Mcd1 C-terminal fragment was then translocated to mitochondria, causing apoptotic cell death. In the present study, we demonstrated that Bir1 plays an important role in spindle assembly checkpoint and cell death. Similar to H2O2 treatment, deletion of BIR1 using a BIR1-degron strain caused degradation of the securin Pds1, which binds and inactivates Esp1 until metaphase-anaphase transition in a normal cell cycle. BIR1 deletion caused an increase level of ROS and mis-location of Bub1, a major protein for spindle assembly checkpoint. In wild type, Bub1 was located at the kinetochores, but was primarily in the cytoplasm in bir1 deletion strain. When BIR1 was deleted, addition of nocodazole was unable to retain the Bub1 localization on kinetochores, further suggesting that Bir1 is required to activate and maintain the spindle assembly checkpoint. Our study suggests that the BIR1 function in cell cycle regulation works in concert with its anti-apoptosis function.
Collapse
Affiliation(s)
- Qun Ren
- Department of Zoology and Physiology, University of Wyoming Laramie, WY, USA
| | | | | | | | | |
Collapse
|
14
|
Gao Q, Ren Q, Liou LC, Bao X, Zhang Z. Mitochondrial DNA protects against salt stress-induced cytochrome c-mediated apoptosis in yeast. FEBS Lett 2011; 585:2507-12. [PMID: 21740907 DOI: 10.1016/j.febslet.2011.06.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/17/2011] [Accepted: 06/27/2011] [Indexed: 01/25/2023]
Abstract
Here we report that budding yeast mitochondrial DNA protects against salt stress-induced apoptosis. Yeast cells lacking mitochondrial DNA (ρ(0)) are hypersensitive to salt stress-induced apoptosis, which is mediated by mitochondrial cytochrome c release. In addition, cytochrome c expression is downregulated upon salt stress, suggesting a transcriptionally regulated, homeostatic protection mechanism. The repression of cytochrome c transcription is mediated by transcription factor Mig1. Consistently, deletion of MIG1 induces cytochrome C transcription and yields ρ(0) cells that are more sensitive to salt stress. In summary, deletion of mitochondrial function leads to salt stress-induced transcriptional deregulation of cytochrome C, causing apoptosis in yeast.
Collapse
Affiliation(s)
- Qiuqiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
15
|
Guo R, Yu F, Gao Z, An H, Cao X, Guo X. GhWRKY3, a novel cotton (Gossypium hirsutum L.) WRKY gene, is involved in diverse stress responses. Mol Biol Rep 2010; 38:49-58. [PMID: 20238169 DOI: 10.1007/s11033-010-0076-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 03/05/2010] [Indexed: 11/29/2022]
Abstract
WRKY proteins play important roles in plant defense responses. In the present study, a novel WRKY gene, nominated as GhWRKY3, was isolated from cotton (Gossypium hirsutum L.). The full-length cDNA of GhWRKY3 is 1,705 bp in length and encodes a protein with 507 amino acids containing two typical WRKY domains and two zinc finger motifs. Amino acid sequence alignment revealed that GhWRKY3 shares a high degree of identity with other higher plant WRKY proteins. The subcellular localization assay indicated that GhWRKY3 is localized to the nucleus. Analysis of 5'-flanking region of GhWRKY3 revealed a group of putative cis-acting elements. The results of expression analysis indicated that GhWRKY3 is constitutively expressed in roots, stems and leaves. Semi-quantitative RT-PCR showed that GhWRKY3 is up-regulated by application of various phytohormones including salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), gibberellins (GAs) and ethylene (ET). Furthermore, the transcripts of GhWRKY3 are enhanced after infection with Rhizoctonia solani, Colletotrichum gossypii and Fusarium oxysporum f. sp. vasinfectum, respectively. Also, GhWRKY3 can be induced by wounding treatment, but not by cytokinin (6-benzylaminopurine, 6-BA), auxin analogue, drought, NaCl, and cold (4°C). These data suggested that GhWRKY3 might play an important role in plant defense responses and fulfill a pivotal role in plant development.
Collapse
Affiliation(s)
- Ruoyu Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Isolation, expression and functional analysis of a putative RNA-dependent RNA polymerase gene from maize (Zea mays L.). Mol Biol Rep 2009; 37:865-74. [PMID: 19685166 DOI: 10.1007/s11033-009-9692-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
RNA-dependent RNA polymerases (RdRPs) in plants have been reported to be involved in post-transcriptional gene silencing (PTGS) and antiviral defense. In this report, an RdRP gene from maize (ZmRdRP1) was obtained by rapid amplification of cDNA ends (RACE) and RT-PCR. The mRNA of ZmRdRP1 was composed of 3785 nucleotides, including a 167 nt 5' untranslated region (UTR), a 291 nt 3'UTR and a 3327 nt open reading frame (ORF), which encodes a putative protein of 1108 amino acids with an estimated molecular mass of 126.9 kDa and a predicated isoelectric point (pI) of 8.37. Real-time quantitative RT-PCR analysis showed that ZmRdRP1 was elicited by salicylic acid (SA) treatment, methyl jasmonate (MeJA) treatment and sugarcane mosaic virus (SCMV) infection. We silenced ZmRdRP1 by constitutively expressing an inverted-repeat fragment of ZmRdRP1 (ir-RdRP1) in transgenic maize plants. Further studies revealed that the ir-RdRP1 transgenic plants were more susceptible to SCMV infection than wild type plants. Virus-infected transgenic maize plants developed more serious disease symptoms and accumulated more virus than wild type plants. These findings suggested that ZmRdRP1 was involved in antiviral defense in maize.
Collapse
|