1
|
Ramos RS, Casati P, Spampinato CP, Falcone Ferreyra ML. Ribosomal Protein RPL10A Contributes to Early Plant Development and Abscisic Acid-Dependent Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:582353. [PMID: 33250910 PMCID: PMC7674962 DOI: 10.3389/fpls.2020.582353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/01/2020] [Indexed: 05/17/2023]
Abstract
Plant ribosomal proteins play universal roles in translation, although they are also involved in developmental processes and hormone signaling pathways. Among Arabidopsis RPL10 family members, RPL10A exhibits the highest expression during germination and early development, suggesting that RPL10A is the main contributor to these processes. In this work, we first analyzed RPL10A expression pattern in Arabidopsis thaliana using transgenic RPL10Apro:GUS plants. The gene exhibits a ubiquitous expression pattern throughout the plant, but it is most strongly expressed in undifferentiated tissues. Interestingly, gene expression was also detected in stomatal cells. We then examined protein function during seedling establishment and abscisic acid (ABA) response. Heterozygous rpl10A mutant plants show decreased ABA-sensitivity during seed germination, are impaired in early seedling and root development, and exhibit reduced ABA-inhibition of stomatal aperture under light conditions. Overexpression of RPL10A does not affect the germination and seedling growth, but RPL10A-overexpressing lines are more sensitive to ABA during early plant development and exhibit higher stomatal closure under light condition both with and without ABA treatment than wild type plants. Interestingly, RPL10A expression is induced by ABA. Together, we conclude that RPL10A could act as a positive regulator for ABA-dependent responses in Arabidopsis plants.
Collapse
|
2
|
Zhou XS, Chen C, Li TH, Tang JJ, Zhu BJ, Wei GQ, Qian C, Liu CL, Wang L. A QM protein from Bombyx mori negatively regulates prophenoloxidase activation and melanization by interacting with Jun protein. INSECT MOLECULAR BIOLOGY 2019; 28:578-590. [PMID: 30737848 DOI: 10.1111/imb.12573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The QM gene that encodes for the ribosomal protein L10 was firstly identified from human tumour cells as a tumour suppressor. In this study, a QM gene was identified in silkworm Bombyx mori (BmQM) and its immunomodulatory function was explored. BmQM messenger RNA (mRNA) and protein were highly expressed in the silk gland and fat body, and expressed in all stages of silkworm growth. After challenged with four different microorganisms, the expression levels of BmQM mRNA in fat body or haemocytes were significantly upregulated compared with the control. After knock-down of BmQM gene, the expressions of some immune genes (PGRPS6, Gloverin0, Lysozyme and Moricin) were affected, and the transcripts of prophenoloxidase1 and prophenoloxidase2 have different degrees of change. The phenoloxidase activity was significantly reduced when the purified recombinant BmQM protein was injected. Recombinant BmQM protein inhibited systemic melanization and suppressed prophenoloxidase activation stimulated by Micrococcus luteus, but it did not affect phenoloxidase activity. Far-western blotting assays showed that the BmQM protein interacted with silkworm BmJun protein, which negatively regulates AP-1 expression. Our results indicated that BmQM protein could affect some immune gene expression and negatively regulate the prophenoloxidase-activating system, and it may play an important role in regulation of the innate immunity in insects.
Collapse
Affiliation(s)
- X-S Zhou
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - C Chen
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - T-H Li
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - J-J Tang
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - B-J Zhu
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - G-Q Wei
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - C Qian
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - C-L Liu
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - L Wang
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| |
Collapse
|
3
|
Mukhopadhyay M, Mondal TK, Chand PK. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. PLANT CELL REPORTS 2016; 35:255-87. [PMID: 26563347 DOI: 10.1007/s00299-015-1884-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 05/28/2023]
Abstract
This article presents a comprehensive review on the success and limitations of biotechnological approaches aimed at genetic improvement of tea with a purpose to explore possibilities to address challenging areas. Tea is a woody perennial tree with a life span of more than 100 years. Conventional breeding of tea is slow and limited primarily to selection which leads to narrowing down of its genetic base. Harnessing the benefits of wild relatives has been negligible due to low cross-compatibility, genetic drag and undesirable alleles for low yield. Additionally, being a recalcitrant species, in vitro propagation of tea is constrained too. Nevertheless, maneuvering with tissue/cell culture techniques, a considerable success has been achieved in the area of micropropagation, somatic embryogenesis as well as genetic transformation. Besides, use of molecular markers, "expressomics" (transcriptomics, proteomics, metabolomics), map-based cloning towards construction of physical maps, generation of expressed sequenced tags (ESTs) have facilitated the identification of QTLs and discovery of genes associated with abiotic or biotic stress tolerance and agronomic traits. Furthermore, the complete genome (or at least gene space) sequence of tea is expected to be accessible in the near future which will strengthen combinational approaches for improvement of tea. This review presents a comprehensive account of the success and limitations of the biotechnological tools and techniques hitherto applied to tea and its wild relatives. Expectedly, this will form a basis for making further advances aimed at genetic improvement of tea in particular and of economically important woody perennials in general.
Collapse
Affiliation(s)
- Mainaak Mukhopadhyay
- Department of Botany, University of Kalyani, Kalyani, 741235, Nadia, West Bengal, India.
| | - Tapan K Mondal
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India.
| | - Pradeep K Chand
- Plant Cell and Tissue Culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India.
| |
Collapse
|
4
|
Paul A, Jha A, Bhardwaj S, Singh S, Shankar R, Kumar S. RNA-seq-mediated transcriptome analysis of actively growing and winter dormant shoots identifies non-deciduous habit of evergreen tree tea during winters. Sci Rep 2014; 4:5932. [PMID: 25090269 PMCID: PMC4123203 DOI: 10.1038/srep05932] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023] Open
Abstract
Tea [Camellia sinensis (L.) O. Kuntze] is a perennial tree which undergoes winter dormancy and unlike deciduous trees, the species does not shed its leaves during winters. The present work dissected the molecular processes operating in the leaves during the period of active growth and winter dormancy through transcriptome analysis to understand a long-standing question: why should tea be a non-deciduous species? Analyses of 24,700 unigenes obtained from 57,767 primarily assembled transcripts showed (i) operation of mechanisms of winter tolerance, (ii) down-regulation of genes involved in growth, development, protein synthesis and cell division, and (iii) inhibition of leaf abscission due to modulation of senescence related processes during winter dormancy in tea. These senescence related processes exhibited modulation to favour leaf abscission (i) in deciduous Populustremula during winters, and (ii) also in tea but under osmotic stress during which leaves also abscise. These results validated the relevance of the identified senescence related processes for leaf abscission and suggested their operation when in need in tea.
Collapse
Affiliation(s)
- Asosii Paul
- 1] Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India [2] [3]
| | - Ashwani Jha
- 1] Studio of Computational Biology &Bioinformatics, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India [2]
| | - Shruti Bhardwaj
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India
| | - Sewa Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India
| | - Ravi Shankar
- Studio of Computational Biology &Bioinformatics, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur-176061, Himachal Pradesh, India
| |
Collapse
|
5
|
Li Y, Wang ZK, Chen H, Feng EY, Yin YP. Identification and expression analysis of QM-like gene from Spodoptera litura after challenge by the entomopathogenic fungus Nomuraea rileyi. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:ieu062. [PMID: 25528750 PMCID: PMC5443418 DOI: 10.1093/jisesa/ieu062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 06/05/2013] [Indexed: 06/04/2023]
Abstract
A partial sequence of QM homologue was isolated from a Spodoptera litura fatbody suppression subtractive hybridization library. The full-length Spodoptera litura QM (SpLQM) cDNA of 838 bp contains a 5' untranslated region (UTR) of 112 bp, a 3' UTR of 66 bp, and an open reading frame of 660 nucleotides coding for a 219 amino acid peptide with a molecular weight of 25.5 kDa. Analysis of SpLQM sequence revealed the presence of characteristic motifs, including the ribosomal protein L10 signature and SH3-binding motif. Multiple alignment analysis revealed that SpLQM shares an overall identity of 57.1-99.1% with other members of QM family. Phylogenetic analysis confirmed that SpLQM is closely related to other insect QMs. Analysis of the tissue expression pattern showed that the SpLQM mRNA was expressed in all tissues tested, with highest levels measured in hemocytes, followed by fat bodies. Upon Nomuraea rileyi challenge, SpLQM showed significant upregulation in fat bodies and hemocytes, while slightly upregulation in midguts. The results suggest that SpLQM might play an important role in the innate immunity of S. litura in response to N. rileyi infection. SpLQM was also successfully overexpressed in Escherichia coli, and the recombinant fusion protein SpLQM-His has a molecular weight of 32 kDa.
Collapse
Affiliation(s)
- Yan Li
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China
| | - Zhong-Kang Wang
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China
| | - Huan Chen
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China
| | - Er-Yan Feng
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China
| | - You-Ping Yin
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China
| |
Collapse
|
6
|
|
7
|
Paul A, Kumar S. Responses to winter dormancy, temperature, and plant hormones share gene networks. Funct Integr Genomics 2011; 11:659-64. [PMID: 21755357 DOI: 10.1007/s10142-011-0233-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/06/2011] [Accepted: 06/26/2011] [Indexed: 11/25/2022]
Abstract
Gene networks modulated in winter dormancy (WD) in relation to temperature and hormone responses were analyzed in tea [Camellia sinensis (L.) O. Kuntze]. Analysis of subtracted cDNA libraries prepared using the RNA isolated from the apical bud and the associated two leaves (two and a bud, TAB) of actively growing (AG) and winter dormant plant showed the downregulation of genes involved in cell cycle/cell division and upregulation of stress-inducible genes including those encoding chaperons during WD. Low temperature (4°C) modulated gene expression in AG cut-shoots in similar fashion as observed in TAB during WD. In tissue harvested during WD, growth temperature (25°C) modulated gene expression in the similar way as observed during the period of active growth (PAG). Abscisic acid (ABA) and gibberellic acid (GA(3)) modulated expression of selected genes, depending upon if the tissue was harvested during PAG or WD. Tissue preparedness was critical for ABA- and GA(3)-mediated response, particularly for stress-responsive genes/chaperons. Data identified the common gene networks for winter dormancy, temperature, and plant hormone responses.
Collapse
Affiliation(s)
- Asosii Paul
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | | |
Collapse
|
8
|
Alpha-tubulin (CsTUA) up-regulated during winter dormancy is a low temperature inducible gene in tea [Camellia sinensis (L.) O. Kuntze]. Mol Biol Rep 2011; 39:3485-90. [PMID: 21725638 DOI: 10.1007/s11033-011-1121-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/20/2011] [Indexed: 02/07/2023]
Abstract
The present manuscript describes cloning and expression characterization of alpha-tubulin (CsTUA) gene in an evergreen tree tea [Camellia sinensis (L.) O. Kuntze] in response to winter dormancy (WD), abiotic stresses (sodium chloride, polyethylene glycol, and hydrogen peroxide) and plant growth regulators [abscisic acid (ABA), gibberellic acid (GA(3)), indole-3-butyric acid (IBA), and 6-benzylaminopurine (BA)]. CsTUA encoded a putative protein of 449 amino acids with a calculated molecular weight of 49.6 kDa and an isoelectric point (pI) of 5.09. CsTUA shared 76-84 and 90-95% identity at nucleotide and amino acid level, respectively with TUA genes from other plant species. During the period of active growth (PAG), CsTUA showed maximum expression in floral buds as compared to leaf, stem, fruit and root. Though the transcript was not detectable in the younger leaf tissue during the PAG, the expression was induced within 24 h of the low temperature (LT) treatment. The expression was not modulated by the plant growth regulators either in the tissue harvested during PAG or during WD. It was interesting to record that the expression of CsTUA was up-regulated in response to sodium chloride, polyethylene glycol, and hydrogen peroxide. Data has been discussed on the possible role of CsTUA in imparting tolerance to stresses including to LT so that the tea does not exhibit deciduous nature during winters.
Collapse
|
9
|
Zhou F, Jiang S, Huang J, Qiu L, Zhang D, Su T. Molecular analysis of the QM gene from Penaeus monodon and its expression on the different ovarian stages of development. Mol Biol Rep 2010; 38:1921-7. [DOI: 10.1007/s11033-010-0312-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 09/03/2010] [Indexed: 01/27/2023]
|
10
|
Bhardwaj PK, Ahuja PS, Kumar S. Characterization of gene expression of QM from Caragana jubata, a plant species that grows under extreme cold. Mol Biol Rep 2010; 37:1003-10. [PMID: 19757181 DOI: 10.1007/s11033-009-9791-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
Caragana [Caragana jubata (Pall.) Poir] is a temperate plant that thrives well under extremes of cold in high altitude of Himalaya and hence the plant is expected to be a source of genes that might play an important role in tolerance to low temperature (LT). In order to identify LT inducible gene(s), differential display of mRNA (DD) was performed using the apical buds growing under snow as well as growing in the near vicinity without snow, and a LT inducible QM gene (CjQM) homologue was identified. Realizing the importance of QM gene (which encodes human Wilms' tumor suppressor QM protein) in aggregation of 40 and 60S ribosomal subunit and that not much has been reported on this gene in plant systems in relation to its relationship with LT, full length cDNA of CjQM was cloned through rapid amplification of cDNA ends. The gene (977 bp), encoded by small gene family, had an open reading frame of 651 bp and was found to be intronless. The gene exhibited up-regulation within 20 min of exposure to LT and abscisic acid (ABA), but no significant change in gene expression was observed in response to drought stress (DS), salicylic acid (SA) and methyl jasmonate (MJ) application. Up-regulation of CjQM was obtained in the tissues growing in situ under snow. Non-responsiveness of CjQM towards DS, SA and MJ, but up-regulation in response to LT and ABA suggested a specific regulation of the gene in Caragana under varied cues.
Collapse
Affiliation(s)
- Pardeep Kumar Bhardwaj
- Biotechnology Division, Institute of Himalayan Bioresource, Technology, Council of Scientific and Industrial Research, P.O. Box 6, Palampur, Himachal Pradesh 176061, India
| | | | | |
Collapse
|
11
|
Early low-temperature responsive mitogen activated protein kinases RaMPK1 and RaMPK2 from Rheum australe D. Don respond differentially to diverse stresses. Mol Biol Rep 2009; 37:933-8. [DOI: 10.1007/s11033-009-9726-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 08/04/2009] [Indexed: 11/25/2022]
|