1
|
Jam HZ, Li Y, DeVito R, Mousavi N, Ma N, Lujumba I, Adam Y, Maksimov M, Huang B, Dolzhenko E, Qiu Y, Kakembo FE, Joseph H, Onyido B, Adeyemi J, Bakhtiari M, Park J, Javadzadeh S, Jjingo D, Adebiyi E, Bafna V, Gymrek M. A deep population reference panel of tandem repeat variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531600. [PMID: 36945429 PMCID: PMC10028971 DOI: 10.1101/2023.03.09.531600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Tandem repeats (TRs) represent one of the largest sources of genetic variation in humans and are implicated in a range of phenotypes. Here we present a deep characterization of TR variation based on high coverage whole genome sequencing from 3,550 diverse individuals from the 1000 Genomes Project and H3Africa cohorts. We develop a method, EnsembleTR, to integrate genotypes from four separate methods resulting in high-quality genotypes at more than 1.7 million TR loci. Our catalog reveals novel sequence features influencing TR heterozygosity, identifies population-specific trinucleotide expansions, and finds hundreds of novel eQTL signals. Finally, we generate a phased haplotype panel which can be used to impute most TRs from nearby single nucleotide polymorphisms (SNPs) with high accuracy. Overall, the TR genotypes and reference haplotype panel generated here will serve as valuable resources for future genome-wide and population-wide studies of TRs and their role in human phenotypes.
Collapse
Affiliation(s)
- Helyaneh Ziaei Jam
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Yang Li
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ross DeVito
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Nima Mousavi
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA
| | - Nichole Ma
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ibra Lujumba
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala-Uganda
| | - Yagoub Adam
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun, 112233, Nigeria
| | - Mikhail Maksimov
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Bonnie Huang
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | | | - Yunjiang Qiu
- Illumina Incorporated, San Diego, California 92122, USA
| | - Fredrick Elishama Kakembo
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala-Uganda
| | - Habi Joseph
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala-Uganda
| | - Blessing Onyido
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun, 112233, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun, 112233, Nigeria
| | - Jumoke Adeyemi
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun, 112233, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun, 112233, Nigeria
| | - Mehrdad Bakhtiari
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Jonghun Park
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Sara Javadzadeh
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Daudi Jjingo
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala-Uganda
- Department of Computer Science, Makerere University, Kampala, Uganda
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun, 112233, Nigeria
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun, 112233, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun, 112233, Nigeria
- Applied Bioinformatics Division, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, 69120, Germany
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Melissa Gymrek
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
- Department of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
2
|
Kristmundsdottir S, Eggertsson HP, Arnadottir GA, Halldorsson BV. popSTR2 enables clinical and population-scale genotyping of microsatellites. Bioinformatics 2020; 36:2269-2271. [PMID: 31804671 PMCID: PMC7141861 DOI: 10.1093/bioinformatics/btz913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
Summary popSTR2 is an update and augmentation of our previous work ‘popSTR: a population-based microsatellite genotyper’. To make genotyping sensitive to inter-sample differences, we supply a kernel to estimate sample-specific slippage rates. For clinical sequencing purposes, a panel of known pathogenic repeat expansions is provided along with a script that scans and flags for manual inspection markers indicative of a pathogenic expansion. Like its predecessor, popSTR2 allows for joint genotyping of samples at a population scale. We now provide a binning method that makes the microsatellite genotypes more amenable to analysis within standard association pipelines and can increase association power. Availability and implementation https://github.com/DecodeGenetics/popSTR. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Snædis Kristmundsdottir
- deCODE genetics/Amgen, Reykjavík 102, Iceland.,School of Science and Engineering, Reykjavík University, Reykjavík 102, Iceland
| | | | - Gudny A Arnadottir
- School of Science and Engineering, Reykjavík University, Reykjavík 102, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Reykjavík 102, Iceland.,School of Science and Engineering, Reykjavík University, Reykjavík 102, Iceland
| |
Collapse
|
3
|
Franco-Guerrero AA, Márquez-Quiroz LC, Valadéz-Jiménez VM, Cortés H, Murillo-Melo NM, Muñoz B, Cisneros B, Magaña JJ. Oropharyngeal dysphagia in early stages of myotonic dystrophy type 1. Muscle Nerve 2019; 60:90-95. [PMID: 30994189 DOI: 10.1002/mus.26485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Myotonic dystrophy type 1 (DM1) is a multisystemic disorder characterized mainly by skeletal muscle alterations. Although oropharyngeal dysphagia is a prominent clinical feature of DM1, it remains poorly studied in its early disease stages. METHODS Dysphagia was investigated in 11 presymptomatic DM1 carriers, 14 patients with DM1 and 12 age-matched healthy controls, by using fiberoptic endoscopic evaluation of swallowing (FEES) and clinical scores. RESULTS Scores for the FEES variables, delayed pharyngeal reflex, posterior pooling, and postswallow residue were significantly greater in patients with DM1 and in presymptomatic DM1 carriers than in healthy controls (P < 0.05); oropharyngeal dysfunction was more severe in patients than in presymptomatic carriers. Penetration/aspiration was found altered exclusively in patients with DM1 (P < 0.05). DISCUSSION Swallowing dysfunction occurs in presymptomatic DM1 carriers. Timely diagnosis of dysphagia in preclinical stages of the disease will aid in the timely management of presymptomatic carriers, potentially preventing medical complications. Muscle Nerve, 2019.
Collapse
Affiliation(s)
| | - Luz C Márquez-Quiroz
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City, Mexico.,Departamento de Genética, Instituto Nacional de Rehabilitación, Calz. México-Xochimilco No. 289, Col. Arenal Guadalupe, 14389 Ciudad de México (CDMX), México
| | | | - Hernán Cortés
- Departamento de Genética, Instituto Nacional de Rehabilitación, Calz. México-Xochimilco No. 289, Col. Arenal Guadalupe, 14389 Ciudad de México (CDMX), México
| | - Nadia M Murillo-Melo
- Departamento de Genética, Instituto Nacional de Rehabilitación, Calz. México-Xochimilco No. 289, Col. Arenal Guadalupe, 14389 Ciudad de México (CDMX), México.,Biomedical Sciences Program, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Balam Muñoz
- Department of Bioengineering, School of Engineering and Sciences, Tecnológico de Monterrey, Mexico City, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City, Mexico
| | - Jonathan J Magaña
- Departamento de Genética, Instituto Nacional de Rehabilitación, Calz. México-Xochimilco No. 289, Col. Arenal Guadalupe, 14389 Ciudad de México (CDMX), México
| |
Collapse
|
4
|
Murillo-Melo NM, Márquez-Quiróz LC, Gómez R, Orozco L, Mendoza-Caamal E, Tapia-Guerrero YS, Camacho-Mejorado R, Cortés H, López-Reyes A, Santana C, Noris G, Hernández-Hernández O, Cisneros B, Magaña JJ. Origin of the myotonic dystrophy type 1 mutation in Mexican population and influence of Amerindian ancestry on CTG repeat allelic distribution. Neuromuscul Disord 2017; 27:1106-1114. [PMID: 29054426 DOI: 10.1016/j.nmd.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/17/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
Myotonic dystrophy type 1 is caused by expansion of a CTG trinucleotide repeat situated in the DMPK gene. Worldwide genetic studies suggest a single or limited number of mutational events cause the disease. However, distribution of CTG alleles and disease incidence varies among ethnicities. Due to the great ethnic diversity of the Mexican population, the present study was aimed at analyzing the impact of different lineages in shaping the CTG-repeat allelic distribution in the contemporary Mexican-Mestizo population as well as to shed light on the DM1 ancestral origin. Distribution of CTG-repeat alleles was similar among Mestizo and Amerindian subpopulations with (CTG)11-13 being the most frequent alleles in both groups, which implies that Mexican-Mestizo allelic distribution has been modeled by Amerindian ancestry. We diagnosed a relatively high number of cases, consistent with the high frequency of large-normal alleles found in Mexican subpopulations. Haplotype analysis using various polymorphic-markers in proximity to DMPK gene indicates that a single founder mutation originates myotonic dystrophy type 1 in Mexico; however, Y-STR haplogroups data and the presence of pre-mutated and large normal alleles in Amerindians support the hypothesis that both European and Amerindian ancestral chromosomes might have introduced the disease to the Mexican population, which was further disseminated through mestizaje.
Collapse
Affiliation(s)
- N M Murillo-Melo
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico; Biomedical Sciences Program, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - L C Márquez-Quiróz
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico; Department of Genetics and Molecular Biology, Center of Research and Advanced Studies-National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - R Gómez
- Department of Toxicology, CINVESTAV-IPN, Mexico City, Mexico
| | - L Orozco
- Laboratory of Immunogenomics and Metabolic Diseases, National Genomic Medicine Institute (INMEGEN), Mexico City, Mexico
| | - E Mendoza-Caamal
- Laboratory of Immunogenomics and Metabolic Diseases, National Genomic Medicine Institute (INMEGEN), Mexico City, Mexico
| | - Y S Tapia-Guerrero
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico
| | | | - H Cortés
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico
| | - A López-Reyes
- Laboratory of Sinovial Liquid, INR, Mexico City, Mexico
| | - C Santana
- Laboratory of Diagnostic Molecular Biology (BIMODI), Querétaro, Qro, Mexico
| | - G Noris
- Laboratory of Diagnostic Molecular Biology (BIMODI), Querétaro, Qro, Mexico
| | - O Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico
| | - B Cisneros
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies-National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico.
| | - J J Magaña
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico; Biomedical Sciences Program, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.
| |
Collapse
|
5
|
Ambrose KK, Ishak T, Lian LH, Goh KJ, Wong KT, Ahmad-Annuar A, Thong MK. Analysis of CTG repeat length variation in the DMPK gene in the general population and the molecular diagnosis of myotonic dystrophy type 1 in Malaysia. BMJ Open 2017; 7:e010711. [PMID: 28363916 PMCID: PMC5387946 DOI: 10.1136/bmjopen-2015-010711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The lack of epidemiological data and molecular diagnostic services in Malaysia has hampered the setting-up of a comprehensive management plan for patients with myotonic dystrophy type 1 (DM1), leading to delayed diagnosis, treatment and support for patients and families. The aim of this study was to estimate the prevalence of DM1 in the 3 major ethnic groups in Malaysia and evaluate the feasibility of a single tube triplet-primed PCR (TP-PCR) method for diagnosis of DM1 in Malaysia. DESIGN, SETTING AND PARTICIPANTS We used PCR to determine the size of CTG repeats in 377 individuals not known to be affected by DM and 11 DM1 suspected patients, recruited from a tertiary hospital in Kuala Lumpur. TP-PCR was performed on selected samples, followed by Southern blot hybridisation of PCR amplified fragments to confirm and estimate the size of CTG expansion. OUTCOME MEASURES The number of individuals not known to be affected by DM with (CTG)>18 was determined according to ethnic group and as a whole population. The χ2 test was performed to compare the distribution of (CTG)>18 with 12 other populations. Additionally, the accuracy of TP-PCR in detecting CTG expansion in 11 patients with DM1 was determined by comparing the results with that from Southern blot hybridisation. RESULTS Of the 754 chromosomes studied, (CTG)>18 frequency of 3.60%, 1.57% and 4.00% in the Malay, Chinese and Indian subpopulations, respectively, was detected, showing similarities to data from Thai, Taiwanese and Kuwaiti populations. We also successfully detected CTG expansions in 9 patients using the TP-PCR method followed by the estimation of CTG expansion size via Southern blot hybridisation. CONCLUSIONS The results show a low DM1 prevalence in Malaysia with the possibility of underdiagnosis and demonstrates the feasibility of using a clinical and TP-PCR-based approach for rapid and cost-effective DM1 diagnosis in developing countries.
Collapse
Affiliation(s)
- Kathlin K Ambrose
- Department of Molecular Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Taufik Ishak
- Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| | - Lay-Hoong Lian
- Department of Molecular Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khean-Jin Goh
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kum-Thong Wong
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Meow-Keong Thong
- Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Rodríguez R, Hernández-Hernández O, Magaña JJ, González-Ramírez R, García-López ES, Cisneros B. Altered nuclear structure in myotonic dystrophy type 1-derived fibroblasts. Mol Biol Rep 2014; 42:479-88. [PMID: 25307018 DOI: 10.1007/s11033-014-3791-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/03/2014] [Indexed: 12/14/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem genetic disorder caused by a triplet nucleotide repeat expansion in the 3' untranslated region of the Dystrophia Myotonica-Protein Kinase (DMPK) gene. DMPK gene transcripts containing CUG expanded repeats accumulate in nuclear foci and ultimately cause altered splicing/gene expression of numerous secondary genes. The study of primary cell cultures derived from patients with DM1 has allowed the identification and further characterization of molecular mechanisms underlying the pathology in the natural context of the disease. In this study we show for the first time impaired nuclear structure in fibroblasts of DM1 patients. DM1-derived fibroblasts exhibited altered localization of the nuclear envelope (NE) proteins emerin and lamins A/C and B1 with concomitant increased size and altered shape of nuclei. Abnormal NE organization is more common in DM1 fibroblasts containing abundant nuclear foci, implying expression of the expanded RNA as determinant of nuclear defects. That transient expression of the DMPK 3' UTR containing 960 CTG but not with the 3' UTR lacking CTG repeats is sufficient to generate NE disruption in normal fibroblasts confirms the direct impact of mutant RNA on NE architecture. We also evidence nucleoli distortion in DM1 fibroblasts by immunostaining of the nucleolar protein fibrillarin, implying a broader effect of the mutant RNA on nuclear structure. In summary, these findings reveal that NE disruption, a hallmark of laminopathy disorders, is a novel characteristic of DM1.
Collapse
Affiliation(s)
- R Rodríguez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508 Col Zacatenco, 07360, Mexico, D.F, Mexico
| | | | | | | | | | | |
Collapse
|