1
|
Tripathi AD, Labh Y, Katiyar S, Singh AK, Chaturvedi VK, Mishra A. Folate-Mediated Targeting and Controlled Release: PLGA-Encapsulated Mesoporous Silica Nanoparticles Delivering Capecitabine to Pancreatic Tumor. ACS APPLIED BIO MATERIALS 2024; 7:7838-7851. [PMID: 38530292 DOI: 10.1021/acsabm.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The discovery of specifically tailored therapeutic delivery systems has sparked the interest of pharmaceutical researchers considering improved therapeutic effectiveness and fewer adverse effects. The current study concentrates on the design and characterization of PLGA (polylactic-co-glycolic acid) capped mesoporous silica nanoparticles (MSN)-based systems for drug delivery for pH-sensitive controlled drug release in order to achieve a targeted drug release inside the acidic tumor microenvironment. The physicochemical properties of the nanoformulations were analyzed using TEM, zeta potential, AFM, TGA, FTIR, and BET analyses in addition to DLS size. The final formed PLGA-FoA-MSN-CAP and pure MSN had sizes within the therapeutic ranges of 164.5 ± 1.8 and 110.7 ± 2.2, respectively. Morphological characterization (TEM and AFM) and elemental analysis (FTIR and XPS) confirmed the proper capping and tagging of PLGA and folic acid (FoA). The PLGA-coated FoA-MSN exhibited a pH-dependent controlled release of the CAP (capecitabine) drug, showing efficient release at pH 6.8. Furthermore, the in vitro MTT test on PANC1 and MIAPaCa-2 resulted in an IC50 value of 146.37 μg/ml and 105.90 μg/ml, respectively. Mitochondrial-mediated apoptosis was confirmed from the caspase-3 and annexin V/PI flow cytometry assay, which displayed a cell cycle arrest at the G1 phase. Overall, the results predicted that the designed nanoformulation is a potential therapeutic agent in treating pancreatic cancer.
Collapse
Affiliation(s)
- Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Yamini Labh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Anurag Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Vivek K Chaturvedi
- Department of Gastroenterology, Institute of Medical Sciences (BHU), Varanasi-221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| |
Collapse
|
2
|
Liu C, Hern FY, Shakil A, Temburnikar K, Chambon P, Liptrott N, McDonald TO, Neary M, Flexner C, Owen A, Meyers CF, Rannard SP. Polymer-prodrug conjugates as candidates for degradable, long-acting implants, releasing the water-soluble nucleoside reverse-transcriptase inhibitor emtricitabine. J Mater Chem B 2023; 11:11532-11543. [PMID: 37955203 PMCID: PMC10718295 DOI: 10.1039/d3tb02268d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Circulating, soluble polymer-drug conjugates have been utilised for many years to aid the delivery of sensitive, poorly-soluble or cytotoxic drugs, prolong circulation times or minimise side effects. Long-acting therapeutics are increasing in their healthcare importance, with intramuscular and subcutaneous administration of liquid formulations being most common. Degradable implants also offer opportunities and the use of polymer-prodrug conjugates as implant materials has not been widely reported in this context. Here, the potential for polymer-prodrug conjugates of the water soluble nucleoside reverse transciption inhibitor emtricitabine (FTC) is studied. A novel diol monomer scaffold, allowing variation of prodrug substitution, has been used to form polyesters and polycarbonates by step-growth polymerisation. Materials have been screened for physical properties that enable implant formation, studied for drug release to provide mechanistic insights, and tunable prolonged release of FTC has been demonstrated over a period of at least two weeks under relevant physiological conditions.
Collapse
Affiliation(s)
- Chung Liu
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Faye Y Hern
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Anika Shakil
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Kartik Temburnikar
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Pierre Chambon
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Neill Liptrott
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Megan Neary
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
| | - Charles Flexner
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Andrew Owen
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
| | - Caren Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| |
Collapse
|
3
|
Cooper AC, Fazer CA, Chintakuntlawar AV, Fuentes Bayne HE, McGarrah PW, Price KAR. Capecitabine for Salvage Treatment of Patients With Heavily Pretreated Human Papillomavirus-Associated Oropharynx Cancer With Distant Metastases. J Adv Pract Oncol 2023; 14:571-575. [PMID: 38196671 PMCID: PMC10715283 DOI: 10.6004/jadpro.2023.14.7.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Background Patients with metastatic human papillomavirus-associated oropharyngeal cancer (HPV-OPC) have a median overall survival exceeding 2 years and are often candidates for multiple lines of palliative therapy. With the approval of immunotherapy as first-line treatment, salvage therapeutic options are limited. We describe our experience using capecitabine as salvage therapy for patients with recurrent or metastatic (R/M) HPV-OPC. Methods We performed a retrospective study of patients with R/M HPV-OPC with distant metastatic disease. Eligible patients were identified from a medical oncology clinical database. Demographic and clinical data were abstracted from the medical record. Survival probabilities were estimated with the Kaplan-Meier method. Results 10 patients were identified. Sites of metastatic disease included lung, liver, mediastinal lymph nodes, bone, abdominal lymph nodes, and soft tissue. Most patients received capecitabine as fourth-line treatment. The median duration from start of capecitabine therapy until death was 10.5 months. Best treatment response was as follows: partial responses (PR) were seen in 4 of 10 (40%), stable disease (SD) in 3 of 10 (30%), and progressive disease (PD) in 2 of 10 (20%). The clinical benefit rate (CR + PR + SD) was 70%. Reasons for discontinuation included disease progression (n = 8) and side effects (n = 2). One patient notably had prolonged benefit from capecitabine and continued to be on treatment for 34 months total. Conclusions Capecitabine is a potential salvage treatment for heavily pretreated patients with R/M HPV-OPC, with some patients experiencing prolonged response. Clinical or molecular predictors of response would be helpful to identify patients likely to benefit; a larger prospective study would be useful to confirm efficacy in this patient population.
Collapse
Affiliation(s)
- Anna C Cooper
- From Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Casey A Fazer
- From Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | |
Collapse
|
4
|
Mireștean CC, Iancu RI, Iancu DPT. Capecitabine-A "Permanent Mission" in Head and Neck Cancers "War Council"? J Clin Med 2022; 11:5582. [PMID: 36233450 PMCID: PMC9573684 DOI: 10.3390/jcm11195582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Capecitabine, an oral pro-drug that is metabolized to 5-FU, has been used in clinical practice for more than 20 years, being part of the therapeutic standard for digestive and breast cancers. The use of capecitabine has been evaluated in many trials including cases diagnosed in recurrent or metastatic settings. Induction regimens or a combination with radiation therapy were evaluated in head and neck cancers, but 5-FU still remained the fluoropyrimidine used as a part of the current therapeutic standard. Quantifications of levels or ratios for enzymes are involved in the capecitabine metabolism to 5-FU but are also involved in its conversion and elimination that may lead to discontinuation, dose reduction or escalation of treatment in order to obtain the best therapeutic ratio. These strategies based on biomarkers may be relevant in the context of the implementation of precision oncology. In particular for head and neck cancers, the identification of biomarkers to select possible cases of severe toxicity requiring discontinuation of treatment, including "multi-omics" approaches, evaluate not only serological biomarkers, but also miRNAs, imaging and radiomics which will ensure capecitabine a role in both induction and concomitant or even adjuvant and palliative settings. An approach including routine testing of dihydropyrimidine dehydrogenase (DPD) or even the thymidine phosphorylase (TP)/DPD ratio and the inclusion of miRNAs, imaging and radiomics parameters in multi-omics models will help implement "precision chemotherapy" in HNC, a concept supported by the importance of avoiding interruptions or treatment delays in this type of cancer. The chemosensitivity and prognostic features of HPV-OPC cancers open new horizons for the use of capecitabine in heavily pretreated metastatic cases. Vorinostat and lapatinib are agents that can be associated with capecitabine in future clinical trials to increase the therapeutic ratio.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Medical Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
- Department of Surgery, Railways Clinical Hospital, 700506 Iasi, Romania
| | - Roxana Irina Iancu
- Oral Pathology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Clinical Laboratory, St. Spiridon Emergency Hospital, 700111 Iasi, Romania
| | - Dragoș Petru Teodor Iancu
- Department of Medical Oncology and Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Radiation Oncology, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
5
|
Recent Advances in Multicomponent Reactions Catalysed under Operationally Heterogeneous Conditions. Catalysts 2022. [DOI: 10.3390/catal12070725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Multicomponent reactions (MCRs) have been gaining significance and attention over the past decade because of their ability to furnish complex products by using readily available and simple starting materials while simultaneously eliminating the need to separate and purify any intermediates. More so, most of these products have been found to exhibit diverse biological activities. Another paradigm shift which has occurred contemporarily is the switch to heterogeneous catalysis, which results in additional benefits such as the reduction of waste and an increase in the safety of the process. More importantly, it allows the user to recover and reuse the catalyst for multiple runs. In summary, both methodologies adhere to the principles of green chemistry, a philosophy which needs to become overarchingly enshrined. The plethora of reactions and catalysts which have been developed gives hope that chemists are slowly changing their ideology. As a result, this review attempts to discuss multicomponent reactions catalysed by operationally heterogeneous catalysts in the past 10 years. In this review, a further distinction is made between the MCRs which lead to the formation of heterocycles and those which do not.
Collapse
|
6
|
Kaya Çakir H, Eroglu O. In vitro anti-proliferative effect of capecitabine (Xeloda) combined with mocetinostat (MGCD0103) in 4T1 breast cancer cell line by immunoblotting. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 24:1515-1522. [PMID: 35317122 PMCID: PMC8917851 DOI: 10.22038/ijbms.2021.58393.12971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022]
Abstract
Objectives Mouse breast cancer cell line 4T1 can accurately mimic the response to immune receptors and targeting therapeutic agents. Combined therapy has emerged as an important strategy with reduced side effects and maximum therapeutic effect. Mocetinostat (MGCD0103) is one of the members of Class I Histone Deacetylase Inhibitors (HDACi) and its mechanism of action has not been defined, yet. Capecitabine (Xeloda) is an antimetabolite and currently is widely utilized to treat a wide range of solid tumors. The aim of this study was to investigate the effects of the capecitabine, mocetinostat and their combined application on the 4T1 cell line. Materials and Methods The effects of combined administration of mocetinostat and capecitabine on 4T1 cells were investigated by cell viability and migration assays, apoptosis analysis, and Western blotting technique. Results The concentrations of drugs that give a half-maximal response (IC50) were detected for capecitabine (1700 µM), mocetinostat (3,125 µM), and 50 µM Capecitabine+1,5 µM Mocetinostat for 48 hr. In capecitabine+mocetinostat combine group, we observed that cell migration decreased, DNA fragmentation increased compared to the control group. capecitabine + mocetinostat group induced apoptosis by decreasing Bcl-2, PI3K, Akt, c-myc protein levels, while increasing Bax, Caspase-3, PTEN, cleaved-PARP, Caspase-7, Caspase-9, p53, cleaved-Cas-9 protein levels in 4T1 cells. Conclusion Capecitabine and mocetinostat played a toxic role through inducing apoptosis on 4T1 cancer cells in a time- and concentration-dependent manner. These results showed that combined therapy with low concentrations were detected to be more effective than that with high-concentration alone drug treatment.
Collapse
Affiliation(s)
- Hacer Kaya Çakir
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Bilecik Seyh Edebali University, Bilecik, Turkey.,Biotechnology Research and Application Center, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Onur Eroglu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Bilecik Seyh Edebali University, Bilecik, Turkey.,Biotechnology Research and Application Center, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
7
|
Capecitabine Regulates HSP90AB1 Expression and Induces Apoptosis via Akt/SMARCC1/AP-1/ROS Axis in T Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1012509. [PMID: 35368874 PMCID: PMC8970866 DOI: 10.1155/2022/1012509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 11/17/2022]
Abstract
Transplant oncology is a newly emerging discipline integrating oncology, transplant medicine, and surgery and has brought malignancy treatment into a new era via transplantation. In this context, obtaining a drug with both immunosuppressive and antitumor effects can take into account the dual needs of preventing both transplant rejection and tumor recurrence in liver transplantation patients with malignancies. Capecitabine (CAP), a classic antitumor drug, has been shown to induce reactive oxygen species (ROS) production and apoptosis in tumor cells. Meanwhile, we have demonstrated that CAP can induce ROS production and apoptosis in T cells to exert immunosuppressive effects, but its underlying molecular mechanism is still unclear. In this study, metronomic doses of CAP were administered to normal mice by gavage, and the spleen was selected for quantitative proteomic and phosphoproteomic analysis. The results showed that CAP significantly reduced the expression of HSP90AB1 and SMARCC1 in the spleen. It was subsequently confirmed that CAP also significantly reduced the expression of HSP90AB1 and SMARCC1 and increased ROS and apoptosis levels in T cells. The results of in vitro experiments showed that HSP90AB1 knockdown resulted in a significant decrease in p-Akt, SMARCC1, p-c-Fos, and p-c-Jun expression levels and a significant increase in ROS and apoptosis levels. HSP90AB1 overexpression significantly inhibited CAP-induced T cell apoptosis by increasing the p-Akt, SMARCC1, p-c-Fos, and p-c-Jun expression levels and reducing the ROS level. In conclusion, HSP90AB1 is a key target of CAP-induced T cell apoptosis via Akt/SMARCC1/AP-1/ROS axis, which provides a novel understanding of CAP-induced T cell apoptosis and lays the experimental foundation for further exploring CAP as an immunosuppressant with antitumor effects to optimize the medication regimen for transplantation patients.
Collapse
|
8
|
Novaes VCN, Ervolino E, Fernandes GL, Cunha CP, Theodoro LH, Garcia VG, de Almeida JM. Influence of the treatment with the antineoplastic agents 5-fluorouracil and cisplatin on the severity of experimental periodontitis in rats. Support Care Cancer 2021; 30:1967-1980. [PMID: 34633539 DOI: 10.1007/s00520-021-06586-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE The determination on how antineoplastic agents interfere on the progression of periodontitis is critical for improvement and even development of novel therapeutic approaches for periodontal management. This study evaluated the influence of chemotherapy with 5-fluorouracil (5-FU) or cisplatin (CIS) on healthy periodontal tissues and on the progression of experimental periodontitis (EP). METHODS One hundred forty-four male rats were divided into six groups (n = 24). Each group was treated with physiological saline solution (PSS) 0.9%, 5-FU, or CIS. Experimental periodontitis (EP) was induced by ligature placement. Animals were euthanized at 7, 15, and 30 days after treatment. Data were statistically analyzed (p ≤ 0.05). RESULTS The groups with EP and treated with 5-FU or CIS showed lower percentage of bone volume in the furcation region and higher percentage of alveolar bone loss, higher number of TRAP-positive cells, and lower number of PCNA-positive cells when compared group with EP and treated with PSS (p ≤ 0.05). Groups with EP and treated with 5-FU or CIS showed high immunolabelling pattern of RANKL, TNF-α, and IL-1β, moderate of BAX, and low of HIF-1α. Histological analysis showed severe tissue breakdown in the groups with EP and treated with 5-FU or CIS. CONCLUSIONS Chemotherapy with antineoplastic agents 5-FU and CIS increased the intensity and duration of the inflammation and compromised tissue repair by reduction in cellular and vascular turnover. The more severe periodontal breakdown was caused by 5-FU.
Collapse
Affiliation(s)
- Vivian Cristina Noronha Novaes
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Edilson Ervolino
- Department of Basic Science, Histology Division, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Giovani Lopes Fernandes
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Clara Possarle Cunha
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Leticia Helena Theodoro
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Valdir Gouveia Garcia
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil.
| |
Collapse
|
9
|
Schperberg AV, Boichard A, Tsigelny IF, Richard SB, Kurzrock R. Machine learning model to predict oncologic outcomes for drugs in randomized clinical trials. Int J Cancer 2020; 147:2537-2549. [PMID: 32745254 DOI: 10.1002/ijc.33240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 11/12/2022]
Abstract
Predicting oncologic outcome is challenging due to the diversity of cancer histologies and the complex network of underlying biological factors. In this study, we determine whether machine learning (ML) can extract meaningful associations between oncologic outcome and clinical trial, drug-related biomarker and molecular profile information. We analyzed therapeutic clinical trials corresponding to 1102 oncologic outcomes from 104 758 cancer patients with advanced colorectal adenocarcinoma, pancreatic adenocarcinoma, melanoma and nonsmall-cell lung cancer. For each intervention arm, a dataset with the following attributes was curated: line of treatment, the number of cytotoxic chemotherapies, small-molecule inhibitors, or monoclonal antibody agents, drug class, molecular alteration status of the clinical arm's population, cancer type, probability of drug sensitivity (PDS) (integrating the status of genomic, transcriptomic and proteomic biomarkers in the population of interest) and outcome. A total of 467 progression-free survival (PFS) and 369 overall survival (OS) data points were used as training sets to build our ML (random forest) model. Cross-validation sets were used for PFS and OS, obtaining correlation coefficients (r) of 0.82 and 0.70, respectively (outcome vs model's parameters). A total of 156 PFS and 110 OS data points were used as test sets. The Spearman correlation (rs ) between predicted and actual outcomes was statistically significant (PFS: rs = 0.879, OS: rs = 0.878, P < .0001). The better outcome arm was predicted in 81% (PFS: N = 59/73, z = 5.24, P < .0001) and 71% (OS: N = 37/52, z = 2.91, P = .004) of randomized trials. The success of our algorithm to predict clinical outcome may be exploitable as a model to optimize clinical trial design with pharmaceutical agents.
Collapse
Affiliation(s)
- Alexander V Schperberg
- CureMatch, Inc., San Diego, California, USA.,Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Amélie Boichard
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, California, USA
| | - Igor F Tsigelny
- CureMatch, Inc., San Diego, California, USA.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California, USA.,Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Stéphane B Richard
- CureMatch, Inc., San Diego, California, USA.,Oncodesign, Inc., New York, New York, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, California, USA
| |
Collapse
|
10
|
Tampellini M, Bironzo P, Di Maio M, Scagliotti GV. Thymidine phosphorylase: the unforeseen driver in colorectal cancer treatment? Future Oncol 2018; 14:1223-1231. [PMID: 29701074 DOI: 10.2217/fon-2017-0627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
5-Fluorouracil- and leucovorin-based chemotherapy regimens are the backbone of colorectal cancer treatment. The addition of oxaliplatin, irinotecan and monoclonal antibodies to this backbone has largely improved clinical outcomes, but has also led to new questions, with conflicting data frequently reported in studies. Thymidine phosphorylase (TP) is a nucleoside-metabolizing enzyme involved in 5-fluorouracil pharmacokinetics, as well as inflammatory responses, neoangiogenesis and apoptosis. TP expression is regulated by hypoxia, inflammatory cytokines and antitumoral agents. We hypothesize that TP could be the unforeseen driver in the conflicting data observed with different regimens commonly used in colorectal cancer treatment. Greater comprehension of the role of this enzyme in tumor progression and pyrimidine metabolism may lead to more accurate, patient-tailored therapy.
Collapse
Affiliation(s)
- Marco Tampellini
- Department of Oncology, AOU San Luigi di Orbassano, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy
| | - Paolo Bironzo
- Department of Oncology, AOU San Luigi di Orbassano, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy
| | - Massimo Di Maio
- Department of Oncology, AOU San Luigi di Orbassano, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy
| | - Giorgio V Scagliotti
- Department of Oncology, AOU San Luigi di Orbassano, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy
| |
Collapse
|
11
|
Baratelli C, Zichi C, Di Maio M, Brizzi MP, Sonetto C, Scagliotti GV, Tampellini M. A systematic review of the safety profile of the different combinations of fluoropyrimidines and oxaliplatin in the treatment of colorectal cancer patients. Crit Rev Oncol Hematol 2018; 122:21-29. [DOI: 10.1016/j.critrevonc.2017.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 09/29/2017] [Accepted: 12/12/2017] [Indexed: 11/27/2022] Open
|
12
|
Parrella A, Lavorgna M, Criscuolo E, Russo C, Isidori M. Eco-genotoxicity of six anticancer drugs using comet assay in daphnids. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:573-80. [PMID: 25638790 DOI: 10.1016/j.jhazmat.2015.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/16/2014] [Accepted: 01/03/2015] [Indexed: 05/21/2023]
Abstract
The eco-genotoxicity of six anti-neoplastic drugs, 5-fluorouracil, capecitabine, cisplatin, doxorubicin, etoposide, and imatinib, belonging to five classes of anatomical therapeutic classification (ATC), was studied applying the in vivo comet assay on cells from whole organisms of Daphnia magna and Ceriodaphnia dubia. For the first time, this test was performed in C. dubia. In addition, to have a wider genotoxic/mutagenic profile of the anticancer drugs selected, SOS chromotest and Salmonella mutagenicity assay were performed. The comet results showed that all drugs induced DNA damage, in both Cladocerans, with environmental concern; indeed Doxorubicin induced DNA damage in the order of tens of ng L(-1) in both crustaceans, as well as 5-flurouracil in C. dubia and cisplatin in D. magna. In the SOS Chromotest all drugs, except imatinib, were able to activate the repair system in Escherichia coli PQ37 while in the Salmonella mutagenicity assay, doxorubicin was the only drug able to cause direct and indirect frameshift and base-pair substitution mutations. Comet assay was the most sensitive tool of genotoxic exposure assessment, able to detect in vivo the adverse effects at concentration lower than those evaluated in vitro by bacterial assays.
Collapse
Affiliation(s)
- Alfredo Parrella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Margherita Lavorgna
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Emma Criscuolo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Chiara Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| |
Collapse
|
13
|
Ropolo A, Bagnes CI, Molejon MI, Lo Re A, Boggio V, Gonzalez CD, Vaccaro MI. Chemotherapy and autophagy-mediated cell death in pancreatic cancer cells. Pancreatology 2011; 12:1-7. [PMID: 22487466 DOI: 10.1016/j.pan.2011.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents and plays important physiological roles in human health and disease. It has been proposed that autophagy plays an important role both in tumor progression and in promotion of cancer cell death, although the molecular mechanisms responsible for this dual action of autophagy in cancer have not been elucidated. Pancreatic ductal adenocarcinoma is one of the most aggressive human malignancies with 2-3% five-year survival rate. Its poor prognosis has been attributed to the lack of specific symptoms and early detection tools, and its relatively refractory to traditional cytotoxic agents and radiotherapy. Experimental evidence pointed at autophagy as a pancreatic cancer cell mechanism to survive under adverse environmental conditions, or as a defective programmed cell death mechanism that favors pancreatic cancer cell resistance to treatment. Here, we consider several phenotypical alterations that have been related to increase or decrease the autophagic process in pancreatic tumor cells. We specially review autophagy as a cell death mechanism in response to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Alejandro Ropolo
- Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junin p5, C1113AAD Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Galluzzi L, Vitale I, Vacchelli E, Kroemer G. Cell death signaling and anticancer therapy. Front Oncol 2011; 1:5. [PMID: 22655227 PMCID: PMC3356092 DOI: 10.3389/fonc.2011.00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/21/2011] [Indexed: 12/22/2022] Open
Abstract
For a long time, it was commonly believed that efficient anticancer regimens would either trigger the apoptotic demise of tumor cells or induce a permanent arrest in the G1 phase of the cell cycle, i.e., senescence. The recent discovery that necrosis can occur in a regulated fashion and the increasingly more precise characterization of the underlying molecular mechanisms have raised great interest, as non-apoptotic pathways might be instrumental to circumvent the resistance of cancer cells to conventional, pro-apoptotic therapeutic regimens. Moreover, it has been shown that some anticancer regimens engage lethal signaling cascades that can ignite multiple oncosuppressive mechanisms, including apoptosis, necrosis, and senescence. Among these signaling pathways is mitotic catastrophe, whose role as a bona fide cell death mechanism has recently been reconsidered. Thus, anticancer regimens get ever more sophisticated, and often distinct strategies are combined to maximize efficacy and minimize side effects. In this review, we will discuss the importance of apoptosis, necrosis, and mitotic catastrophe in the response of tumor cells to the most common clinically employed and experimental anticancer agents.
Collapse
|