1
|
Karim R, Bouchra B, Fatima G, Abdelkarim FM, Laila S. Plant NHX Antiporters: From Function to Biotechnological Application, with Case Study. Curr Protein Pept Sci 2020; 22:60-73. [PMID: 33143624 DOI: 10.2174/1389203721666201103085151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 09/06/2020] [Indexed: 11/22/2022]
Abstract
Salt stress is one of the major abiotic stresses that negatively affect crops worldwide. Plants have evolved a series of mechanisms to cope with the limitations imposed by salinity. Molecular mechanisms, including the upregulation of cation transporters such as the Na+/H+ antiporters, are one of the processes adopted by plants to survive in saline environments. NHX antiporters are involved in salt tolerance, development, cell expansion, growth performance and disease resistance of plants. They are integral membrane proteins belonging to the widely distributed CPA1 sub-group of monovalent cation/H+ antiporters and provide an important strategy for ionic homeostasis in plants under saline conditions. These antiporters are known to regulate the exchange of sodium and hydrogen ions across the membrane and are ubiquitous to all eukaryotic organisms. With the genomic approach, previous studies reported that a large number of proteins encoding Na+/H+ antiporter genes have been identified in many plant species and successfully introduced into desired species to create transgenic crops with enhanced tolerance to multiple stresses. In this review, we focus on plant antiporters and all the aspects from their structure, classification, function to their in silico analysis. On the other hand, we performed a genome-wide search to identify the predicted NHX genes in Argania spinosa L. We highlighted for the first time the presence of four putative NHX (AsNHX1-4) from the Argan tree genome, whose phylogenetic analysis revealed their classification in one distinct vacuolar cluster. The essential information of the four putative NHXs, such as gene structure, subcellular localization and transmembrane domains was analyzed.
Collapse
Affiliation(s)
- Rabeh Karim
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| | - Belkadi Bouchra
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| | - Gaboun Fatima
- Plant Breeding Unit, National Institute for Agronomic Research, Regional Center of Rabat, B.P. 6356-Rabat-Instituts, Morocco
| | - Filali-Maltouf Abdelkarim
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| | - Sbabou Laila
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| |
Collapse
|
2
|
Wani SH, Kumar V, Khare T, Guddimalli R, Parveda M, Solymosi K, Suprasanna P, Kavi Kishor PB. Engineering salinity tolerance in plants: progress and prospects. PLANTA 2020; 251:76. [PMID: 32152761 DOI: 10.1007/s00425-020-03366-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/24/2020] [Indexed: 05/20/2023]
Abstract
There is a need to integrate conceptual framework based on the current understanding of salt stress responses with different approaches for manipulating and improving salt tolerance in crop plants. Soil salinity exerts significant constraints on global crop production, posing a serious challenge for plant breeders and biotechnologists. The classical transgenic approach for enhancing salinity tolerance in plants revolves by boosting endogenous defence mechanisms, often via a single-gene approach, and usually involves the enhanced synthesis of compatible osmolytes, antioxidants, polyamines, maintenance of hormone homeostasis, modification of transporters and/or regulatory proteins, including transcription factors and alternative splicing events. Occasionally, genetic manipulation of regulatory proteins or phytohormone levels confers salinity tolerance, but all these may cause undesired reduction in plant growth and/or yields. In this review, we present and evaluate novel and cutting-edge approaches for engineering salt tolerance in crop plants. First, we cover recent findings regarding the importance of regulatory proteins and transporters, and how they can be used to enhance salt tolerance in crop plants. We also evaluate the importance of halobiomes as a reservoir of genes that can be used for engineering salt tolerance in glycophytic crops. Additionally, the role of microRNAs as critical post-transcriptional regulators in plant adaptive responses to salt stress is reviewed and their use for engineering salt-tolerant crop plants is critically assessed. The potentials of alternative splicing mechanisms and targeted gene-editing technologies in understanding plant salt stress responses and developing salt-tolerant crop plants are also discussed.
Collapse
Affiliation(s)
- Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, Jammu and Kashmir, 192 101, India.
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
- Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | - Tushar Khare
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | | | | | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE-Eötvös Loránd University, Budapest, 1053, Hungary
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, 522 213, India
| |
Collapse
|
3
|
Ye X, Wang H, Cao X, Jin X, Cui F, Bu Y, Liu H, Wu W, Takano T, Liu S. Transcriptome profiling of Puccinellia tenuiflora during seed germination under a long-term saline-alkali stress. BMC Genomics 2019; 20:589. [PMID: 31315555 PMCID: PMC6637651 DOI: 10.1186/s12864-019-5860-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/29/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Puccinellia tenuiflora is the most saline-alkali tolerant plant in the Songnen Plain, one of the three largest soda saline-alkali lands worldwide. Here, we investigated the physicochemical properties of saline-alkali soils from the Songnen Plain and sequenced the transcriptomes of germinated P. tenuiflora seedlings under long-term treatment (from seed soaking) with saline-alkali soil extracts. RESULTS We found that the soils from Songnen Plain were reasonably rich in salts and alkali; moreover, the soils were severely deficient in nitrogen [N], phosphorus [P], potassium [K] and several other mineral elements. This finding demonstrated that P. tenuiflora can survive from not only high saline-alkali stress but also a lack of essential mineral elements. To explore the saline-alkali tolerance mechanism, transcriptional analyses of P. tenuiflora plants treated with water extracts from the saline-alkali soils was performed. Interestingly, unigenes involved in the uptake of N, P, K and the micronutrients were found to be significantly upregulated, which indicated the existence of an efficient nutrition-uptake system in P. tenuiflora. Compared with P. tenuiflora, the rice Oryza sativa was hypersensitive to saline-alkali stress. The results obtained using a noninvasive microtest techniques confirmed that the uptake of NO3- and NH4+ and the regulatory flux of Na+ and H+ were significantly higher in the roots of P. tenuiflora than in those of O. sativa. In the corresponding physiological experiments, the application of additional nutrition elements significantly eliminated the sensitive symptoms of rice to saline-alkali soil extracts. CONCLUSIONS Our results imply that the survival of P. tenuiflora in saline-alkali soils is due to a combination of at least two regulatory mechanisms and the high nutrient uptake capacity of P. tenuiflora plays a pivotal role in its adaptation to those stress. Taken together, our results highlight the role of nutrition uptake in saline-alkali stress tolerance in plants.
Collapse
Affiliation(s)
- Xiaoxue Ye
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040 China
| | - Hao Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040 China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Yuanyuan Bu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040 China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo, 188-0002 Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| |
Collapse
|
4
|
Yu J, Zhang Y, Liu J, Wang L, Liu P, Yin Z, Guo S, Ma J, Lu Z, Wang T, She Y, Miao Y, Ma L, Chen S, Li Y, Dai S. Proteomic discovery of H 2O 2 response in roots and functional characterization of PutGLP gene from alkaligrass. PLANTA 2018; 248:1079-1099. [PMID: 30039231 DOI: 10.1007/s00425-018-2940-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Hydrogen peroxide-responsive pathways in roots of alkaligrass analyzed by proteomic studies and PutGLP enhance the plant tolerance to saline-, alkali- and cadmium-induced oxidative stresses. Oxidative stress adaptation is critical for plants in response to various stress environments. The halophyte alkaligrass (Puccinellia tenuiflora) is an outstanding pasture with strong tolerance to salt and alkali stresses. In this study, iTRAQ- and 2DE-based proteomics approaches, as well as qRT-PCR and molecular genetics, were employed to investigate H2O2-responsive mechanisms in alkaligrass roots. The evaluation of membrane integrity and reactive oxygen species (ROS)-scavenging systems, as well as abundance patterns of H2O2-responsive proteins/genes indicated that Ca2+-mediated kinase signaling pathways, ROS homeostasis, osmotic modulation, and transcriptional regulation were pivotal for oxidative adaptation in alkaligrass roots. Overexpressing a P. tenuiflora germin-like protein (PutGLP) gene in Arabidopsis seedlings revealed that the apoplastic PutGLP with activities of oxalate oxidase and superoxide dismutase was predominantly expressed in roots and played important roles in ROS scavenging in response to salinity-, alkali-, and CdCl2-induced oxidative stresses. The results provide insights into the fine-tuned redox-responsive networks in halophyte roots.
Collapse
Affiliation(s)
- Juanjuan Yu
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongxue Zhang
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Junming Liu
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Lin Wang
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Panpan Liu
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zepeng Yin
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Siyi Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 455000, China
| | - Jun Ma
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Zhuang Lu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tai Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yimin She
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 455000, China
| | - Ling Ma
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Ying Li
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Shaojun Dai
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
5
|
Wali M, Martos S, Pérez-Martín L, Abdelly C, Ghnaya T, Poschenrieder C, Gunsé B. Cadmium hampers salt tolerance of Sesuvium portulacastrum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:390-399. [PMID: 28432978 DOI: 10.1016/j.plaphy.2017.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 05/01/2023]
Abstract
It is well known that salinity reduces cadmium toxicity in halophytes. However, the possible interference of Cd with the mechanisms of salt tolerance is poorly explored. The aim of this study was to see whether Cd affects salt tolerance mechanisms in the halophyte Sesuvium portulacastrum. S. portulacastrum plants obtained from cuttings were grown in hydroponics for 3 weeks and then exposed to low (0.09 mM) or moderate (200 mM) NaCl concentrations, alone or in combination with 25 μM CdCl2. Microscopy observation revealed two strategies of salt tolerance: euhalophytism and secretion of salt by bladder cells. Cadmium exposure hardly influenced the total leaf Na+ concentrations. However, Cd supply delayed the salt-induced upregulation of AHA1 (plasma membrane H+-ATPase 1) and SOS1 (plasma membrane Na+ transporter "Salt Overly Sensitive 1"), genes that are essential for salt tolerance. Moreover, Cd induced the activation of BADH, coding for betaine aldehyde dehydrogenase, indicating enhanced osmotic stress due to Cd. Sodium-green fluorescence in protoplasts from plants grown with low or high NaCl, alone or in combination with Cd, revealed higher Na+ concentrations in the cytoplasm of Cd-exposed plants. Taken together the results indicate interference of Cd with salt tolerance mechanisms in S. portulacastrum. This may have consequences for the efficient use of halophytes in phytoremediation of Cd-contaminated saline soils.
Collapse
Affiliation(s)
- Mariem Wali
- Unitat de Fisiologia Vegetal, Dep. BABVE, Facultat Biociences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain; Laboratoire des Plantes Extremophiles, Centre de Biotechnologies de la Technopole de Borj-Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Soledad Martos
- Unitat de Fisiologia Vegetal, Dep. BABVE, Facultat Biociences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain.
| | - Laura Pérez-Martín
- Unitat de Fisiologia Vegetal, Dep. BABVE, Facultat Biociences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Chedly Abdelly
- Laboratoire des Plantes Extremophiles, Centre de Biotechnologies de la Technopole de Borj-Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Tahar Ghnaya
- Laboratoire des Plantes Extremophiles, Centre de Biotechnologies de la Technopole de Borj-Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Charlotte Poschenrieder
- Unitat de Fisiologia Vegetal, Dep. BABVE, Facultat Biociences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Benet Gunsé
- Unitat de Fisiologia Vegetal, Dep. BABVE, Facultat Biociences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
6
|
Pedersen JT, Palmgren M. Why do plants lack sodium pumps and would they benefit from having one? FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:473-479. [PMID: 32480580 DOI: 10.1071/fp16422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/31/2017] [Indexed: 05/26/2023]
Abstract
The purpose of this minireview is to discuss the feasibility of creating a new generation of salt-tolerant plants that express Na+/K+-ATPases from animals or green algae. Attempts to generate salt-tolerant plants have focussed on increase the expression of or introducing salt stress-related genes from plants, bryophytes and yeast. Even though these approaches have resulted in plants with increased salt tolerance, plant growth is decreased under salt stress and often also under normal growth conditions. New strategies to increase salt tolerance are therefore needed. Theoretically, plants transformed with an animal-type Na+/K+-ATPase should not only display a high degree of salt tolerance but should also reduce the stress response exhibited by the first generation of salt-tolerant plants under both normal and salt stress conditions. The biological feasibility of such a strategy of producing transgenic plants that display improved growth on saline soil but are indistinguishable from wild-type plants under normal growth conditions, is discussed.
Collapse
Affiliation(s)
- Jesper T Pedersen
- Center for Membrane Pumps in Cells and Disease, Danish National Research Foundation, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Michael Palmgren
- Center for Membrane Pumps in Cells and Disease, Danish National Research Foundation, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
7
|
Ma Y, Augé RM, Dong C, Cheng Z(M. Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta-analysis. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:162-173. [PMID: 27383431 PMCID: PMC5258863 DOI: 10.1111/pbi.12599] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 05/05/2023]
Abstract
Cation/proton antiporter 1 (CPA1) genes encode cellular Na+ /H+ exchanger proteins, which act to adjust ionic balance. Overexpression of CPA1s can improve plant performance under salt stress. However, the diversified roles of the CPA1 family and the various parameters used in evaluating transgenic plants over-expressing CPA1s make it challenging to assess the complex functions of CPA1s and their physiological mechanisms in salt tolerance. Using meta-analysis, we determined how overexpression of CPA1s has influenced several plant characteristics involved in response and resilience to NaCl stress. We also evaluated experimental variables that favour or reduce CPA1 effects in transgenic plants. Viewed across studies, overexpression of CPA1s has increased the magnitude of 10 of the 19 plant characteristics examined, by 25% or more. Among the ten moderating variables, several had substantial impacts on the extent of CPA1 influence: type of culture media, donor and recipient type and genus, and gene family. Genes from monocotyledonous plants stimulated root K+ , root K+ /Na+ , total chlorophyll, total dry weight and root length much more than genes from dicotyledonous species. Genes transformed to or from Arabidopsis have led to smaller CPA1-induced increases in plant characteristics than genes transferred to or from other genera. Heterogeneous expression of CPA1s led to greater increases in leaf chlorophyll and root length than homologous expression. These findings should help guide future investigations into the function of CPA1s in plant salt tolerance and the use of genetic engineering for breeding of resistance.
Collapse
Affiliation(s)
- Yuan‐Chun Ma
- Institute of HorticultureJiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjingJiangsuChina
- College of HorticultureNanjing Agricultural UniversityNanjingJiangsuChina
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Robert M. Augé
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Chao Dong
- College of HorticultureNanjing Agricultural UniversityNanjingJiangsuChina
| | - Zong‐Ming (Max) Cheng
- College of HorticultureNanjing Agricultural UniversityNanjingJiangsuChina
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
8
|
Na2CO3-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses. Sci Rep 2016; 6:32717. [PMID: 27596441 PMCID: PMC5011731 DOI: 10.1038/srep32717] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022] Open
Abstract
Soil alkalization severely affects crop growth and agricultural productivity. Alkali salts impose ionic, osmotic, and high pH stresses on plants. The alkali tolerance molecular mechanism in roots from halophyte Puccinellia tenuiflora is still unclear. Here, the changes associated with Na2CO3 tolerance in P. tenuiflora roots were assessed using physiological and iTRAQ-based quantitative proteomic analyses. We set up the first protein dataset in P. tenuiflora roots containing 2,671 non-redundant proteins. Our results showed that Na2CO3 slightly inhibited root growth, caused ROS accumulation, cell membrane damage, and ion imbalance, as well as reduction of transport and protein synthesis/turnover. The Na2CO3-responsive patterns of 72 proteins highlighted specific signaling and metabolic pathways in roots. Ca2+ signaling was activated to transmit alkali stress signals as inferred by the accumulation of calcium-binding proteins. Additionally, the activities of peroxidase and glutathione peroxidase, and the peroxiredoxin abundance were increased for ROS scavenging. Furthermore, ion toxicity was relieved through Na+ influx restriction and compartmentalization, and osmotic homeostasis reestablishment due to glycine betaine accumulation. Importantly, two transcription factors were increased for regulating specific alkali-responsive gene expression. Carbohydrate metabolism-related enzymes were increased for providing energy and carbon skeletons for cellular metabolism. All these provide new insights into alkali-tolerant mechanisms in roots.
Collapse
|
9
|
Li Y, Liu P, Takano T, Liu S. A Chloroplast-Localized Rubredoxin Family Protein Gene from Puccinellia tenuiflora (PutRUB) Increases NaCl and NaHCO₃ Tolerance by Decreasing H₂O₂ Accumulation. Int J Mol Sci 2016; 17:ijms17060804. [PMID: 27248998 PMCID: PMC4926338 DOI: 10.3390/ijms17060804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 11/24/2022] Open
Abstract
Rubredoxin is one of the simplest iron–sulfur (Fe–S) proteins. It is found primarily in strict anaerobic bacteria and acts as a mediator of electron transfer participation in different biochemical reactions. The PutRUB gene encoding a chloroplast-localized rubredoxin family protein was screened from a yeast full-length cDNA library of Puccinellia tenuiflora under NaCl and NaHCO3 stress. We found that PutRUB expression was induced by abiotic stresses such as NaCl, NaHCO3, CuCl2 and H2O2. These findings suggested that PutRUB might be involved in plant responses to adversity. In order to study the function of this gene, we analyzed the phenotypic and physiological characteristics of PutRUB transgenic plants treated with NaCl and NaHCO3. The results showed that PutRUB overexpression inhibited H2O2 accumulation, and enhanced transgenic plant adaptability to NaCl and NaHCO3 stresses. This indicated PutRUB might be involved in maintaining normal electron transfer to reduce reactive oxygen species (ROS) accumulation.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| | - Panpan Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan.
| | - Shenkui Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| |
Collapse
|
10
|
Gao J, Sun J, Cao P, Ren L, Liu C, Chen S, Chen F, Jiang J. Variation in tissue Na(+) content and the activity of SOS1 genes among two species and two related genera of Chrysanthemum. BMC PLANT BIOLOGY 2016; 16:98. [PMID: 27098270 PMCID: PMC4839091 DOI: 10.1186/s12870-016-0781-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/13/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Chrysanthemum, a leading ornamental species, does not tolerate salinity stress, although some of its related species do. The current level of understanding regarding the mechanisms underlying salinity tolerance in this botanical group is still limited. RESULTS A comparison of the physiological responses to salinity stress was made between Chrysanthemum morifolium 'Jinba' and its more tolerant relatives Crossostephium chinense, Artemisia japonica and Chrysanthemum crassum. The stress induced a higher accumulation of Na(+) and more reduction of K(+) in C. morifolium than in C. chinense, C. crassum and A. japonica, which also showed higher K(+)/Na(+) ratio. Homologs of an Na(+)/H(+) antiporter (SOS1) were isolated from each species. The gene carried by the tolerant plants were more strongly induced by salt stress than those carried by the non-tolerant ones. When expressed heterologously, they also conferred a greater degree of tolerance to a yeast mutant lacking Na(+)-pumping ATPase and plasma membrane Na(+)/H(+) antiporter activity. The data suggested that the products of AjSOS1, CrcSOS1 and CcSOS1 functioned more effectively as Na (+) excluders than those of CmSOS1. Over expression of four SOS1s improves the salinity tolerance of transgenic plants and the overexpressing plants of SOS1s from salt tolerant plants were more tolerant than that from salt sensitive plants. In addition, the importance of certain AjSOS1 residues for effective ion transport activity and salinity tolerance was established by site-directed mutagenesis and heterologous expression in yeast. CONCLUSIONS AjSOS1, CrcSOS1 and CcSOS1 have potential as transgenes for enhancing salinity tolerance. Some of the mutations identified here may offer opportunities to better understand the mechanistic basis of salinity tolerance in the chrysanthemum complex.
Collapse
Affiliation(s)
- Jiaojiao Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Peipei Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liping Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chen Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
11
|
Kobayashi S, Satone H, Tan E, Kurokochi H, Asakawa S, Liu S, Takano T. Transcriptional responses of a bicarbonate-tolerant monocot, Puccinellia tenuiflora, and a related bicarbonate-sensitive species, Poa annua, to NaHCO3 stress. Int J Mol Sci 2014; 16:496-509. [PMID: 25551599 PMCID: PMC4307258 DOI: 10.3390/ijms16010496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/23/2014] [Indexed: 11/16/2022] Open
Abstract
Puccinellia tenuiflora is an alkaline salt-tolerant monocot found in saline-alkali soil in China. To identify the genes which are determining the higher tolerance of P. tenuiflora compared to bicarbonate sensitive species, we examined the responses of P. tenuiflora and a related bicarbonate-sensitive Poeae plant, Poa annua, to two days of 20 mM NaHCO3 stress by RNA-seq analysis. We obtained 28 and 38 million reads for P. tenuiflora and P. annua, respectively. For each species, the reads of both unstressed and stressed samples were combined for de novo assembly of contigs. We obtained 77,329 contigs for P. tenuiflora and 115,335 contigs for P.annua. NaHCO3 stress resulted in greater than two-fold absolute expression value changes in 157 of the P. tenuiflora contigs and 1090 of P. annua contigs. Homologs of the genes involved in Fe acquisition, which are important for the survival of plants under alkaline stress, were up-regulated in P. tenuiflora and down-regulated in P. annua. The smaller number of the genes differentially regulated in P. tenuiflora suggests that the genes regulating bicarbonate tolerance are constitutively expressed in P. tenuiflora.
Collapse
Affiliation(s)
- Shio Kobayashi
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan.
| | - Hina Satone
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Engkong Tan
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Hiroyuki Kurokochi
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan.
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Shenkui Liu
- Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan.
| |
Collapse
|
12
|
Cross-generic studies with rice indicate that ion homeostasis and antioxidant defense is associated with superior salinity tolerance in Cynodon dactylon (L.) Pers. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40502-014-0129-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Feki K, Brini F, Ben Amar S, Saibi W, Masmoudi K. Comparative functional analysis of two wheat Na+/H+ antiporter SOS1 promoters in Arabidopsis thaliana under various stress conditions. J Appl Genet 2014; 56:15-26. [DOI: 10.1007/s13353-014-0228-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/03/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
14
|
Li Q, Tang Z, Hu Y, Yu L, Liu Z, Xu G. Functional analyses of a putative plasma membrane Na+/H+ antiporter gene isolated from salt tolerant Helianthus tuberosus. Mol Biol Rep 2014; 41:5097-108. [PMID: 24771143 DOI: 10.1007/s11033-014-3375-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
Jerusalem artichokes (Helianthus tuberosus L.) can tolerate relatively higher salinity, drought and heat stress. In this paper, we report the cloning of a Salt Overly Sensitive 1 (SOS1) gene encoding a plasma membrane Na(+)/H(+) antiporter from a highly salt-tolerant genotype of H. tuberosus, NY1, named HtSOS1 and characterization of its function in yeast and rice. The amino acid sequence of HtSOS1 showed 83.4% identity with the previously isolated SOS1 gene from the Chrysanthemum crassum. The mRNA level in the leaves of H. tuberosus was significantly up-regulated by presence of high concentrations of NaCl. Localization analysis using rice protoplast expression showed that the protein encoded by HtSOS1 was located in the plasma membrane. HtSOS1 partially suppressed the salt sensitive phenotypes of a salt sensitive yeast strain. In comparison with wild type (Oryza sativa L., ssp. Japonica. cv. Nipponbare), the transgenic rice expressed with HtSOS1 could exclude more Na(+) and accumulate more K(+). Expression of HtSOS1 decreased Na(+) content much larger in the shoot than in the roots, resulting in more water content in the transgenic rice than WT. These data suggested that HtSOS1 may be useful in transgenic approaches to improving the salinity tolerance of glycophyte.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
15
|
Gao W, Bai S, Li Q, Gao C, Liu G, Li G, Tan F. Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra). PLoS One 2013; 8:e67462. [PMID: 23840708 PMCID: PMC3696074 DOI: 10.1371/journal.pone.0067462] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/17/2013] [Indexed: 11/23/2022] Open
Abstract
Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarixandrossowii (named TaLEA) was transformed into Xiaohei poplar (Populussimonii × P. nigra) via Agrobacterium. Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR) and ribonucleic acid (RNA) gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA) content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11) showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.
Collapse
Affiliation(s)
- Weidong Gao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shuang Bai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Engineering & Garden Department of Beijing Ba Da Chu Park, Beijing, China
| | - Qingmei Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- * E-mail:
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guangde Li
- School of Agroforestry & Medicine, the Open University of China, Beijing, China
| | - Feili Tan
- School of Life Science & Technology, Zhanjiang Normal University, Zhanjiang, China
| |
Collapse
|
16
|
Zhang JL, Shi H. Physiological and molecular mechanisms of plant salt tolerance. PHOTOSYNTHESIS RESEARCH 2013; 115:1-22. [PMID: 23539361 DOI: 10.1007/s11120-013-9813-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/07/2013] [Indexed: 05/21/2023]
Abstract
Salt tolerance is an important economic trait for crops growing in both irrigated fields and marginal lands. The plant kingdom contains plant species that possess highly distinctive capacities for salt tolerance as a result of evolutionary adaptation to their environments. Yet, the cellular mechanisms contributing to salt tolerance seem to be conserved to some extent in plants although some highly salt-tolerant plants have unique structures that can actively excrete salts. In this review, we begin by summarizing the research in Arabidopsis with a focus on the findings of three membrane transporters that are important for salt tolerance: SOS1, AtHKT1, and AtNHX1. We then review the recent studies in salt tolerance in crops and halophytes. Molecular and physiological mechanisms of salt tolerance in plants revealed by the studies in the model plant, crops, and halophytes are emphasized. Utilization of the Na(+) transporters to improve salt tolerance in plants is also summarized. Perspectives are provided at the end of this review.
Collapse
Affiliation(s)
- Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
17
|
Comparative proteomic analysis of Puccinellia tenuiflora leaves under Na2CO3 stress. Int J Mol Sci 2013; 14:1740-62. [PMID: 23322023 PMCID: PMC3565345 DOI: 10.3390/ijms14011740] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/31/2012] [Accepted: 01/06/2013] [Indexed: 11/29/2022] Open
Abstract
Soil salt-alkalinization is a widespread environmental stress that limits crop growth and agricultural productivity. The influence of soil alkalization caused by Na2CO3 on plants is more severe than that of soil salinization. Plants have evolved some unique mechanisms to cope with alkali stress; however, the plant alkaline-responsive signaling and molecular pathways are still unknown. In the present study, Na2CO3 responsive characteristics in leaves from 50-day-old seedlings of halophyte Puccinellia tenuiflora were investigated using physiological and proteomic approaches. Comparative proteomics revealed 43 differentially expressed proteins in P. tenuiflora leaves in response to Na2CO3 treatment for seven days. These proteins were mainly involved in photosynthesis, stress and defense, carbohydrate/energy metabolism, protein metabolism, signaling, membrane and transport. By integrating the changes of photosynthesis, ion contents, and stress-related enzyme activities, some unique Na2CO3 responsive mechanisms have been discovered in P. tenuiflora. This study provides new molecular information toward improving the alkali tolerance of cereals.
Collapse
|
18
|
Guo Q, Wang P, Ma Q, Zhang JL, Bao AK, Wang SM. Selective transport capacity for K + over Na + is linked to the expression levels of PtSOS1 in halophyte Puccinellia tenuiflora. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:1047-1057. [PMID: 32480854 DOI: 10.1071/fp12174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/19/2012] [Indexed: 05/23/2023]
Abstract
The plasma membrane Na+/H+ antiporter (SOS1) was shown to be a Na+ efflux protein and also involved in K+ uptake and transport. PtSOS1 was characterised from Puccinellia tenuiflora (Griseb.) Scribn. et Merr., a monocotyledonous halophyte that has a high selectivity for K+ over Na+ by roots under salt stress. To assess the contribution of PtSOS1 to the selectivity for K+ over Na+, the expression levels of PtSOS1 and Na+, K+ accumulations in P. tenuiflora exposed to different concentrations of NaCl, KCl or NaCl plus KCl were analysed. Results showed that the expression levels of PtSOS1 in roots increased significantly with the increase of external NaCl (25-150mM), accompanied by an increase of selective transport (ST) capacity for K+ over Na+ by roots. Transcription levels of PtSOS1 in roots and ST values increased under 0.1-1mM KCl, then declined sharply under 5-10mM KCl. Under 150mM NaCl, PtSOS1 expression levels in roots and ST values at 0.1mM KCl was significantly lower than that at 5mM KCl with the prolonging of treatment time. A significant positive correlation was found between root PtSOS1 expression levels and ST values under various concentrations of NaCl, KCl or 150mM NaCl plus 0.1 or 5mM KCl treatments. Therefore, it is proposed that PtSOS1 is the major component of selective transport capacity for K+ over Na+ and hence, salt tolerance of P. tenuiflora. Finally, we hypothesise a function model of SOS1 in regulating K+ and Na+ transport system in the membrane of xylem parenchyma cells by sustaining the membrane integrity; it also appears that this model could reasonably explain the phenomenon of Na+ retrieval from the xylem when plants are exposed to severe salt stress.
Collapse
Affiliation(s)
- Qiang Guo
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Pei Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Qing Ma
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Ai-Ke Bao
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| |
Collapse
|
19
|
Yadav NS, Shukla PS, Jha A, Agarwal PK, Jha B. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na(+) loading in xylem and confers salt tolerance in transgenic tobacco. BMC PLANT BIOLOGY 2012; 12:188. [PMID: 23057782 PMCID: PMC3548769 DOI: 10.1186/1471-2229-12-188] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 10/01/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na(+)/H(+) antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. RESULTS The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K(+)/Na(+) ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na(+) content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na(+) content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na(+) loading to xylem from root and leaf tissues. Transgenic lines also showed increased K(+) and Ca(2+) content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. CONCLUSIONS Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na(+) efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na(+) content in different organs and also affect the other transporters activity indirectly. These results broaden the role of SbSOS1 in planta and suggest that this gene could be used to develop salt-tolerant transgenic crops.
Collapse
Affiliation(s)
- Narendra Singh Yadav
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, (Council of Scientific and Industrial Research), G.B. Road, Bhavnagar, Gujarat, 364002, India
| | - Pushp Sheel Shukla
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, (Council of Scientific and Industrial Research), G.B. Road, Bhavnagar, Gujarat, 364002, India
| | - Anupama Jha
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, (Council of Scientific and Industrial Research), G.B. Road, Bhavnagar, Gujarat, 364002, India
| | - Pradeep K Agarwal
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, (Council of Scientific and Industrial Research), G.B. Road, Bhavnagar, Gujarat, 364002, India
| | - Bhavanath Jha
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, (Council of Scientific and Industrial Research), G.B. Road, Bhavnagar, Gujarat, 364002, India
| |
Collapse
|
20
|
Kobayashi S, Abe N, Yoshida KT, Liu S, Takano T. Molecular cloning and characterization of plasma membrane- and vacuolar-type Na⁺/H⁺ antiporters of an alkaline-salt-tolerant monocot, Puccinellia tenuiflora. JOURNAL OF PLANT RESEARCH 2012; 125:587-594. [PMID: 22270695 DOI: 10.1007/s10265-012-0475-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/26/2011] [Indexed: 05/27/2023]
Abstract
A better understanding of salt tolerance in plants might lead to the genetic engineering of crops that can grow in saline soils. Here we cloned and characterized plasma membrane and vacuolar Na⁺/H⁺ antiporters of a monocotyledonous alkaline-tolerant halophyte, Puccinellia tenuiflora. The predicted amino acid sequence of the transporters were very similar to those of orthologs in monocotyledonous crops. Expression analysis showed that (1) NHA was more strongly induced by NaCl in the roots of P. tenuiflora while in rice it was rather induced in the shoots, suggesting that the role of NHA in salt excretion from the roots partly accounts for the difference in the tolerance of the two species, and that (2) NHXs were specifically induced by NaHCO₃ but not by NaCl in the roots of both species, suggesting that vacuolar-type Na⁺/H⁺ antiporters play roles in pH regulation under alkaline salt conditions. Overexpression of the antiporters resulted in increased tolerance of shoots to NaCl and roots to NaHCO₃. Overexpression lines exhibited a lower Na⁺ content and a higher K⁺ content in shoots under NaCl treatments, leading to a higher Na⁺/H⁺ ratio.
Collapse
Affiliation(s)
- Shio Kobayashi
- Asian Natural Environmental Science Center-ANESC, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | | | | | | | | |
Collapse
|
21
|
Feki K, Quintero FJ, Pardo JM, Masmoudi K. Regulation of durum wheat Na+/H + exchanger TdSOS1 by phosphorylation. PLANT MOLECULAR BIOLOGY 2011; 76:545-56. [PMID: 21573979 DOI: 10.1007/s11103-011-9787-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/05/2011] [Indexed: 05/09/2023]
Abstract
We have identified a plasma membrane Na(+)/H(+) exchanger from durum wheat, designated TdSOS1. Heterologous expression of TdSOS1 in a yeast strain lacking endogenous Na(+) efflux proteins showed complementation of the Na(+)- and Li(+)-sensitive phenotype by a mechanism involving cation efflux. Salt tolerance conferred by TdSOS1 was maximal when co-expressed with the Arabidopsis protein kinase complex SOS2/SOS3. In vitro phosphorylation of TdSOS1 with a hyperactive form of the Arabidopsis SOS2 kinase (T/DSOS2∆308) showed the importance of two essential serine residues at the C-terminal hydrophilic tail (S1126, S1128). Mutation of these two serine residues to alanine decreased the phosphorylation of TdSOS1 by T/DSOS2∆308 and prevented the activation of TdSOS1. In addition, deletion of the C-terminal domain of TdSOS1 encompassing serine residues at position 1126 and 1128 generated a hyperactive form that had maximal sodium exclusion activity independent from the regulatory SOS2/SOS3 complex. These results are consistent with the presence of an auto-inhibitory domain at the C-terminus of TdSOS1 that mediates the activation of TdSOS1 by the protein kinase SOS2. Expression of TdSOS1 mRNA in young seedlings of the durum wheat variety Om Rabia3, using different abiotic stresses (ionic and oxidative stress) at different times of exposure, was monitored by RT-PCR.
Collapse
Affiliation(s)
- Kaouthar Feki
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Route Sidi Mansour Km 6, B.P "1177", 3018, Sfax, Tunisia
| | | | | | | |
Collapse
|