1
|
Zhu X, Chen L, Zhang Z, Li J, Zhang H, Li Z, Pan Y, Wang X. Genetic-based dissection of resistance to bacterial leaf streak in rice by GWAS. BMC PLANT BIOLOGY 2023; 23:396. [PMID: 37596557 PMCID: PMC10436437 DOI: 10.1186/s12870-023-04412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Rice is the second-largest food crop in the world and vulnerable to bacterial leaf streak disease. A thorough comprehension of the genetic foundation of agronomic traits was essential for effective implementation of molecular marker-assisted selection. RESULTS Our study aimed to evaluate the vulnerability of rice to bacterial leaf streak disease (BLS) induced by the gram-negative bacterium Xanthomonas oryzae pv. oryzicola (Xoc). In order to accomplish this, we first analyzed the population structure of 747 accessions and subsequently assessed their phenotypes 20 days after inoculation with a strain of Xoc, GX01. We conducted genome-wide association studies (GWAS) on a population of 747 rice accessions, consisting of both indica and japonica subpopulations, utilizing phenotypic data on resistance to bacterial leaf streak (RBLS) and sequence data. We identified a total of 20 QTLs associated with RBLS in our analysis. Through the integration of linkage mapping, sequence analysis, haplotype analysis, and transcriptome analysis, we were able to identify five potential candidate genes (OsRBLS1-OsRBLS5) that possess the potential to regulate RBLS in rice. In order to gain a more comprehensive understanding of the genetic mechanism behind resistance to bacterial leaf streak, we conducted tests on these genes in both the indica and japonica subpopulations, ultimately identifying superior haplotypes that suggest the potential utilization of these genes in breeding disease-resistant rice varieties. CONCLUSIONS The findings of our study broaden our comprehension of the genetic mechanisms underlying RBLS in rice and offer significant insights that can be applied towards genetic improvement and breeding of disease-resistant rice in rapidly evolving environmental conditions.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lei Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, People's Republic of China
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhanying Zhang
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yinghua Pan
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, People's Republic of China.
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Xueqiang Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Transcriptome Analysis in Response to Infection of Xanthomonas oryzae pv. oryzicola Strains with Different Pathogenicity. Int J Mol Sci 2022; 24:ijms24010014. [PMID: 36613454 PMCID: PMC9820197 DOI: 10.3390/ijms24010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most important quarantine diseases in the world. Breeding disease-resistant varieties can solve the problem of prevention and treatment of BLS from the source. The discovery of the molecular mechanism of resistance is an important driving force for breeding resistant varieties. In this study, a BLS-resistant near isogenic line NIL-bls2 was used as the material. Guangxi Xoc strain gx01 (abbreviated as WT) and its mutant strain (abbreviated as MT) with a knockout type III effectors (T3Es) gene were used to infect rice material NIL-bls2. The molecular interaction mechanism of rice resist near isogenic lines in response to infection by different pathogenic strains was analyzed by transcriptome sequencing. The results showed that there were 415, 134 and 150 differentially expressed genes (DEGs) between the WT group and the MT group at 12, 24 and 48 h of post inoculation (hpi). Through GO and KEGG enrichment analysis, it was found that, compared with non-pathogenic strains, the T3Es secreted by pathogenic strains inhibited the signal transduction pathway mediated by ethylene (ET), jasmonic acid (JA) and salicylic acid (SA), and the MAPKK (MAPK kinase) and MAPKKK (MAPK kinase kinase) in the MAPK (mitogen-activated protein kinase) cascade reaction, which prevented plants from sensing extracellular stimuli in time and starting the intracellular immune defense mechanism; and inhibited the synthesis of lignin and diterpenoid phytochemicals to prevent plants from establishing their own physical barriers to resist the invasion of pathogenic bacteria. The inhibitory effect was the strongest at 12 h, and gradually weakened at 24 h and 48 h. To cope with the invasion of pathogenic bacteria, rice NIL-bls2 material can promote wound healing by promoting the synthesis of traumatic acid at 12 h; at 24 h, hydrogen peroxide was degraded by dioxygenase, which reduced and eliminated the attack of reactive oxygen species on plant membrane lipids; and at 48 h, rice NIL-bls2 material can resist the invasion of pathogenic bacteria by promoting the synthesis of lignin, disease-resistant proteins, monoterpene antibacterial substances, indole alkaloids and other substances. Through transcriptome sequencing analysis, the molecular interaction mechanism of rice resistance near isogenic lines in response to infection by different pathogenic strains was expounded, and 5 genes, Os01g0719300, Os02g0513100, Os03g0122300, Os04g0301500, and Os10g0575100 closely related to BLS, were screened. Our work provides new data resources and a theoretical basis for exploring the infection mechanism of Xoc strain gx01 and the resistance mechanism of resistance gene bls2.
Collapse
|
3
|
Chen S, Feng A, Wang C, Zhao J, Feng J, Chen B, Yang J, Wang W, Zhang M, Chen K, Chen W, Su J, Liu B, Zhu X. Identification and fine-mapping of Xo2, a novel rice bacterial leaf streak resistance gene. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3195-3209. [PMID: 35871691 DOI: 10.1007/s00122-022-04179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
A novel rice resistance gene, Xo2, influencing pathogenesis of the bacterial leaf streak disease, has been identified, and candidate genes for Xo2 in the fine mapping region have been shown to be involved in bacterial leaf streak resistance. Rice (Oryza sativa) bacterial leaf streak, caused by Xanthomonas oryzae pv. oryzicola (Xoc), is one of the most serious rice bacterial diseases. The deployment of host resistance genes is an effective approach for controlling this disease. The cultivar BHADOIA 303 (X455) from Bangladesh is resistant to most of Chinese Xoc races. To identify and map the resistance gene(s) involved in Xoc resistance, we examined the association between phenotypic and genotypic variations in two F2 populations derived from crosses between X455/Jingang 30 and X455/Wushansimiao. The segregation ratios of the F2 progeny were consistent with the action of a single dominant resistance gene, which was designated as Xo2. Based on rice SNP chip (GSR40K) assays of X455, Jingang 30, and resistant and susceptible pools thereof, we mapped Xo2 to the region from 10 Mb to 12.5 Mb on chromosome 2. The target gene was further finely mapped between the markers RM12941 and D6-1 within an approximately 110-kb region. The de novo sequencing and gene annotation of X455 and Jingang 30 revealed nineteen predicted genes within the target region. RNA-seq and expression analysis showed that four candidate genes, including Osa002T0115800, encoding an NLR resistance protein, were distinctly upregulated. Differential sequence and synteny analysis between X455 and Jingang 30 suggested that Osa002T0115800 is likely the functional Xo2 gene. This study lays a foundation for marker-assisted selection resistance breeding against rice bacterial leaf streak and the further cloning of Xo2.
Collapse
Affiliation(s)
- Shen Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Aiqing Feng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Congying Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junliang Zhao
- Rice Research Institute and Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jinqi Feng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Bing Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianyuan Yang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wenjuan Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Meiying Zhang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kailing Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Weiqin Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jing Su
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Bin Liu
- Rice Research Institute and Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
4
|
BS-Seq reveals major role of differential CHH methylation during leaf rust resistance in wheat (Triticum aestivum L.). Mol Genet Genomics 2022; 297:731-749. [PMID: 35305147 DOI: 10.1007/s00438-022-01879-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Epigenetic regulation of the activity of defense genes during onset of diseases or resistance against diseases in plants is an active area of research. In the present study, a pair of wheat NILs for leaf rust resistance gene Lr28 (R) in the background of an Indian cultivar HD2329 (S) was used for a study of DNA methylation mediated regulation of gene expression. Leaf samples were collected at 0 h before (S0 and R0) and 96 h after inoculation (S96 and R96). The DNA samples were subjected to BS-Seq and sequencing data were used for identification of differentially methylated/demethylated regions/genes (DMRs and DMGs). Following four pairs of comparisons were used for this purpose: S0 vs S96; S0 vs R0; R0 vs R96; S96 vs R96. Major role of CHH methylation relative to that of CG and CHG methylation was observed. Some important observations include the following: (i) abundance of CHH methylation among DMRs; (ii) predominance of DMRs in intergenic region, relative to other genomic regions (promoters, exons, introns, TSS and TTS); (iii) abundance of transposable elements (TEs) in DMRs with CHH context; (iv) demethylation mediated high expression of genes during susceptible reaction (S0 vs S96) and methylation mediated low expression of genes during resistant reaction (R0 vs R96 and S96 vs R96); (v) major genes under regulation encode proteins, which differ from those encoded by genes regulated during susceptible reaction and (vi) ~ 500 DMGs carried differential binding sites for H3K4/K27me3 marks suggesting joint involvement of DNA and H3 methylation. Thus, CHH methylation either alone or in combination with histone methylation plays a major role in regulating the expression of genes involved in wheat-leaf rust interaction.
Collapse
|
5
|
Xie X, Chen Z, Zhang B, Guan H, Zheng Y, Lan T, Zhang J, Qin M, Wu W. Transcriptome analysis of xa5-mediated resistance to bacterial leaf streak in rice (Oryza sativa L.). Sci Rep 2020; 10:19439. [PMID: 33173096 PMCID: PMC7656458 DOI: 10.1038/s41598-020-74515-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/30/2020] [Indexed: 11/25/2022] Open
Abstract
Bacterial leaf steak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a devastating disease in rice production. The resistance to BLS in rice is a quantitatively inherited trait, of which the molecular mechanism is still unclear. It has been proved that xa5, a recessive bacterial blast resistance gene, is the most possible candidate gene of the QTL qBlsr5a for BLS resistance. To study the molecular mechanism of xa5 function in BLS resistance, we created transgenic lines with RNAi of Xa5 (LOC_Os05g01710) and used RNA-seq to analyze the transcriptomes of a Xa5-RNAi line and the wild-type line at 9 h after inoculation with Xoc, with the mock inoculation as control. We found that Xa5-RNAi could (1) increase the resistance to BLS as expected from xa5; (2) alter (mainly up-regulate) the expression of hundreds of genes, most of which were related to disease resistance; and (3) greatly enhance the response of thousands of genes to Xoc infection, especially of the genes involved in cell death pathways. The results suggest that xa5 is the cause of BLS-resistance of QTL qBlsr5a and it displays BLS resistance effect probably mainly because of the enhanced response of the cell death-related genes to Xoc infection.
Collapse
Affiliation(s)
- Xiaofang Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiwei Chen
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binghui Zhang
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Huazhong Guan
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Lan
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhang
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyue Qin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiren Wu
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China. .,Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
6
|
Yang W, Ju Y, Zuo L, Shang L, Li X, Li X, Feng S, Ding X, Chu Z. OsHsfB4d Binds the Promoter and Regulates the Expression of OsHsp18.0-CI to Resistant Against Xanthomonas Oryzae. RICE (NEW YORK, N.Y.) 2020; 13:28. [PMID: 32462553 PMCID: PMC7253548 DOI: 10.1186/s12284-020-00388-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/05/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Bacterial leaf streak (BLS) and bacterial blight (BB) are two major prevalent and devastating rice bacterial diseases caused by the Gram-negative bacteria of Xanthomonas oryzae pv. oryzicola (Xoc) and Xanthomonas oryzae pv. oryzae (Xoo), respectively. Previously, we identified a defence-related (DR) gene encoding a small heat shock protein, OsHsp18.0-CI, that positively regulates BLS and BB resistance in rice. RESULTS To reveal the regulatory mechanism of the OsHsp18.0-CI response to Xoc and Xoo, we characterized the class B heat shock factor (Hsf), OsHsfB4d, through transcriptional analysis and a transgenic study. OsHsfB4d is upregulated post inoculation by either the Xoc strain RS105 or Xoo strain PXO99a in Zhonghua 11 (wild type, ZH11) as well as in OsHsp18.0-CI overexpressing rice plants. Transient expression of OsHsfB4d can activate the expression of green fluorescent protein (GFP) and luciferase (Luc) via the OsHsp18.0-CI promoter. Rice plants overexpressing OsHsfB4d exhibited enhanced resistance to RS105 and PXO99a as well as increased expression of OsHsp18.0-CI and pathogenesis-related genes. Furthermore, we found that OsHsfB4d directly binds to a DNA fragment carrying the only perfect heat shock element (HSE) in the promoter of OsHsp18.0-CI. CONCLUSION Overall, we reveal that OsHsfB4d, a class B Hsf, acts as a positive regulator of OsHsp18.0-CI to mediate BLS and BB resistance in rice.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, 271018, Shandong, PR China
- Shandong Pengbo Biotechnology Co LTD, Tai' an, 271025, Shandong, PR China
| | - Yanhu Ju
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, 271018, Shandong, PR China
- College of Agronomy, Shandong Agricultural University, Tai' an, 271018, Shandong, PR China
| | - Liping Zuo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, 271018, Shandong, PR China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai' an, 271018, Shandong, PR China
| | - Luyue Shang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, 271018, Shandong, PR China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai' an, 271018, Shandong, PR China
| | - Xinru Li
- College of Agronomy, Shandong Agricultural University, Tai' an, 271018, Shandong, PR China
| | - Xiaoming Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, 271018, Shandong, PR China
- College of Agronomy, Shandong Agricultural University, Tai' an, 271018, Shandong, PR China
| | - Shangzong Feng
- Agro-technical Popularization Centre of Linyi City, Linyi, 276000, Shandong, PR China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, 271018, Shandong, PR China.
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai' an, 271018, Shandong, PR China.
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, 271018, Shandong, PR China.
- College of Agronomy, Shandong Agricultural University, Tai' an, 271018, Shandong, PR China.
| |
Collapse
|
7
|
Yang W, Zhang B, Qi G, Shang L, Liu H, Ding X, Chu Z. Identification of the phytosulfokine receptor 1 (OsPSKR1) confers resistance to bacterial leaf streak in rice. PLANTA 2019; 250:1603-1612. [PMID: 31388828 DOI: 10.1007/s00425-019-03238-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 07/10/2019] [Indexed: 05/07/2023]
Abstract
A rice allele of PSKR1 functioning in resistance to bacterial leaf streak was identified. Phytosulfokine (PSK), a disulfated pentapeptide encoded by precursor genes that are ubiquitously present in higher plants, belongs to the group of plant peptide growth factors. The PSK receptor PSKR1 in Arabidopsis thaliana is an active kinase and has guanylate cyclase activity resulting in dual-signaling outputs. Here, the LOC_Os02g41890 out of three candidates completely rescued root growth and susceptible to Pseudomonas syringae pv. DC3000 in the Arabidopsis pskr1-3 mutant and was identified as OsPSKR1. This protein was localized to plasma membrane similar to AtPSKR1. The expression of OsPSKR1 was upregulated upon inoculation with RS105, a strain of Xanthomonas oryzae pv. oryzicola (Xoc) that cause bacterial leaf streak in rice. OsPSKR1 overexpression (OE) lines had greater resistance to RS105 than the wild type. Consistently, the expression of pathogenesis-related genes involved in the salicylic acid (SA) pathway was upregulated in the transgenic lines. Overall, OsPSKR1 functions as a candidate PSK receptor and regulates resistance to Xoc by activating the expression of pathogenesis-related genes involved in the SA pathway in rice.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Baogang Zhang
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Guanghui Qi
- College of Information Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Luyue Shang
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
8
|
Ju Y, Tian H, Zhang R, Zuo L, Jin G, Xu Q, Ding X, Li X, Chu Z. Overexpression of OsHSP18.0-CI Enhances Resistance to Bacterial Leaf Streak in Rice. RICE (NEW YORK, N.Y.) 2017; 10:12. [PMID: 28417425 PMCID: PMC5393982 DOI: 10.1186/s12284-017-0153-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/07/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND The small heat shock proteins represent a large family of proteins that respond to a wide range of abiotic and biotic stresses. OsHsp18.0-CI confers tolerance to salt and cadmium and interacts with viral RNA-dependent RNA polymerase (RdRp). However, the direct function of OsHsp18.0-CI in resistance against biotic stresses remains unclear in rice. RESULTS Here, we report that the expression of OsHsp18.0-CI was up-regulated upon inoculation with RS105, a strain of Xanthomonas oryzae pv. oryzicola (Xoc) that causes bacterial leaf streak in rice. In comparison with wild-type, OsHsp18.0-CI overexpression (OE) lines exhibited enhanced resistance to RS105, whereas repression lines exhibited compromised resistance to RS105. In addition, the transcriptional profiles of wild type and OE lines were compared with and without inoculation with RS105. After inoculation with RS105, most of the genes with up-regulated expression were commonly stimulated in the wild type and OE lines, with stronger induction in the OE lines than in wild type. CONCLUSION Our study reveals that OsHsp18.0-CI positively regulates resistance to Xoc by mediating an enhanced version of the basal defense response in rice.
Collapse
Affiliation(s)
- Yanhu Ju
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai an, 271018 Shandong People’s Republic of China
| | - Hongjuan Tian
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai an, 271018 Shandong People’s Republic of China
- Present address: Haoyunjiao Resort Party Committee Government Office, Rongcheng, Shandong People’s Republic of China
| | - Ruihua Zhang
- Rice Research Institute, Linyi Academy of Agricultural Science, Linyi, 276012 Shandong People’s Republic of China
| | - Liping Zuo
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai an, 271018 Shandong People’s Republic of China
| | - Guixiu Jin
- Rice Research Institute, Linyi Academy of Agricultural Science, Linyi, 276012 Shandong People’s Republic of China
| | - Qian Xu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai an, 271018 Shandong People’s Republic of China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai an, 271018 Shandong People’s Republic of China
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 China
| | - Xiangkui Li
- Rice Research Institute, Linyi Academy of Agricultural Science, Linyi, 276012 Shandong People’s Republic of China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai an, 271018 Shandong People’s Republic of China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
9
|
Feng C, Zhang X, Wu T, Yuan B, Ding X, Yao F, Chu Z. The polygalacturonase-inhibiting protein 4 (OsPGIP4), a potential component of the qBlsr5a locus, confers resistance to bacterial leaf streak in rice. PLANTA 2016; 243:1297-308. [PMID: 26945855 DOI: 10.1007/s00425-016-2480-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/25/2016] [Indexed: 05/05/2023]
Abstract
OsPGIP4 overexpression enhances resistance to bacterial leaf streak in rice. Polygalacturonase-inhibiting proteins are thought to play important roles in the innate immunity of rice against fungi. Here, we show that the chromosomal location of OsPGIP4 coincides with the major bacterial leaf streak resistance quantitative trait locus qBlsr5a on the short arm of chromosome 5. OsPGIP4 expression was up-regulated upon inoculation with the pathogen Xanthomonas oryzae pv. oryzicola strain RS105. OsPGIP4 overexpression enhanced the resistance of the susceptible rice variety Zhonghua 11 to RS105. In contrast, repressing OsPGIP4 expression resulted in an increase in disease lesions caused by RS105 in Zhonghua 11 and in Acc8558, a qBlsr5a resistance donor. More interestingly, upon inoculation, the activated expression of pathogenesis-related genes was attenuated for those genes involved in the salicylic acid pathway, while the activated expression of jasmonic acid pathway markers was increased in the overexpression lines. Our results not only provide the first report that rice PGIP could enhance resistant against a bacterial pathogen but also indicate that OsPGIP4 is a potential component of the qBlsr5a locus for bacterial leaf streak in rice.
Collapse
Affiliation(s)
- Chuanshun Feng
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xia Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Tao Wu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Bin Yuan
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, People's Republic of China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Fangying Yao
- Biotechnology Research Center, Shandong Academy of Agricultural Science, Jinan, 250100, Shandong, People's Republic of China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
10
|
Guo L, Guo C, Li M, Wang W, Luo C, Zhang Y, Chen L. Suppression of expression of the putative receptor-like kinase gene NRRB enhances resistance to bacterial leaf streak in rice. Mol Biol Rep 2014; 41:2177-87. [DOI: 10.1007/s11033-014-3069-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/04/2014] [Indexed: 11/28/2022]
|