1
|
Ribeiro DM, Leclercq CC, Charton SAB, Costa MM, Carvalho DFP, Cocco E, Sergeant K, Renaut J, Freire JPB, Prates JAM, de Almeida AM. Enhanced ileum function in weaned piglets via Laminaria digitata and alginate lyase dietary inclusion: A combined proteomics and metabolomics analysis. J Proteomics 2023; 289:105013. [PMID: 37775079 DOI: 10.1016/j.jprot.2023.105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Laminaria digitata, a brown seaweed with prebiotic properties, can potentially enhance the resilience of weaned piglets to nutritional distress. However, their cell wall polysaccharides elude digestion by monogastric animals' endogenous enzymes. In vitro studies suggest alginate lyase's ability to degrade such polysaccharides. This study aimed to assess the impact of a 10% dietary inclusion of L. digitata and alginate lyase supplementation on the ileum proteome and metabolome, adopting a hypothesis-generating approach. Findings indicated that control piglets escalated glucose usage as an enteric energy source, as evidenced by the increased abundance of PKLR and PCK2 proteins and decreased tissue glucose concentration. Additionally, the inclusion of seaweed fostered a rise in proteins linked to enhanced enterocyte structural integrity (ACTBL2, CRMP1, FLII, EML2 and MYLK), elevated peptidase activity (NAALADL1 and CAPNS1), and heightened anti-inflammatory activity (C3), underscoring improved intestinal function. In addition, seaweed-fed piglets showed a reduced abundance of proteins related to apoptosis (ERN2) and proteolysis (DPP4). Alginate lyase supplementation appeared to amplify the initial effects of seaweed-only feeding, by boosting the number of differential proteins within the same pathways. This amplification is potentially due to increased intracellular nutrient availability, making a compelling case for further exploration of this dietary approach. SIGNIFICANCE: Pig production used to rely heavily on antibiotics and zinc oxide to deal with post-weaning stress in a cost-effective way. Their negative repercussions on public health and the environment have motivated heavy restrictions, and a consequent search for alternative feed ingredients/supplements. One of such alternatives is Laminaria digitata, a brown seaweed whose prebiotic components that can help weaned piglets deal with nutritional stress, by improving their gut health and immune status. However, their recalcitrant cell walls have antinutritional properties, for which alginate lyase supplementation is a possible solution. By evaluating ileal metabolism as influenced by dietary seaweed and enzyme supplementation, we aim at discovering how the weaned piglet adapts to them and what are their effects on this important segment of the digestive system.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Céline C Leclercq
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Sophie A B Charton
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Mónica M Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Daniela Filipa Pires Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Emmanuelle Cocco
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Kjell Sergeant
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Jenny Renaut
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - João Pedro Bengala Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José António Mestre Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - André Martinho de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
2
|
White AJ, Parnell SM, Handel A, Maio S, Bacon A, Cosway EJ, Lucas B, James KD, Cowan JE, Jenkinson WE, Hollander GA, Anderson G. Diversity in Cortical Thymic Epithelial Cells Occurs through Loss of a Foxn1-Dependent Gene Signature Driven by Stage-Specific Thymocyte Cross-Talk. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 210:ji2200609. [PMID: 36427001 PMCID: PMC9772400 DOI: 10.4049/jimmunol.2200609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/27/2022] [Indexed: 01/04/2023]
Abstract
In the thymus, cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells support αβT cell development from lymphoid progenitors. For cTECs, expression of a specialized gene signature that includes Cxcl12, Dll4, and Psmb11 enables the cortex to support T lineage commitment and the generation and selection of CD4+CD8+ thymocytes. Although the importance of cTECs in T cell development is well defined, mechanisms that shape the cTEC compartment and regulate its functional specialization are unclear. Using a Cxcl12DsRed reporter mouse model, we show that changes in Cxcl12 expression reveal a developmentally regulated program of cTEC heterogeneity. Although cTECs are uniformly Cxcl12DsRed+ during neonatal stages, progression through postnatal life triggers the appearance of Cxcl12DsRed- cTECs that continue to reside in the cortex alongside their Cxcl12DsRed+ counterparts. This appearance of Cxcl12DsRed- cTECs is controlled by maturation of CD4-CD8-, but not CD4+CD8+, thymocytes, demonstrating that stage-specific thymocyte cross-talk controls cTEC heterogeneity. Importantly, although fate-mapping experiments show both Cxcl12DsRed+ and Cxcl12DsRed- cTECs share a common Foxn1+ cell origin, RNA sequencing analysis shows Cxcl12DsRed- cTECs no longer express Foxn1, which results in loss of the FOXN1-dependent cTEC gene signature and may explain the reduced capacity of Cxcl12DsRed- cTECs for thymocyte interactions. In summary, our study shows that shaping of the cTEC compartment during the life course occurs via stage-specific thymocyte cross-talk, which drives loss of Foxn1 expression and its key target genes, which may then determine the functional competence of the thymic cortex.
Collapse
Affiliation(s)
- Andrea J. White
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Sonia M. Parnell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Adam Handel
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Stefano Maio
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrea Bacon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Emilie J. Cosway
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Beth Lucas
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Kieran D. James
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Jennifer E. Cowan
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - William E. Jenkinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Georg A. Hollander
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland; and
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Atallah I, Quinodoz M, Campos-Xavier B, Peter VG, Fouriki A, Bonvin C, Bottani A, Kumps C, Angelini F, Bellutti Enders F, Christen-Zaech S, Rizzi M, Renella R, Beck-Popovic M, Poloni C, Frossard V, Blouin JL, Rivolta C, Riccio O, Candotti F, Hofer M, Unger S, Superti-Furga A. Immune deficiency, autoimmune disease and intellectual disability: A pleiotropic disorder caused by biallelic variants in the TPP2 gene. Clin Genet 2021; 99:780-788. [PMID: 33586135 DOI: 10.1111/cge.13942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022]
Abstract
Four individuals from two families presented with a multisystemic condition of suspected genetic origin that was diagnosed only after genome analysis. The main phenotypic features were immune system dysregulation (severe immunodeficiency with autoimmunity) and intellectual disability. The four individuals were found to be homozygous for a 4.4 Kb deletion removing exons 20-23 (NM_003291.4) of the TPP2 gene, predicting a frameshift with premature termination of the protein. The deletion was located on a shared chromosome 13 haplotype indicating a Swiss founder mutation. Tripeptidyl peptidase 2 (TPP2) is a protease involved in HLA/antigen complex processing and amino acid homeostasis. Biallelic variants in TPP2 have been described in 10 individuals with variable features including immune deficiency, autoimmune cytopenias, and intellectual disability or chronic sterile brain inflammation mimicking multiple sclerosis. Our observations further delineate this severe condition not yet included in the OMIM catalog. Timely recognition of TPP2 deficiency is crucial since (1) immune surveillance is needed and hematopoietic stem cell transplantation may be necessary, and (2) for provision of genetic counselling. Additionally, enzyme replacement therapy, as already established for TPP1 deficiency, might be an option in the future.
Collapse
Affiliation(s)
- Isis Atallah
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Virginie G Peter
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Athina Fouriki
- Pediatric Immunology Unit, Division of Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | - Christophe Bonvin
- Division of Neurology, Lausanne University Hospital, Lausanne, Switzerland
| | - Armand Bottani
- Division of Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Camille Kumps
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Federica Angelini
- Pediatric Immunology Unit, Division of Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | - Felicitas Bellutti Enders
- Pediatric Immunology Unit, Division of Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Mattia Rizzi
- Pediatric Hemato-Oncology Unit, Lausanne University Hospital, Lausanne, Switzerland
| | - Raffaele Renella
- Pediatric Hemato-Oncology Unit, Lausanne University Hospital, Lausanne, Switzerland
| | - Maja Beck-Popovic
- Pediatric Hemato-Oncology Unit, Lausanne University Hospital, Lausanne, Switzerland
| | - Claudia Poloni
- Pediatric Neurology Unit, Sion Hospital, Sion, Switzerland
| | | | - Jean-Louis Blouin
- Division of Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Orbicia Riccio
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Hofer
- Pediatric Immunology Unit, Division of Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | - Sheila Unger
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Otto PI, Guimarães SEF, Verardo LL, Azevedo ALS, Vandenplas J, Soares ACC, Sevillano CA, Veroneze R, de Fatima A Pires M, de Freitas C, Prata MCA, Furlong J, Verneque RS, Martins MF, Panetto JCC, Carvalho WA, Gobo DOR, da Silva MVGB, Machado MA. Genome-wide association studies for tick resistance in Bos taurus × Bos indicus crossbred cattle: A deeper look into this intricate mechanism. J Dairy Sci 2018; 101:11020-11032. [PMID: 30243625 DOI: 10.3168/jds.2017-14223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/29/2018] [Indexed: 01/12/2023]
Abstract
Rhipicephalus (Boophilus) microplus is the main cattle ectoparasite in tropical areas. Gir × Holstein crossbred cows are well adapted to different production systems in Brazil. In this context, we performed genome-wide association study (GWAS) and post-GWAS analyses for R. microplus resistance in an experimental Gir × Holstein F2 population. Single nucleotide polymorphisms (SNP) identified in GWAS were used to build gene networks and to investigate the breed of origin for its alleles. Tick artificial infestations were performed during the dry and rainy seasons. Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA) and single-step BLUP procedure was used for GWAS. Post-GWAS analyses were performed by gene ontology terms enrichment and gene transcription factors networks, generated from enriched transcription factors, identified from the promoter sequences of selected gene sets. The genetic origin of marker alleles in the F2 population was assigned using the breed of origin of alleles approach. Heritability estimates for tick counts were 0.40 ± 0.11 in the rainy season and 0.54 ± 0.11 in the dry season. The top ten 0.5-Mbp windows with the highest percentage of genetic variance explained by SNP markers were found in chromosomes 10 and 23 for both the dry and rainy seasons. Gene network analyses allowed the identification of genes involved with biological processes relevant to immune system functions (TREM1, TREM2, and CD83). Gene-transcription factors network allowed the identification of genes involved with immune functions (MYO5A, TREML1, and PRSS16). In resistant animals, the average proportion of animals showing significant SNPs with paternal and maternal alleles originated from Gir breed was 44.8% whereas the proportion of animals with both paternal and maternal alleles originated from Holstein breed was 11.3%. Susceptible animals showing both paternal and maternal alleles originated from Holstein breed represented 44.6% on average, whereas both paternal and maternal alleles originated from Gir breed animals represented 9.3%. This study allowed us to identify candidate genes for tick resistance in Gir × Holstein crossbreds in both rainy and dry seasons. According to the origin of alleles analysis, we found that most animals classified as resistant showed 2 alleles from Gir breed, while the susceptible ones showed alleles from Holstein. Based on these results, the identified genes may be thoroughly investigated in additional experiments aiming to validate their effects on tick resistance phenotype in cattle.
Collapse
Affiliation(s)
- Pamela I Otto
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-977 Brazil
| | - Simone E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-977 Brazil
| | - Lucas L Verardo
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-977 Brazil
| | | | - Jeremie Vandenplas
- Wageningen University & Research Animal Breeding and Genomics, 6700 AH Wageningen, the Netherlands
| | - Aline C C Soares
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-977 Brazil
| | - Claudia A Sevillano
- Wageningen University & Research Animal Breeding and Genomics, 6700 AH Wageningen, the Netherlands; Topigs Norsvin Research Center, 6640 AA Beuningen, the Netherlands
| | - Renata Veroneze
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-977 Brazil
| | | | - Célio de Freitas
- EMBRAPA, Dairy Cattle Research Center, Juiz de Fora, MG, 36038-330 Brazil
| | | | - John Furlong
- EMBRAPA, Dairy Cattle Research Center, Juiz de Fora, MG, 36038-330 Brazil
| | - Rui S Verneque
- EMBRAPA, Dairy Cattle Research Center, Juiz de Fora, MG, 36038-330 Brazil
| | | | | | - Wanessa A Carvalho
- EMBRAPA, Dairy Cattle Research Center, Juiz de Fora, MG, 36038-330 Brazil
| | - Diego O R Gobo
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-977 Brazil
| | | | - Marco A Machado
- EMBRAPA, Dairy Cattle Research Center, Juiz de Fora, MG, 36038-330 Brazil.
| |
Collapse
|
5
|
Pallial mucus of the oyster Crassostrea virginica regulates the expression of putative virulence genes of its pathogen Perkinsus marinus. Int J Parasitol 2014; 44:305-17. [DOI: 10.1016/j.ijpara.2014.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/10/2014] [Accepted: 01/15/2014] [Indexed: 01/11/2023]
|