1
|
Tan Z, Jiang H. Molecular and Cellular Mechanisms of Intramuscular Fat Development and Growth in Cattle. Int J Mol Sci 2024; 25:2520. [PMID: 38473768 DOI: 10.3390/ijms25052520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Intramuscular fat, also referred to as marbling fat, is the white fat deposited within skeletal muscle tissue. The content of intramuscular fat in the skeletal muscle, particularly the longissimus dorsi muscle, of cattle is a critical determinant of beef quality and value. In this review, we summarize the process of intramuscular fat development and growth, the factors that affect this process, and the molecular and epigenetic mechanisms that mediate this process in cattle. Compared to other species, cattle have a remarkable ability to accumulate intramuscular fat, partly attributed to the abundance of sources of fatty acids for synthesizing triglycerides. Compared to other adipose depots such as subcutaneous fat, intramuscular fat develops later and grows more slowly. The commitment and differentiation of adipose precursor cells into adipocytes as well as the maturation of adipocytes are crucial steps in intramuscular fat development and growth in cattle. Each of these steps is controlled by various factors, underscoring the complexity of the regulatory network governing adipogenesis in the skeletal muscle. These factors include genetics, epigenetics, nutrition (including maternal nutrition), rumen microbiome, vitamins, hormones, weaning age, slaughter age, slaughter weight, and stress. Many of these factors seem to affect intramuscular fat deposition through the transcriptional or epigenetic regulation of genes directly involved in the development and growth of intramuscular fat. A better understanding of the molecular and cellular mechanisms by which intramuscular fat develops and grows in cattle will help us develop more effective strategies to optimize intramuscular fat deposition in cattle, thereby maximizing the quality and value of beef meat.
Collapse
Affiliation(s)
- Zhendong Tan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Kooverjee BB, Soma P, Van Der Nest MA, Scholtz MM, Neser FWC. Selection Signatures in South African Nguni and Bonsmara Cattle Populations Reveal Genes Relating to Environmental Adaptation. Front Genet 2022; 13:909012. [PMID: 35783284 PMCID: PMC9247466 DOI: 10.3389/fgene.2022.909012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Climate change is a major influencing factor in beef production. The greenhouse gases produced from livestock production systems contribute to the overall greenhouse gas emissions. The aim of this study was to identify selection signatures within and between Nguni and Bonsmara cattle in relation to production and adaptation. For this purpose, genomic 150 K single nucleotide polymorphism data from Nguni (n = 231) and Bonsmara (n = 252) cattle in South Africa were used. Extended haplotype homozygosity (EHH) based analysis was executed within each population using integrated haplotype score (iHS). The R package rehh was used for detecting selection signatures across the two populations with cross population EHH (XP-EHH). Total of 121 regions of selection signatures were detected (p < 0.0001) in the Bonsmara and Nguni populations. Several genes relating to DNA methylation, heat stress, feed efficiency and nitrogen metabolism were detected within and between each population. These regions also included QTLs associated with residual feed intake, residual gain, carcass weight, stature and body weight in the Bonsmara, while QTLs associated with conception rate, shear force, tenderness score, juiciness, temperament, heat tolerance, feed efficiency and age at puberty were identified in Nguni. Based on the results of the study it is recommended that the Nguni and Bonsmara be utilized in crossbreeding programs as they have beneficial traits that may allow them to perform better in the presence of climate change. Results of this study coincide with Nguni and Bonsmara breed characteristics and performance, and furthermore support informative crossbreeding programs to enhance livestock productivity in South Africa.
Collapse
Affiliation(s)
- Bhaveni B. Kooverjee
- Department of Animal Breeding and Genetics, Animal Production, Agricultural Research Council, Pretoria, South Africa
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, South Africa
- *Correspondence: Bhaveni B. Kooverjee, ; Pranisha Soma,
| | - Pranisha Soma
- Department of Animal Breeding and Genetics, Animal Production, Agricultural Research Council, Pretoria, South Africa
- *Correspondence: Bhaveni B. Kooverjee, ; Pranisha Soma,
| | | | - Michiel M. Scholtz
- Department of Animal Breeding and Genetics, Animal Production, Agricultural Research Council, Pretoria, South Africa
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, South Africa
| | - Frederick W. C. Neser
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
3
|
Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2021; 11:613636. [PMID: 33708235 PMCID: PMC7942785 DOI: 10.3389/fgene.2020.613636] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
The dynamic changes in the epigenome resulting from the intricate interactions of genetic and environmental factors play crucial roles in individual growth and development. Numerous studies in plants, rodents, and humans have provided evidence of the regulatory roles of epigenetic processes in health and disease. There is increasing pressure to increase livestock production in light of increasing food needs of an expanding human population and environment challenges, but there is limited related epigenetic data on livestock to complement genomic information and support advances in improvement breeding and health management. This review examines the recent discoveries on epigenetic processes due to DNA methylation, histone modification, and chromatin remodeling and their impacts on health and production traits in farm animals, including bovine, swine, sheep, goat, and poultry species. Most of the reports focused on epigenome profiling at the genome-wide or specific genic regions in response to developmental processes, environmental stressors, nutrition, and disease pathogens. The bulk of available data mainly characterized the epigenetic markers in tissues/organs or in relation to traits and detection of epigenetic regulatory mechanisms underlying livestock phenotype diversity. However, available data is inadequate to support gainful exploitation of epigenetic processes for improved animal health and productivity management. Increased research effort, which is vital to elucidate how epigenetic mechanisms affect the health and productivity of livestock, is currently limited due to several factors including lack of adequate analytical tools. In this review, we (1) summarize available evidence of the impacts of epigenetic processes on livestock production and health traits, (2) discuss the application of epigenetics data in livestock production, and (3) present gaps in livestock epigenetics research. Knowledge of the epigenetic factors influencing livestock health and productivity is vital for the management and improvement of livestock productivity.
Collapse
Affiliation(s)
- Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
4
|
Zhang W, Chen Q, Xu L, Cai J, Zhang J. The potential role of PSMA6 in modulating fat deposition in pigs by promoting preadipocyte proliferation and differentiation. Gene 2020; 769:145228. [PMID: 33096182 DOI: 10.1016/j.gene.2020.145228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023]
Abstract
To investigate whether the proteasome subunit alpha 6 (PSMA6) gene has an effect on fat deposition, the gene expression profile was first detected in Berkshire pigs and Jinhua pigs (JHP). The results demonstrated that significantly higher levels of mRNA expression were identified in adipose tissues and the liver. Interestingly, when compared to the longissimus dorsi muscle (LDM) in each breed, it was discovered that the expression levels of the PSMA6 gene in these tissues of JHP were considerably higher than those in Berkshire pigs. Meantime, some significant correlations of PSMA6 mRNA expression in lipid metabolism-related tissues such as the liver and LDM with the marbling score, as well as the content of intramuscular fat (IMF), in pigs were found by correlation coefficient analysis. To further explore the effects of PSMA6 expression on fat deposition, we performed PSMA6 overexpression in 3T3-L1 cells via Lentivirus infection. Our results indicated that PSMA6 could promote cell proliferation and accelerate cell division. It was also found that the transcription factors CCAAT/enhancer-binding protein alpha (CEBPA) and peroxisome proliferator-activated receptor gamma (PPARG), as well as the key genes related to adipogenesis, were upregulated, while the genes related to fat oxidation were significantly downregulated, which indicated that the PSMA6 gene could stimulate the differentiation of preadipocytes.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qiangqiang Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liaoyi Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jianfeng Cai
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jinzhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
5
|
Cloning and Expression Levels of TFAM and TFB2M Genes and their Correlation with Meat and Carcass Quality Traits in Jiaxing Black Pig. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2018-0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The coding sequences (CDS) of TFAM and TFB2M genes from Jiaxing Black Pig (JBP) were first obtained by RT-PCR and DNA-seq in the present study. Sequence analyses showed that the TFAM gene contains a 741-bp CDS region encoding 246 amino acids sharing a 100% homology with the sequence on NCBI, while TFB2M gene contains a CDS region of 1176 bp encoding 391 amino acids with two missense mutations. The results of quantitative Real-Time PCR for TFAM and TFB2M revealed that transcripts of the genes were both presented at the highest levels in spleen tissue followed by liver tissue, while the least levels in longissimus dorsi muscle (LDM), and obviously the higher levels in two adipose tissues than those in LDM tissue (P<0.01). Meanwhile, a total of forty-two JBPs were employed in this experiment to investigate the effect of these two genes on the carcass, meat quality traits and flavor substances such as fatty acids, intramuscular fat (IMF) in LDM. As expected, some strong correlations of gene expression abundance of TFAM and TFB2M mRNA in particular tissues such as liver and LDM with carcass and meat quality traits including marbling score, as well as the content of saturated fatty acid (SFA), in JBP were found.
Collapse
|
6
|
Ali A, Al-Tobasei R, Kenney B, Leeds TD, Salem M. Integrated analysis of lncRNA and mRNA expression in rainbow trout families showing variation in muscle growth and fillet quality traits. Sci Rep 2018; 8:12111. [PMID: 30108261 PMCID: PMC6092380 DOI: 10.1038/s41598-018-30655-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Muscle yield and quality traits are important for the aquaculture industry and consumers. Genetic selection for these traits is difficult because they are polygenic and result from multifactorial interactions. To study the genetic architecture of these traits, phenotypic characterization of whole body weight (WBW), muscle yield, fat content, shear force and whiteness were measured in ~500 fish representing 98 families from a growth-selected line. RNA-Seq was used to sequence the muscle transcriptome of different families exhibiting divergent phenotypes for each trait. We have identified 240 and 1,280 differentially expressed (DE) protein-coding genes and long noncoding RNAs (lncRNAs), respectively, in fish families exhibiting contrasting phenotypes. Expression of many DE lncRNAs (n = 229) was positively correlated with overlapping, neighboring or distantly located protein-coding genes (n = 1,030), resulting in 3,392 interactions. Three DE antisense lncRNAs were co-expressed with sense genes known to impact muscle quality traits. Forty-four DE lncRNAs had potential sponge functions to miRNAs that affect muscle quality traits. This study (1) defines muscle quality associated protein-coding and noncoding genes and (2) provides insight into non-coding RNAs involvement in regulating growth and fillet quality traits in rainbow trout.
Collapse
Affiliation(s)
- Ali Ali
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35294-0022, USA
| | - Brett Kenney
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV, 26506-6108, USA
| | - Timothy D Leeds
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV, 25430, USA
| | - Mohamed Salem
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA. .,Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
7
|
Usman T, Wang Y, Liu C, Wang X, Zhang Y, Yu Y. Association study of single nucleotide polymorphisms in JAK2 and STAT5B genes and their differential mRNA expression with mastitis susceptibility in Chinese Holstein cattle. Anim Genet 2015; 46:371-80. [PMID: 26154111 DOI: 10.1111/age.12306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 02/03/2023]
Abstract
The JAK-STAT pathway plays a key role in mediating immune responses. The genetic effects of single nucleotide polymorphisms (SNPs) in JAK2 and STAT5B were investigated for serum cytokines, mastitis indicators and productions traits in a population of 468 Chinese Holstein cattle. Pooled DNA sequencing revealed one SNP (BTA8:g.39645396A>G) in JAK2 and two SNPs (BTA19:g.43673888A>G and BTA19:g.43660093T>C) in STAT5B. A fixed effect model considering the effects of SNPs, parity, herd, season and year of calving was used by way of the general linear model procedure of sas. Genotype frequencies of these SNPs in the population were in Hardy-Weinberg equilibrium (P > 0.05). A novel SNP (g.39645396A>G) in JAK2 was predicted to change the amino acid from lysine to asparagine and was significantly associated with the somatic cell count (SCC) and somatic cell score (SCS), whereas g.43673888A>G in STAT5B was significantly associated with SCC, SCS and interleukin-4 (IL-4) (P < 0.05). The dominant effect of g.39645396A>G in JAK2 was significant for SCS, and its additive effect was significant for SCC, whereas the dominant effect of g.43673888A>G in STAT5B was significant for SCS and IL-4 (P < 0.05). The combination of g.39645396A>G in JAK2 and g.43673888A>G in STAT5B showed a significant effect on SCC, SCS, IL-4 and TNF-α (P < 0.05). As for mRNA expression analysis, the AA genotype g.39645396A>G and GG genotype g.43673888A>G indicated higher mRNA expression level and were significantly different from other genotypes (P < 0.05). The results imply that JAK2 and STAT5B genes could be useful candidate genes, and the identified polymorphisms might potentially be strong genetic markers for selection of dairy cattle against mastitis development.
Collapse
Affiliation(s)
- T Usman
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China.,College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Y Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - C Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - X Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - Y Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - Y Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
8
|
Liu X, Usman T, Wang Y, Wang Z, Xu X, Wu M, Zhang Y, Zhang X, Li Q, Liu L, Shi W, Qin C, Geng F, Wang C, Tan R, Huang X, Liu A, Wu H, Tan S, Yu Y. Polymorphisms in epigenetic and meat quality related genes in fourteen cattle breeds and association with beef quality and carcass traits. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:467-75. [PMID: 25656186 PMCID: PMC4341095 DOI: 10.5713/ajas.13.0837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/21/2014] [Accepted: 08/14/2014] [Indexed: 01/19/2023]
Abstract
Improvement for carcass traits related to beef quality is the key concern in beef production. Recent reports found that epigenetics mediates the interaction of individuals with environment and nutrition. The present study was designed to analyze the genetic effect of single nucleotide polymorphisms (SNPs) in seven epigenetic-related genes (DNMT1, DNMT3a, DNMT3b, DNMT3L, Ago1, Ago2, and HDAC5) and two meat quality candidate genes (CAPN1 and PRKAG3) on fourteen carcass traits related to beef quality in a Snow Dragon beef population, and also to identify SNPs in a total of fourteen cattle populations. Sixteen SNPs were identified and genotyped in 383 individuals sampled from the 14 cattle breeds, which included 147 samples from the Snow Dragon beef population. Data analysis showed significant association of 8 SNPs within 4 genes related to carcass and/or meat quality traits in the beef populations. SNP1 (13154420A>G) in exon 17 of DNMT1 was significantly associated with rib-eye width and lean meat color score (p<0.05). A novel SNP (SNP4, 76198537A>G) of DNMT3a was significantly associated with six beef quality traits. Those individuals with the wild-type genotype AA of DNMT3a showed an increase in carcass weight, chilled carcass weight, flank thicknesses, chuck short rib thickness, chuck short rib score and in chuck flap weight in contrast to the GG genotype. Five out of six SNPs in DNMT3b gene were significantly associated with three beef quality traits. SNP15 (45219258C>T) in CAPN1 was significantly associated with chuck short rib thickness and lean meat color score (p<0.05). The significant effect of SNP15 on lean meat color score individually and in combination with each of other 14 SNPs qualify this SNP to be used as potential marker for improving the trait. In addition, the frequencies of most wild-type alleles were higher than those of the mutant alleles in the native and foreign cattle breeds. Seven SNPs were identified in the epigenetic-related genes. The SNP15 in CAPN1 could be used as a powerful genetic marker in selection programs for beef quality improvement in the Snow Dragon Beef population.
Collapse
Affiliation(s)
- Xuan Liu
- Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tahir Usman
- Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China ; Department of Animal Health, The University of Agriculture, Peshawar, Peshawar 25000, Pakistan
| | - Yachun Wang
- Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zezhao Wang
- Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xianzhou Xu
- Dalian Xuelong Industry Limited Group, Dalian 116001, China
| | - Meng Wu
- Dalian Xuelong Industry Limited Group, Dalian 116001, China
| | - Yi Zhang
- Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xu Zhang
- Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiang Li
- Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing 100193, China
| | - Wanhai Shi
- Beijing Dairy Cattle Center, Beijing 100193, China
| | - Chunhua Qin
- Ningxia Sygen BioEngineering Research Center, Yinchuan 750000, China
| | - Fanjun Geng
- Dingyuan Seedstock Bulls Breeding Ltd. Company, Zhengzhou 450000, China
| | - Congyong Wang
- Dingyuan Seedstock Bulls Breeding Ltd. Company, Zhengzhou 450000, China
| | - Rui Tan
- Xinjiang General Livestock Service, Urumqi 830000, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agriculture University, Urumqi 830000 China
| | - Airong Liu
- Xiertala Breeding Farm, Hailaer Farm Buro, Hailaer 021008, China
| | - Hongjun Wu
- Hailaer Farm Buro, Hailaer 021008, China
| | - Shixin Tan
- Xinjiang Tianshan Animal Husbandry Bio-Eng. Co. Ltd, Urumqi 830000, China
| | - Ying Yu
- Key Laboratory of Agricultural Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Liu X, Guo XY, Xu XZ, Wu M, Zhang X, Li Q, Ma PP, Zhang Y, Wang CY, Geng FJ, Qin CH, Liu L, Shi WH, Wang YC, Yu Y. Novel single nucleotide polymorphisms of the bovine methyltransferase 3b gene and their association with meat quality traits in beef cattle. GENETICS AND MOLECULAR RESEARCH 2012; 11:2569-77. [PMID: 22843074 DOI: 10.4238/2012.june.29.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
DNA methylation is essential for adipose deposition in mammals. We screened SNPs of the bovine DNA methyltransferase 3b (DNMT3b) gene in Snow Dragon beef, a commercial beef cattle population in China. Nine SNPs were found in the population and three of six novel SNPs were chosen for genotyping and analyzing a possible association with 16 meat quality traits. The frequencies of the alleles and genotypes of the three SNPs in Snow Dragon beef were similar to those in their terminal-paternal breed, Wagyu. Association analysis disclosed that SNP1 was not associated with any of the traits; SNP2 was significantly associated with lean meat color score and chuck short rib score, and SNP3 had a significant effect on dressing percentage and back-fat thickness in the beef population. The individuals with genotype GG for SNP2 had a 25.7% increase in lean meat color score and a 146% increase in chuck short rib score, compared with genotype AA. The cattle with genotype AG for SNP3 had 35.7 and 24% increases in dressing percentage and 28.8 and 29.2% increases in back-fat thickness, compared with genotypes GG and AA, respectively. Genotypic combination analysis revealed significant interactions between SNP1 and SNP2 and between SNP2 and SNP3 for the traits rib-eye area and live weight. We conclude that there is considerable evidence that DNMT3b is a determiner of beef quality traits.
Collapse
Affiliation(s)
- X Liu
- Key Laboratory of Agricultural Animal and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|