1
|
Fekrvand S, Abolhassani H, Esfahani ZH, Fard NNG, Amiri M, Salehi H, Almasi-Hashiani A, Saeedi-Boroujeni A, Fathi N, Mohtashami M, Razavi A, Heidari A, Azizi G, Khanmohammadi S, Ahangarzadeh M, Saleki K, Hassanpour G, Rezaei N, Yazdani R. Cancer Trends in Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2024; 45:34. [PMID: 39466473 DOI: 10.1007/s10875-024-01810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are susceptible to developing cancer due to defects in the immune system. The prevalence of cancer is higher in IEI patients compared to the immunocompetent population and cancers are considered as an important and common cause of death in IEI patients. OBJECTIVES To systematically review demographic, genetic and cancer-related data of IEI patients with a history of malignancy. Moreover, we performed a meta-analysis aiming to determine the frequency of cancer in patients with different types of IEI. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (until September 2023) introducing terms related to IEI and cancer. Studies with human subjects with confirmed IEI who had developed at least one malignancy during their lifetime were included. RESULTS A total number of 4607 IEI patients with a cancer history were included in the present study. Common variable immunodeficiency (CVID) had the highest number of reported cases (1284 cases), mainly due to a higher relative proportion of patients with predominantly antibody deficiencies (PAD) and their increased life expectancy contributing to the higher detection and reporting of cancers among these patients. The most common malignancy was hematologic/blood cancers (3026 cases, mainly diffuse large B cell lymphoma). A total number of 1173 cases (55.6%) succumbed to cancer, with the highest rate of bone marrow failure (64.9%). Among the patients with monogenic defects in IEI-associated genes, the majority of cases had ATM deficiency (926 cases), but the highest cancer frequency rate belonged to NBS1 deficiency (50.5%). 1928 cases out of total 4607 eligible cases had detailed data to allow further statistical analysis that revealed BRCA2 deficiency had the earliest cancer development (~ 38 months), lowest cure frequency, and highest fatality rate (85%), while ATM deficiency had the lowest cure frequency and highest fatality rate (72%) among total cases reviewed with exclusion of Fanconi anemia. CONCLUSION The overall reported cancer frequency in the cases reviewed with and without exclusion of Fanconi anemia was 11.1% (95% confidence interval: 9.8-12.5%) and 12.0% (95% confidence interval: 10.6-13.5%), respectively. Our study revealed that the incidence of cancer is significantly dependent on the molecular and pathway defects in IEI patients, and individualized early screening and appropriate treatment, might improve the prognosis of these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboube Amiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mohtashami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Milad Ahangarzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of MedicalSciences (SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
Aljamal AA, Elajami MK, Mansour EH, Bahmad HF, Medina AM, Cusnir M. Novel ATM Gene c.5644 C > T (p.Arg1882*) Variant Detected in a Patient with Pancreatic Adenocarcinoma and Two Primary Non-Small Cell Lung Adenocarcinomas: A Case Report. Diseases 2022; 10:diseases10040115. [PMID: 36547201 PMCID: PMC9778013 DOI: 10.3390/diseases10040115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Ataxia-telangiectasia is an autosomal recessive disorder that usually manifests in childhood due to mutations in the Ataxia-Telangiectasia Mutated (ATM) gene. It is believed that there is an association between this gene mutation/polymorphism and cancer risk, including breast, lung, and pancreatic cancers. We report a rare case of a 69-year-old woman who developed three different primary cancers, including non-small cell lung cancer (NSCLC) in both lungs and pancreatic adenocarcinoma, and was later found to have a rarely reported variant mutation in the ATM gene, namely Exon 39, c.5644 C > T. We hypothesize that the ATM gene, c.5644 C > T mutation could be a plausible contributor in the pathogenesis of these three cancers. This hypothesis has yet to be validated by larger studies that focus on a mechanistic approach involving DNA repair genes such as the ATM. More importantly, this paves the way to developing new patient-specific targeted therapies and inaugurating precision medicine as a cornerstone in cancer therapeutics.
Collapse
Affiliation(s)
- Abed A. Aljamal
- Mount Sinai Medical Center, Department of Internal Medicine, Miami Beach, FL 33140, USA
- Department of Medicine, Division of Hematology Oncology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mohamad K. Elajami
- Mount Sinai Medical Center, Department of Internal Medicine, Miami Beach, FL 33140, USA
| | - Ephraim H. Mansour
- Mount Sinai Medical Center, Department of Internal Medicine, Miami Beach, FL 33140, USA
| | - Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence: or ; Tel.: +1-305-674-2277
| | - Ana Maria Medina
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Mike Cusnir
- Mount Sinai Medical Center, Department of Internal Medicine, Division of Hematology and Oncology, Miami Beach, FL 33140, USA
| |
Collapse
|
3
|
Second Cancer Onset in Myeloproliferative Neoplasms: What, When, Why? Int J Mol Sci 2022; 23:ijms23063177. [PMID: 35328597 PMCID: PMC8954627 DOI: 10.3390/ijms23063177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
The risk of developing a solid cancer is a major issue arising in the disease course of a myeloproliferative neoplasm (MPN). Although the connection between the two diseases has been widely described, the backstage of this complex scenario has still to be explored. Several cellular and molecular mechanisms have been suggested to link the two tumors. Sometimes the MPN is considered to trigger a second cancer but at other times both diseases seem to depend on the same source. Increasing knowledge in recent years has revealed emerging pathways, supporting older, more consolidated theories, but there are still many unresolved issues. Our work aims to present the biological face of the complex clinical scenario in MPN patients developing a second cancer, focusing on the main cellular and molecular pathways linking the two diseases.
Collapse
|
4
|
Tiri A, Masetti R, Conti F, Tignanelli A, Turrini E, Bertolini P, Esposito S, Pession A. Inborn Errors of Immunity and Cancer. BIOLOGY 2021; 10:biology10040313. [PMID: 33918597 PMCID: PMC8069273 DOI: 10.3390/biology10040313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Inborn Errors of Immunity (IEI) are a heterogeneous group of disorders characterized by a defect in the function of at least one, and often more, components of the immune system. The overall risk for cancer in children with IEI ranges from 4 to 25%. Several factors, namely, age of the patient, viral infection status and IEI type can influence the development of different cancer types. Immunologists and oncologists should interact to monitor and promptly diagnose the potential development of cancer in known IEI patients, as well as an underlying IEI in newly diagnosed cancers with suggestive medical history or high rate of therapy-related toxicity. The creation of an international registry of IEI cases with detailed information on the occurrence of cancer is fundamental to optimizing the diagnostic process and to evaluating the outcomes of new therapeutic options, with the aim of improving prognosis and reducing comorbidities. Abstract Inborn Errors of Immunity (IEI) are a heterogeneous group of disorders characterized by a defect in the function of at least one, and often more, components of the immune system. The aim of this narrative review is to discuss the epidemiology, the pathogenesis and the correct management of tumours in patients with IEI. PubMed was used to search for all of the studies published over the last 20 years using the keywords: “inborn errors of immunity” or “primary immunodeficiency” and “cancer” or “tumour” or “malignancy”. Literature analysis showed that the overall risk for cancer in children with IEI ranges from 4 to 25%. Several factors, namely, age of the patient, viral infection status and IEI type can influence the development of different cancer types. The knowledge of a specific tumour risk in the presence of IEI highlights the importance of a synergistic effort by immunologists and oncologists in tracking down the potential development of cancer in known IEI patients, as well as an underlying IEI in patients with newly diagnosed cancers. In the current genomic era, the creation of an international registry of IEI cases integrated with malignancies occurrence information is fundamental to optimizing the diagnostic process and to evaluating the outcomes of new therapeutic options, with the hope to obtain a better prognosis for these patients.
Collapse
Affiliation(s)
- Alessandra Tiri
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Riccardo Masetti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| | - Anna Tignanelli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Elena Turrini
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Patrizia Bertolini
- Pediatric Oncohematology Unit, Pietro Barilla Children’s Hospital, 43126 Parma, Italy;
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
- Correspondence: ; Tel.: +39-0521-903-524
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| |
Collapse
|
5
|
Torres MB, Diggs LP, Wei JS, Khan J, Miettinen M, Fasaye GA, Gillespie A, Widemann BC, Kaplan RN, Davis JL, Hernandez JM, Rivero JD. Ataxia telangiectasia mutated germline pathogenic variant in adrenocortical carcinoma. Cancer Genet 2021; 256-257:21-25. [PMID: 33836455 DOI: 10.1016/j.cancergen.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is a rare malignancy arising from the adrenal cortex. ACC carries a dismal prognosis and surgery offers the only chance for a cure. Germline pathogenic variants among certain oncogenes have been implicated in ACC. Here, we report the first case of ACC in a patient with a pathogenic variant in the Ataxia Telangiectasia Mutated (ATM) gene. PATIENTS AND METHODS A 56-year-old Caucasian woman with biopsy proven ACC deemed unresectable and treated with etoposide, doxorubicin and cisplatin (EDP), and mitotane presented to our institution for evaluation. The tumor specimen was examined pathologically, and genetic analyses were performed on the tumor and germline using next-generation sequencing. RESULTS Pathologic evaluation revealed an 18.0 × 14.0 × 9.0 cm low-grade ACC with tumor free resection margins. Immunohistochemistry stained for inhibin, melan-A, and chromogranin. ClinOmics analysis revealed a germline pathogenic deletion mutation of one nucleotide in ATM is denoted as c.1215delT at the cDNA level and p.Asn405LysfsX15 (N405KfsX15) at the protein level. Genomic analysis of the tumor showed loss of heterozygosity (LOH) of chromosome 11 on which the ATM resides. CONCLUSION ACC is an aggressive malignancy for which surgical resection currently offers the only curative option. Here we report a heterozygous loss-of-function mutation in germline DNA and LOH of ATM in tumor in an ACC patient, a classic two-hit scenario in a well-known cancer suppresser gene, suggesting a pathogenic role of the ATM gene in certain ACC cases.
Collapse
Affiliation(s)
- Madeline B Torres
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States; Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, United States
| | - Laurence P Diggs
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States; Department of Surgery, Rutgers Robert Wood Johnson University School of Medicine, New Brunswick, NJ 08901, United States
| | - Jun S Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, United States
| | - Grace-Ann Fasaye
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Andy Gillespie
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jeremy L Davis
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Jonathan M Hernandez
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Jaydira Del Rivero
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, United States.
| |
Collapse
|
6
|
A Novel ATM Pathogenic Variant in an Italian Woman with Gallbladder Cancer. Genes (Basel) 2021; 12:genes12020313. [PMID: 33671809 PMCID: PMC7926430 DOI: 10.3390/genes12020313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Gallbladder carcinoma (GBC) is one of the most aggressive malignancies with poor prognosis and a high fatality rate. The disease presents in advanced stages where the treatment is ineffective. Regarding GBC pathogenesis, as with other neoplasia, this tumor is a multifactorial disorder involving different causative factors such as environmental, microbial, metabolic, and molecular. Genetic alterations can be germline or somatic that involving proto-oncogenes, tumor suppressor genes, cell cycle genes, and growth factors. The ataxia telangiectasia mutated (ATM) gene, coding a serine/threonine kinase involved in the early stages of the homologous recombination (HR) mechanism, is one of the most altered genes in GBC. Here, we present the molecular characterization of a novel germline ATM large genomic rearrangement (LGR) identified by next-generation sequencing (NGS) analysis in an Italian woman diagnosed with metastatic GBC at the age of 55. The results underline the importance of expanding the NGS approach in gallbladder cancer in order to propose new molecular markers of predisposition and prognosis exploitable by novel targeted therapies that may improve the response of patients with ATM-deficient cancers.
Collapse
|
7
|
Bakshi D, Nagpal A, Sharma V, Sharma I, Shah R, Sharma B, Bhat A, Verma S, Bhat GR, Abrol D, Sharma R, Vaishnavi S, Kumar R. MassARRAY-based single nucleotide polymorphism analysis in breast cancer of north Indian population. BMC Cancer 2020; 20:861. [PMID: 32894086 PMCID: PMC7487711 DOI: 10.1186/s12885-020-07361-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
Background Breast Cancer (BC) is associated with inherited gene mutations. High throughput genotyping of BC samples has led to the identification and characterization of biomarkers for the diagnosis of BC. The most common genetic variants studied are SNPs (Single Nucleotide Polymorphisms) that determine susceptibility to an array of diseases thus serving as a potential tool for identifying the underlying causes of breast carcinogenesis. Methods SNP genotyping employing the Agena MassARRAY offers a robust, sensitive, cost-effective method to assess multiple SNPs and samples simultaneously. In this present study, we analyzed 15 SNPs of 14 genes in 550 samples (150 cases and 400 controls). We identified four SNPs of genes TCF21, SLC19A1, DCC, and ERCC1 showing significant association with BC in the population under study. Results The SNPs were rs12190287 (TCF21) having OR 1.713 (1.08–2.716 at 95% CI) p-value 0.022 (dominant), rs1051266 (SLC19A1) having OR 3.461 (2.136–5.609 at 95% CI) p-value 0.000000466 (dominant), rs2229080 (DCC) having OR 0.6867 (0.5123–0.9205 at 95% CI) p-value 0.0116 (allelic) and rs2298881 (ERCC1) having OR 0.669 (0.46–0.973 at 95% CI), p-value 0.035 (additive) respectively. The in-silico analysis was further used to fortify the above findings. Conclusion It is further anticipated that the variants should be evaluated in other population groups that may aid in understanding the genetic complexity and bridge the missing heritability.
Collapse
Affiliation(s)
- Divya Bakshi
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India.
| | - Ashna Nagpal
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Varun Sharma
- Ancient DNA Laboratory, Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh, India
| | - Indu Sharma
- Ancient DNA Laboratory, Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh, India
| | - Ruchi Shah
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Bhanu Sharma
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Amrita Bhat
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Sonali Verma
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Gh Rasool Bhat
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Deepak Abrol
- Department of Radiotherapy, GMC, Kathua, J&K, India
| | - Rahul Sharma
- Department of Radiotherapy, GMC, Jammu, J&K, India
| | - Samantha Vaishnavi
- Department of Plant Sciences, Central University of Jammu, Jammu, J&K, India
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India.
| |
Collapse
|
8
|
Mehmood A, Kayani MA, Ahmed MW, Nisar A, Mahjabeen I. Association between single nucleotide polymorphisms of DNA damage response pathway genes and increased risk in breast cancer. Future Oncol 2020; 16:1977-1995. [PMID: 32597209 DOI: 10.2217/fon-2020-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: We aimed to evaluate the role of selected single nucleotide polymorphisms of DNA damage response pathway genes in breast cancer (BC). Materials & methods: In present study, 500 BC patients and 500 controls was used to estimate the frequency of single nucleotide polymorphisms of DNA damage response pathway genes. Tetra-amplification refractory mutation system-PCR technique was used for screening of the six selected polymorphisms. Results: Logistic regression analysis showed that heterozygous mutant genotype of rs1800057 (p < 0.0001) and homozygous mutant genotype of rs1801516 (p < 0.0001) was associated with significant increased risk of BC. In the ATR gene, heterozygous mutant genotype of rs2227931 (p < 0.0001) was associated with significant increased risk of BC. However, significant decreased risk of BC was found associated with heterozygous mutant genotype of rs2227928 (p < 0.0002) and homozygous mutant genotype of rs2229032 (p < 0.0001) in patients compared with controls. Conclusion: The present results showed that alteration in DNA damage response pathway gene (ATM & ATR) results in increased BC risk.
Collapse
Affiliation(s)
- Azhar Mehmood
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | | | | | - Asif Nisar
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| |
Collapse
|
9
|
Abstract
Immune dysregulation and predisposition to malignancies are critical comorbidities in children affected with ataxia telangiectasia. In addition, these children exhibit increased toxicity to conventional cancer therapy and dose reductions have been proposed to prevent life threatening adverse effects. These modifications to the treatment regimen may result in suboptimal outcomes for these patients. Our report of 3 children with ataxia telangiectasia and cancer highlight the immense challenges in the management of these children, underlining the need for the development of novel, biological agents with reduced acute and long-term side effects in the treatment of cancers in these children.
Collapse
|
10
|
Hamdi Y, Boujemaa M, Ben Rekaya M, Ben Hamda C, Mighri N, El Benna H, Mejri N, Labidi S, Daoud N, Naouali C, Messaoud O, Chargui M, Ghedira K, Boubaker MS, Mrad R, Boussen H, Abdelhak S. Family specific genetic predisposition to breast cancer: results from Tunisian whole exome sequenced breast cancer cases. J Transl Med 2018; 16:158. [PMID: 29879995 PMCID: PMC5992876 DOI: 10.1186/s12967-018-1504-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A family history of breast cancer has long been thought to indicate the presence of inherited genetic events that predispose to this disease. In North Africa, many specific epidemio-genetic characteristics have been observed in breast cancer families when compared to Western populations. Despite these specificities, the majority of breast cancer genetics studies performed in North Africa remain restricted to the investigation of the BRCA1 and BRCA2 genes. Thus, comprehensive data at a whole exome or whole genome level from local patients are lacking. METHODS A whole exome sequencing (WES) of seven breast cancer Tunisian families have been performed using a family-based approach. We focused our analysis on BC-TN-F001 family that included two affected members that have been sequenced using WES. Relevant variants identified in BC-TN-F001 have been confirmed using Sanger sequencing. Then, we conducted an integrative analysis by combining our results with those from other WES studies in order to figure out the genetic transmission model of the newly identified genes. Biological network construction and protein-protein interactions analyses have been performed to decipher the molecular mechanisms likely accounting for the role of these genes in breast cancer risk. RESULTS Sequencing, filtering strategies, and validation analysis have been achieved. For BC-TN-F001, no deleterious mutations have been identified on known breast cancer genes. However, 373 heterozygous, exonic and rare variants have been identified on other candidate genes. After applying several filters, 12 relevant high-risk variants have been selected. Our results showed that these variants seem to be inherited in a family specific model. This hypothesis has been confirmed following a thorough analysis of the reported WES studies. Enriched biological process and protein-protein interaction networks resulted in the identification of four novel breast cancer candidate genes namely MMS19, DNAH3, POLK and KATB6. CONCLUSIONS In this first WES application on Tunisian breast cancer patients, we highlighted the impact of next generation sequencing technologies in the identification of novel breast cancer candidate genes which may bring new insights into the biological mechanisms of breast carcinogenesis. Our findings showed that the breast cancer predisposition in non-BRCA families may be ethnic and/or family specific.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Mariem Ben Rekaya
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Cherif Ben Hamda
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Tunis, Tunisia
| | - Najah Mighri
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Houda El Benna
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Nesrine Mejri
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Soumaya Labidi
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Nouha Daoud
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Chokri Naouali
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Mariem Chargui
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Ridha Mrad
- Department of Human Genetics, Charles Nicolle Hospital, Tunis, Tunisia
| | - Hamouda Boussen
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - the PEC Consortium
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| |
Collapse
|
11
|
Yue LL, Wang FC, Zhang ML, Liu D, Chen P, Mei QB, Li PH, Pan HM, Zheng LH. Association of ATM and BMI-1 genetic variation with breast cancer risk in Han Chinese. J Cell Mol Med 2018; 22:3671-3678. [PMID: 29691986 PMCID: PMC6010860 DOI: 10.1111/jcmm.13650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
We tested the hypothesis that genetic variation in ATM and BMI-1 genes can alter the risk of breast cancer through genotyping 6 variants among 524 breast cancer cases and 518 cancer-free controls of Han nationality. This was an observational, hospital-based, case-control association study. Analyses of single variant, linkage, haplotype, interaction and nomogram were performed. Risk was expressed as odds ratio (OR) and 95% confidence interval (CI). All studied variants were in the Hardy-Weinberg equilibrium and were not linked. The mutant allele frequencies of rs1890637, rs3092856 and rs1801516 in ATM gene were significantly higher in cases than in controls (P = .005, <.001 and .001, respectively). Two variants, rs1042059 and rs201024480, in BMI-1 gene were low penetrant, with no detectable significance. After adjustment, rs189037 and rs1801516 were significantly associated with breast cancer under the additive model (OR: 1.37 and 1.52, 95% CI: 1.10-1.71 and 1.14-2.04, P: .005 and .005, respectively). In haplotype analysis, haplotypes A-C-G-G (in order of rs189037, rs3092856, rs1801516 and rs373759) and A-C-A-A in ATM gene were significantly associated with 1.98-fold and 6.04-fold increased risk of breast cancer (95% CI: 1.36-2.90 and 1.65-22.08, respectively). Nomogram analysis estimated that the cumulative proportion of 3 significant variants in ATM gene was about 12.5%. Our findings collectively indicated that ATM gene was a candidate gene in susceptibility to breast cancer in Han Chinese.
Collapse
Affiliation(s)
- Li-Ling Yue
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Fu-Chao Wang
- Clinical Laboratory, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Ming-Long Zhang
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Dan Liu
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Ping Chen
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Qing-Bu Mei
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Peng-Hui Li
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Hong-Ming Pan
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Li-Hong Zheng
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
12
|
Yan Z, Tong X, Ma Y, Liu S, Yang L, Yang X, Yang X, Bai M, Fan H. Association between ATM gene polymorphisms, lung cancer susceptibility and radiation-induced pneumonitis: a meta-analysis. BMC Pulm Med 2017; 17:205. [PMID: 29246212 PMCID: PMC5731205 DOI: 10.1186/s12890-017-0555-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/07/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Previous studies have suggested that DNA double-strand break (DSB) repair is an important protective pathway after damage. The ataxia telangiectasia mutated (ATM) gene plays an important role in the DNA DSB repair pathway. DNA damage is a major cytotoxic effect that can be caused by radiation, and the ability to repair DNA after damage varies among different tissues. Impaired DNA repair pathways are associated with high sensitivity to radiation exposure. Hence, ATM gene polymorphisms are thought to influence the risk of cancer and radiation-induced pneumonitis (RP) risk in cancer patients treated with radiotherapy. However, the results of previous studies are inconsistent. We therefore conducted this comprehensive meta-analysis. METHODS A systematic literature search was performed in the PubMed, Embase, China National Knowledge Internet (CNKI) and Wanfang databases to identify studies that investigated the association between the ATM gene polymorphisms and both lung cancer and RP radiotherapy-treated lung cancer (the last search was conducted on Dec.10, 2015). The odds ratio (OR) and 95% confidence interval (CI) were used to investigate the strength of these relationships. Funnel plots and Begg's and Egger's tests were conducted to assess the publication bias. All analyses were performed in STATA 13.0 software. RESULTS Ten eligible case-control studies (4731 cases and 5142 controls) on lung cancer susceptibility and four (192 cases and 772 controls) on RP risk were included. The results of the overall and subgroup analyses indicated that in the ATM gene, the rs189037 (-111G > A, -4519G > A), rs664677 (44831C > T, 49238C > T) and rs664143 (131,717 T > G) polymorphisms were significantly associated with lung cancer susceptibility (OR = 1.21, 95% CI = 1.04-1.39, P = 0.01; OR = 1.26, 95% CI = 1.06-1.49, P = 0.01; OR = 1.43, 95% CI = 1.15-1.78, P < 0.01). Additionally, the rs189037 variant was significantly associated with RP risk (OR = 1.74, 95% CI = 1.02-2.97, P = 0.04). No publication bias was found in the funnel plots, Begg's tests or Egger's tests. CONCLUSIONS The results indicate that the ATM rs189037, rs664677 and rs664143 gene polymorphisms are risk factors for lung cancer, while the ATM rs189037 variant was significantly associated with RP risk.
Collapse
Affiliation(s)
- Zhipeng Yan
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
| | - Xiang Tong
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
| | - Yao Ma
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.,Department of Internal Medicine, No.4 West China Teaching Hospital, Sichuan University, Renming South Road 3rd Section 18, Chengdu, 610041, China
| | - Sitong Liu
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
| | - Lingjing Yang
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.,Department of Respiration, East Branch, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, No. 585 Honghe North Road, Chengdu, 610110, China
| | - Xin Yang
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
| | - Xue Yang
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
| | - Min Bai
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
| | - Hong Fan
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.
| |
Collapse
|
13
|
A meta-analysis of the relationship between ataxia-telangiectasia mutated gene polymorphisms and lung cancer susceptibility. Pathol Res Pract 2017; 213:1152-1159. [DOI: 10.1016/j.prp.2017.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/31/2017] [Accepted: 07/02/2017] [Indexed: 12/15/2022]
|
14
|
Myneni AA, Chang SC, Niu R, Liu L, Zhao B, Shi J, Han X, Li J, Su J, Yu S, Zhang ZF, Mu L. Ataxia Telangiectasia-Mutated ( ATM)Polymorphisms and Risk of Lung Cancer in a Chinese Population. Front Public Health 2017; 5:102. [PMID: 28642860 PMCID: PMC5462911 DOI: 10.3389/fpubh.2017.00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/18/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The ataxia telangiectasia-mutated (ATM) gene has a key role in DNA repair including activation and stabilization of p53, which implicates the importance of ATM polymorphisms in the development of cancer. This study aims to investigate the association of two ATM single-nucleotide polymorphisms (SNPs) with lung cancer, as well as their potential interaction with p53 gene and other known risk factors of lung cancer. METHODS A population-based case-control study was conducted in Taiyuan city, China with 399 cases and 466 controls matched on the distribution of age and sex of cases. The two ATM gene SNPs, ATMrs227060 and ATMrs228589 as well as p53 gene SNP, p53rs1042522 were genotyped using Sequenom platform. Unconditional logistic regression models were used to estimate crude and adjusted odds ratios (aOR) and 95% confidence intervals (CIs). Adjusted models controlled for age, sex, and smoking status. RESULTS The study showed that TT genotype of ATMrs227060 (aOR = 1.58, 95% CI: 1.06-2.35) and AA genotype of ATMrs228589 were significantly associated with lung cancer (aOR = 1.50, 95% CI: 1.08-2.08) in a recessive model. Additionally, carrying variant genotypes of ATMrs227060 (TT), ATMrs228589 (AA), and p53rs1042522 (CC) concomitantly was associated with much higher risk (aOR = 3.68, 95% CI: 1.43-9.45) of lung cancer than carrying variant genotypes of any one of the above three SNPs. We also found multiplicative and additive interaction between tea drinking and ATMrs227060 in association with lung cancer. CONCLUSION This study indicates that ATM gene variants might be associated with development of lung cancer in Chinese population. These results need to be validated in larger and different population samples.
Collapse
Affiliation(s)
- Ajay A. Myneni
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York (SUNY) at Buffalo, Buffalo, NY, United States
| | - Shen-Chih Chang
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Rungui Niu
- Shanxi Tumor Hospital, Taiyuan, Shanxi, China
| | - Li Liu
- Taiyuan City Center for Disease Control and Prevention (CDC), Taiyuan, Shanxi, China
| | - Baoxing Zhao
- Taiyuan City Center for Disease Control and Prevention (CDC), Taiyuan, Shanxi, China
| | - Jianping Shi
- Taiyuan City Center for Disease Control and Prevention (CDC), Taiyuan, Shanxi, China
| | - Xiaoyou Han
- Shanxi Tumor Hospital, Taiyuan, Shanxi, China
| | - Jiawei Li
- School of Public Health, Fudan University, Shanghai, China
| | - Jia Su
- School of Public Health, Fudan University, Shanghai, China
| | - Shunzhang Yu
- School of Public Health, Fudan University, Shanghai, China
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York (SUNY) at Buffalo, Buffalo, NY, United States
| |
Collapse
|
15
|
Prodosmo A, Buffone A, Mattioni M, Barnabei A, Persichetti A, De Leo A, Appetecchia M, Nicolussi A, Coppa A, Sciacchitano S, Giordano C, Pinnarò P, Sanguineti G, Strigari L, Alessandrini G, Facciolo F, Cosimelli M, Grazi GL, Corrado G, Vizza E, Giannini G, Soddu S. Detection of ATM germline variants by the p53 mitotic centrosomal localization test in BRCA1/2-negative patients with early-onset breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:135. [PMID: 27599564 PMCID: PMC5012020 DOI: 10.1186/s13046-016-0410-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Variant ATM heterozygotes have an increased risk of developing cancer, cardiovascular diseases, and diabetes. Costs and time of sequencing and ATM variant complexity make large-scale, general population screenings not cost-effective yet. Recently, we developed a straightforward, rapid, and inexpensive test based on p53 mitotic centrosomal localization (p53-MCL) in peripheral blood mononuclear cells (PBMCs) that diagnoses mutant ATM zygosity and recognizes tumor-associated ATM polymorphisms. METHODS Fresh PBMCs from 496 cancer patients were analyzed by p53-MCL: 90 cases with familial BRCA1/2-positive and -negative breast and/or ovarian cancer, 337 with sporadic cancers (ovarian, lung, colon, and post-menopausal breast cancers), and 69 with breast/thyroid cancer. Variants were confirmed by ATM sequencing. RESULTS A total of seven individuals with ATM variants were identified, 5/65 (7.7 %) in breast cancer cases of familial breast and/or ovarian cancer and 2/69 (2.9 %) in breast/thyroid cancer. No variant ATM carriers were found among the other cancer cases. Excluding a single case in which both BRCA1 and ATM were mutated, no p53-MCL alterations were observed in BRCA1/2-positive cases. CONCLUSIONS These data validate p53-MCL as reliable and specific test for germline ATM variants, confirm ATM as breast cancer susceptibility gene, and highlight a possible association with breast/thyroid cancers.
Collapse
Affiliation(s)
- Andrea Prodosmo
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Amelia Buffone
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Manlio Mattioni
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Agnese Barnabei
- Endocrinology Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Agnese Persichetti
- Endocrinology Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy.,Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Aurora De Leo
- Endocrinology Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Marialuisa Appetecchia
- Endocrinology Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Arianna Nicolussi
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena, 32400161, Rome, Italy
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena, 32400161, Rome, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, University La Sapienza, Laboratorio di Ricerca Biomedica, Fondazione Università Niccolò Cusano per la Ricerca Medico Scientifica, Rome, Italy
| | - Carolina Giordano
- Radiotherapy Unit, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Paola Pinnarò
- Radiotherapy Unit, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Giuseppe Sanguineti
- Radiotherapy Unit, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Lidia Strigari
- Medical Physics Unit, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Gabriele Alessandrini
- Toracic Surgery Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Francesco Facciolo
- Toracic Surgery Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Maurizio Cosimelli
- Hepato-pancreato-biliary Surgery Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Gian Luca Grazi
- Hepato-pancreato-biliary Surgery Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Giacomo Corrado
- Gynecological Oncology Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Enrico Vizza
- Gynecological Oncology Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Giuseppe Giannini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Molecular Medicine, University La Sapienza, Rome, Italy. .,Department of Molecular Medicine, University La Sapienza, Rome, Italy.
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
16
|
Choi M, Kipps T, Kurzrock R. ATM Mutations in Cancer: Therapeutic Implications. Mol Cancer Ther 2016; 15:1781-91. [PMID: 27413114 DOI: 10.1158/1535-7163.mct-15-0945] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/25/2016] [Indexed: 01/25/2023]
Abstract
Activation of checkpoint arrest and homologous DNA repair are necessary for maintenance of genomic integrity during DNA replication. Germ-line mutations of the ataxia telangiectasia mutated (ATM) gene result in the well-characterized ataxia telangiectasia syndrome, which manifests with an increased cancer predisposition, including a 20% to 30% lifetime risk of lymphoid, gastric, breast, central nervous system, skin, and other cancers. Somatic ATM mutations or deletions are commonly found in lymphoid malignancies, as well as a variety of solid tumors. Such mutations may result in chemotherapy resistance and adverse prognosis, but may also be exploited by existing or emerging targeted therapies that produce synthetic lethal states. Mol Cancer Ther; 15(8); 1781-91. ©2016 AACR.
Collapse
Affiliation(s)
- Michael Choi
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California.
| | - Thomas Kipps
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California
| |
Collapse
|
17
|
Huang S, Zhang Y, Zeng T. Effect of ATM-111 (G>A) Polymorphism on Cancer Risk: A Meta-Analysis. Genet Test Mol Biomarkers 2016; 20:359-66. [PMID: 27227554 DOI: 10.1089/gtmb.2015.0320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE To assess the relationship between the ataxia telangiectasia mutated (ATM) gene-111 (G>A) polymorphism and cancer risk. METHODS The PubMed, EMBASE, Web of Science, and China National Knowledge Infrastructure databases were searched comprehensively. A total of 16 case-control studies with 12,273 cases and 13,046 controls were included in this meta-analysis; 12 of them were from the Chinese population. Five studies assessed smoking effects, including 3038 smokers and 1003 nonsmokers. Odds ratio (OR) was determined by using a genetic model-free approach. Heterogeneity was quantified by I(2) statistics. Publication bias was also evaluated. RESULTS The recessive model (AA vs. AG + GG) was suggested as the most appropriate genetic model. After elimination of heterogeneity, it was found that the ATM-111 (G>A) AA genotype is significantly associated with increased susceptibility to overall cancer risk in a fixed effects model (OR = 1.09; 95% CI = 1.03-1.15; p < 0.01; I(2) < 0.01). In the subgroup analysis, the result of pooled analyses among the Chinese population revealed similar associations (OR = 1.12; 95% CI = 1.04-1.22; p < 0.01; I(2) < 0.01). As for specific cancer analysis, an increase was correlated with lung cancer risk (OR = 1.12; 95% CI = 1.01-1.24; p = 0.03) and breast cancer risk (OR = 1.08; 95% CI = 1.00-1.16; p = 0.05). In addition, a stronger association was found among nonsmokers (OR = 1.31; 95% CI = 1.13-1.52; p < 0.01). CONCLUSION This meta-analysis suggests that AA genotype of the ATM-111 gene (G>A) may be a risk factor for breast cancer and lung cancer, especially among nonsmokers, within the Chinese population.
Collapse
Affiliation(s)
- Senlin Huang
- 1 The First Clinical Medicine College, Southern Medical University , Guangzhou, People's Republic of China
| | - Yuzhao Zhang
- 2 Laboratory Medicine Center, Nanfang Hospital, Southern Medical University , Guangzhou, People's Republic of China
| | - Tao Zeng
- 2 Laboratory Medicine Center, Nanfang Hospital, Southern Medical University , Guangzhou, People's Republic of China .,3 School of Laboratory Medicine, Guangdong Medical University , Dongguan, People's Republic of China
| |
Collapse
|
18
|
The risk for developing cancer in Israeli ATM, BLM, and FANCC heterozygous mutation carriers. Cancer Genet 2015; 209:70-4. [PMID: 26778106 DOI: 10.1016/j.cancergen.2015.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/15/2022]
Abstract
Cancer risks in heterozygous mutation carriers of the ATM, BLM, and FANCC genes are controversial. To shed light on this issue, cancer rates were evaluated by cross referencing asymptomatic Israeli heterozygous mutation carriers in the ATM, BLM, and FANCC genes with cancer diagnoses registered at the Israeli National Cancer Registry (INCR). Comparison of observed to expected Standardized Incidence Rates (SIR) was performed. Overall, 474 individuals participated in the study: 378 females; 25 Arab and 31 Jewish ATM carriers, 152 BLM carriers, and 170 FANCC carriers (all Ashkenazim). Age range at genotyping was 19-53 years (mean + SD 30.6 + 5 years). In addition, 96 males were included; 5, 34, and 57 ATM, BLM, and FANCC mutation carriers, respectively. Over 5-16 years from genotyping (4721 person/years), 15 new cancers were diagnosed in mutation carriers: 5 breast, 4 cervical, 3 melanomas, and one each bone sarcoma, pancreatic, and colorectal cancer. No single cancer diagnosis was more prevalent then expected in all groups combined or per gene analyzed. Specifically breast cancer SIR was 0.02-0.77. We conclude that Israeli ATM, BLM, and FANCC heterozygous mutation carriers are not at an increased risk for developing cancer.
Collapse
|
19
|
Yablonski-Peretz T, Paluch-Shimon S, Gutman LS, Kaplan Y, Dvir A, Barnes-Kedar I, Kadouri L, Semenisty V, Efrat N, Neiman V, Glasser Y, Michaelson-Cohen R, Katz L, Kaufman B, Golan T, Reish O, Hubert A, Safra T, Yaron Y, Friedman E. Screening for germline mutations in breast/ovarian cancer susceptibility genes in high-risk families in Israel. Breast Cancer Res Treat 2015; 155:133-8. [DOI: 10.1007/s10549-015-3662-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 10/22/2022]
|
20
|
Song CM, Kwon TK, Park BL, Ji YB, Tae K. Single nucleotide polymorphisms of ataxia telangiectasia mutated and the risk of papillary thyroid carcinoma. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:70-76. [PMID: 25196645 DOI: 10.1002/em.21898] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/20/2014] [Indexed: 06/03/2023]
Abstract
Genetic factors associated with susceptibility to papillary thyroid carcinoma (PTC) are not well known. We evaluated the association between single nucleotide polymorphisms (SNPs) of ataxia telangiectasia mutated (ATM) and the risk of PTC. A total of 437 histologically confirmed PTC cases and 184 cancer-free controls without thyroid nodules were recruited. Genotypes with respect to five ATM SNPs (rs189037, rs664677, rs373759, rs664143, and rs4585) were determined by the TaqMan assay, and odds ratios and 95% confidence intervals were obtained by logistic regression analysis. Linkage disequilibria and haplotypes were examined from the genotype data. When evaluated separately the genotype distributions of the five ATM SNPs were similar in the PTC cases and controls. Three ATM SNPs (rs373759, rs664143, and rs4585) were found to be in strong linkage disequilibrium (D' = 1.00, P < 0.001). When the three haplotypes (C-A-G), (T-G-T), and (C-G-T) of these three ATM SNP sites were analyzed, ATM haplotype (C-G-T) +/- was associated with a lower risk of PTC than ATM haplotype (C-G-T) -/- (P = 0.03) after adjusting for age and gender. Our results suggest that genetic polymorphisms of ATM may play an important role in the development of thyroid cancer in the Korean population.
Collapse
Affiliation(s)
- Chang Myeon Song
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Korea
| | | | | | | | | |
Collapse
|
21
|
Effect of single nucleotide polymorphism Rs189037 in ATM gene on risk of lung cancer in Chinese: a case-control study. PLoS One 2014; 9:e115845. [PMID: 25541996 PMCID: PMC4277362 DOI: 10.1371/journal.pone.0115845] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/29/2014] [Indexed: 01/13/2023] Open
Abstract
Background Accumulated evidence has indicated that ataxia-telangiectasia mutated (ATM) gene polymorphisms are closely related to lung cancer. We aimed to explore the prognostic value of rs189037 (G>A), one of ATM single nucleotide polymorphisms (SNPs), and detect whether it involves in the risk of lung cancer in Chinese Han people. Methods In this hospital-based matched case-control study, 852 lung cancer patients and 852 healthy controls have been put into comparison to analyze the association between rs189037 and lung cancer risk in Chinese. The single nucleotide polymorphisms were determined by TaqMan real-time PCR and we used SPSS software to perform the statistical analyses. Results Individuals carrying variant AA genotype of rs189037 had higher lung cancer risk (adjusted OR: 1.56) than those carrying GG genotype. After analyzing data respectively from different groups divided by genders and smoking status, we observed that the risk effect of AA genotype on the lung cancer was significant in females, non-smokers and female non-smokers, as well as the risk effect of GA genotype in male smokers. Compared with non-smokers carrying GG genotype, smokers carrying at least one A allele had higher risk of developing lung cancer than those with GG genotype (adjusted OR: 3.52 vs. adjusted OR: 2.53). Conclusions This study suggested that rs189037 (G>A) polymorphism is associated with lung cancer risk in Chinese Han population. AA genotype and A allele may be dangerous lung cancer signals in Chinese and make contribution to diagnostic and treatment value.
Collapse
|
22
|
Swan M, Saunders-Pullman R. The association between ß-glucocerebrosidase mutations and parkinsonism. Curr Neurol Neurosci Rep 2014; 13:368. [PMID: 23812893 DOI: 10.1007/s11910-013-0368-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in the ß-glucocerebrosidase gene (GBA), which encodes the lysosomal enzyme ß-glucocerebrosidase, have traditionally been implicated in Gaucher disease, an autosomal recessive lysosomal storage disorder. Yet the past two decades have yielded an explosion of epidemiological and basic-science evidence linking mutations in GBA with the development of Parkinson disease (PD) as well. Although the specific contribution of mutant GBA to the pathogenesis of parkinsonism remains unknown, evidence suggests that both loss of function and toxic gain of function by abnormal ß-glucocerebrosidase may be important, and implicates a close relationship between ß-glucocerebrosidase and α-synuclein. Furthermore, multiple lines of evidence suggest that although GBA-associated PD closely mimics idiopathic PD (IPD), it may present at a younger age, and is more frequently complicated by cognitive dysfunction. Understanding the clinical association between GBA and PD, and the relationship between ß-glucocerebrosidase and α-synuclein, may enhance understanding of the pathogenesis of IPD, improve prognostication and treatment of GBA carriers with parkinsonism, and furthermore inform therapies for IPD not due to GBA mutations.
Collapse
Affiliation(s)
- Matthew Swan
- Department of Neurology, Beth Israel Medical Center, 10 Union Square East, Suite 5K, New York, NY 10003, USA.
| | | |
Collapse
|
23
|
Sharma NK, Lebedeva M, Thomas T, Kovalenko OA, Stumpf JD, Shadel GS, Santos JH. Intrinsic mitochondrial DNA repair defects in Ataxia Telangiectasia. DNA Repair (Amst) 2014; 13:22-31. [PMID: 24342190 PMCID: PMC6211587 DOI: 10.1016/j.dnarep.2013.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/12/2013] [Accepted: 11/26/2013] [Indexed: 12/28/2022]
Abstract
Ataxia Telangiectasia (A-T) is a progressive childhood disorder characterized most notably by cerebellar degeneration and predisposition to cancer. A-T is caused by mutations in the kinase ATM, a master regulator of the DNA double-strand break response. In addition to DNA-damage signaling defects, A-T cells display mitochondrial dysfunction that is thought to contribute to A-T pathogenesis. However, the molecular mechanism leading to mitochondrial dysfunction in A-T remains unclear. Here, we show that lack of ATM leads to reduced mitochondrial DNA (mtDNA) integrity and mitochondrial dysfunction, which are associated to defective mtDNA repair. While protein levels of mtDNA repair proteins are essentially normal, in the absence of ATM levels specifically of DNA ligase III (Lig3), the only DNA ligase working in mitochondria is reduced. The reduction of Lig3 is observed in different A-T patient cells, in brain and pre-B cells derived from ATM knockout mice as well as upon transient or stable knockdown of ATM. Furthermore, pharmacological inhibition of Lig3 in wild type cells phenocopies the mtDNA repair defects observed in A-T patient cells. As targeted deletion of LIG3 in the central nervous system causes debilitating ataxia in mice, reduced Lig3 protein levels and the consequent mtDNA repair defect may contribute to A-T neurodegeneration. A-T is thus the first disease characterized by diminished Lig3.
Collapse
Affiliation(s)
- Nilesh K Sharma
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States
| | - Maria Lebedeva
- Department of Genetics, Yale School of Medicine, 310 Cedar Street, BML 371, New Haven, CT 06520, United States
| | - Terace Thomas
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States
| | - Olga A Kovalenko
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States
| | - Jeffrey D Stumpf
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Building 101, Durham, NC 27709, United States
| | - Gerald S Shadel
- Department of Genetics, Yale School of Medicine, 310 Cedar Street, BML 371, New Haven, CT 06520, United States; Department of Pathology, Yale School of Medicine, 310 Cedar Street, BML 371, New Haven, CT 06520, United States
| | - Janine H Santos
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States.
| |
Collapse
|