1
|
Özer Ö, Nemutlu E, Reçber T, Eylem CC, Aktas BY, Kır S, Kars A, Aksoy S. Liquid biopsy markers for early diagnosis of brain metastasis patients with breast cancer by metabolomics. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2022; 28:56-64. [PMID: 35422172 DOI: 10.1177/14690667221093871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Introduction: Breast cancer is the most common cancer in women and is the second most common cause of cancer related mortality. Metabolomics, the identification of small metabolites, is a technique for determining the amount of these metabolites. Objectives: This study aimed to identify markers for the early diagnosis of brain metastasis by metabolomic methods in breast cancer patients. Methods: A total of 88 breast cancer patients with distant metastases were included in the study. The patients were divided into two groups according to their metastasis status: patients with brain metastases and distant metastases without any brain metastases. Liquid chromatography quadrupole time-of-flight mass spectrometry (LC-qTOF-MS) and gas chromatography-mass spectrometry (GC-MS) analysis methods were used for metabolomic analyses. Results: 33 of them, 88 patients had brain metastasis, and 55 patients had distant metastases without brain metastasis. A total of 72 and 35 metabolites were identified by the GC-MS and LC-qTOF-MS analysis, respectively. 47 of them were found to be significantly different in patients with brain metastasis. The pathway analysis, performed with significantly altered metabolites, showed that aminoacyl tRNA biosynthesis, valine, leucine and isoleucine biosynthesis, alanine, aspartate, and glutamate metabolism, arginine biosynthesis, glycine, serine, and threonine metabolism pathways significantly altered in patients with brain metastasis. Predictive accuracies for have identifying the brain metastasis were performed with receiver operating characteristic (ROC) analysis, and the model with fifteen metabolites has 96.9% accuracy. Conclusions: While these results should be supported by prospective studies, these data are promising for early detection of brain metastasis with markers in liquid biopsy samples.
Collapse
Affiliation(s)
- Özge Özer
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, 37515Hacettepe University, Ankara, Turkey
| | - Tuba Reçber
- Faculty of Pharmacy, Department of Analytical Chemistry, 37515Hacettepe University, Ankara, Turkey
| | - Cemil Can Eylem
- Faculty of Pharmacy, Department of Analytical Chemistry, 37515Hacettepe University, Ankara, Turkey
| | - Burak Yasin Aktas
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Sedef Kır
- Faculty of Pharmacy, Department of Analytical Chemistry, 37515Hacettepe University, Ankara, Turkey
| | - Ayse Kars
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
2
|
Aftabi Y, Soleymani J, Jouyban A. Efficacy of Analytical Technologies in Metabolomics Studies of the Gastrointestinal Cancers. Crit Rev Anal Chem 2021; 52:1593-1605. [PMID: 33757389 DOI: 10.1080/10408347.2021.1901646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
According to the reports of the World Health Organization and the International Agency for Research on Cancer, cancer is the second leading cause of human death worldwide. However, early-stage detection of cancers can efficiently enhance the chance of therapy and saving lives. Metabolomics strategies apply a variety of approaches to discover new potential diagnoses, prognoses, and/or therapeutic biomarkers of various diseases. Metabolomics aims to identify and measure different low-molecular-weight biomolecules in physiological environments. In these studies, special metabolites are extracted from biological samples and identified using analytical techniques. Afterward, using data processing programs discovering significantly associated biomarkers is pursued. In the present review, we aimed to discuss recently reported analytical approaches on the metabolomics studies of gastrointestinal cancers including gastric, colorectal, and esophageal cancers. The gas- and liquid-chromatography with different detectors have been shown that are the main analytical techniques and for metabolites quantification, nuclear magnetic resonance has been utilized as a master method.
Collapse
Affiliation(s)
- Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Yan X, Zhao X, Zhou Z, McKay A, Brunet A, Zare RN. Cell-Type-Specific Metabolic Profiling Achieved by Combining Desorption Electrospray Ionization Mass Spectrometry Imaging and Immunofluorescence Staining. Anal Chem 2020; 92:13281-13289. [PMID: 32880432 PMCID: PMC8782277 DOI: 10.1021/acs.analchem.0c02519] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell-type-specific metabolic profiling in tissue with heterogeneous composition has been of great interest across all mass spectrometry imaging (MSI) technologies. We report here a powerful new chemical imaging capability in desorption electrospray ionization (DESI) MSI, which enables cell-type-specific and in situ metabolic profiling in complex tissue samples. We accomplish this by combining DESI-MSI with immunofluorescence staining using specific cell-type markers. We take advantage of the variable frequency of each distinct cell type in the lateral septal nucleus (LSN) region of mouse forebrain. This allows computational deconvolution of the cell-type-specific metabolic profile in neurons and astrocytes by convex optimization-a machine learning method. Based on our approach, we observed 107 metabolites that show different distributions and intensities between astrocytes and neurons. We subsequently identified 23 metabolites using high-resolution mass spectrometry (MS) and tandem MS, which include small metabolites such as adenosine and N-acetylaspartate previously associated with astrocytes and neurons, respectively, as well as accumulation of several phospholipid species in neurons which have not been studied before. Overall, this method overcomes the relatively low spatial resolution of DESI-MSI and provides a new platform for in situ metabolic investigation at the cell-type level in complex tissue samples with heterogeneous cell-type composition.
Collapse
Affiliation(s)
- Xin Yan
- Department of Chemistry, Texas A&M University, College Station, TX 77843.; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Xiaoai Zhao
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Zhenpeng Zhou
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Andrew McKay
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Serdiuk V, Shogren KL, Kovalenko T, Rasulev B, Yaszemski M, Maran A, Voronov A. Detection of macromolecular inversion-induced structural changes in osteosarcoma cells by FTIR microspectroscopy. Anal Bioanal Chem 2020; 412:7253-7262. [PMID: 32879994 DOI: 10.1007/s00216-020-02858-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 11/29/2022]
Abstract
Fourier transform infrared (FTIR) microspectroscopy provides a biochemical fingerprint of the cells. In this study, chemical changes in 143B osteosarcoma cells were investigated using FTIR analysis of cancer cells after their treatment with polymeric invertible micellar assemblies (IMAs) and curcumin-loaded IMAs and compared with untreated osteosarcoma cells. A comprehensive principal component analysis (PCA) was applied to analyze the FTIR results and confirm noticeable changes in cell surface chemical structures in the fingerprint regions of 1480-900 cm-1. The performed clustering shows visible differences for all investigated groups of cancer cells. It is demonstrated that a combination of FTIR microspectroscopy with PCA can be an efficient approach in determining interactions of osteosarcoma cells and drug-loaded polymer micellar assemblies. Graphical abstract.
Collapse
Affiliation(s)
- Vitalii Serdiuk
- Department of Orthopedics, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Coatings & Polymeric Materials, North Dakota State University, Fargo, ND, 58105, USA.,Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, 79013, Ukraine
| | | | - Tetiana Kovalenko
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, 79013, Ukraine
| | - Bakhtiyor Rasulev
- Department of Coatings & Polymeric Materials, North Dakota State University, Fargo, ND, 58105, USA
| | | | | | - Andriy Voronov
- Department of Coatings & Polymeric Materials, North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
5
|
Chen L, Liu Y, Guo Q, Zheng Q, Zhang W. Metabolomic comparison between wild Ophiocordyceps sinensis and artificial cultured Cordyceps militaris. Biomed Chromatogr 2018; 32:e4279. [PMID: 29752731 DOI: 10.1002/bmc.4279] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 02/28/2024]
Abstract
A systematic study on the metabolome differences between wild Ophiocordyceps sinensis and artificial cultured Cordyceps militaris was conducted using liquid chromatography-mass spectrometry. Principal component analysis and orthogonal projection on latent structure-discriminant analysis results showed that C. militaris grown on solid rice medium (R-CM) and C. militaris grown on tussah pupa (T-CM) evidently separated and individually separated from wild O. sinensis, indicating metabolome difference among wild O. sinensis, R-CM and T-CM. The metabolome differences between R-CM and T-CM indicated that C. militaris could accommodate to culture medium by differential metabolic regulation. Hierarchical clustering analysis was further performed to cluster the differential metabolites and samples based on their metabolic similarity. The higher content of amino acids (pyroglutamic acid, glutamic acid, histidine, phenylalanine and arginine), unsaturated fatty acid (linolenic acid and linoleic acid), peptides, mannitol, adenosine and succinoadenosine in O. sinensis make it as an excellent choice as a traditional Chinese medicine for invigoration or nutritional supplementation. Similar compositions with O. sinensis and easy cultivation make artificially cultured C. militaris a possible alternative to O. sinensis.
Collapse
Affiliation(s)
- Lin Chen
- Zhengzhou Key Laboratory of Medicinal Resources Research, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, China
| | - Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, Shanxi, People's Republic of China
| | - Qingfeng Guo
- Zhengzhou Key Laboratory of Medicinal Resources Research, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, China
| | - Qingxia Zheng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Wancun Zhang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, China
- China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Xu C, Zhou D, Luo Y, Guo S, Wang T, Liu J, Liu Y, Li Z. Tissue and serum lipidome shows altered lipid composition with diagnostic potential in mycosis fungoides. Oncotarget 2018. [PMID: 28624795 PMCID: PMC5564624 DOI: 10.18632/oncotarget.18228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mycosis fungoides (MF) is the most common type of cutaneous T cell lymphoma. In this study, we used matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) to perform lipidomic profiling of 5 MF tissue samples and 44 serum samples (22 from MF patients and 22 from control subjects). Multivariate statistical analysis of the mass spectral data showed that MF tissues had altered levels of seven lipids and MF sera had altered levels of twelve. Among these, six phosphotidylcholines, PC (34:2), PC (34:1), PC (36:3), PC (36:2), PC (32:0), and PC (38:4) and one sphingomyelin, SM (16:0) were altered in both MF tissues and sera. PC (34:2), PC (34:1), PC (36:3), and PC (36:2) levels were increased in both tissues and sera from MF patients, whereas SM (16:0), PC (32:0), and PC (38:4) levels were increased in MF sera but were decreased in MF tissues. We have thus identified multiple lipids that are altered in MF tissues and sera. This suggests serological and tissue lipidomic profiling could be an effective approach to screening for diagnostic biomarkers of MF.
Collapse
Affiliation(s)
- Chenchen Xu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dan Zhou
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yixin Luo
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shuai Guo
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuehua Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
7
|
Lopes J, Correia M, Martins I, Henriques AG, Delgadillo I, da Cruz E Silva O, Nunes A. FTIR and Raman Spectroscopy Applied to Dementia Diagnosis Through Analysis of Biological Fluids. J Alzheimers Dis 2017; 52:801-12. [PMID: 27079713 DOI: 10.3233/jad-151163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To date, it is still difficult to perform an early and accurate diagnosis of dementia, therefore significant research has focused on finding new dementia biomarkers that can aid in this respect. There is an urgent need for non-invasive, rapid, and relatively inexpensive procedures for early diagnostics. Studies have demonstrated that of spectroscopic techniques, such as Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy could be a useful and accurate procedure to diagnose dementia. Given that several biochemical mechanisms related to neurodegeneration and dementia can lead to changes in plasma components and others peripheral body fluids; blood-based samples coupled to spectroscopic analyses can be used as a simple and less invasive approach.
Collapse
Affiliation(s)
- Jéssica Lopes
- iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Marta Correia
- iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Ilka Martins
- Grupo de Neurociências e Sinalização, iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Grupo de Neurociências e Sinalização, iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Ivonne Delgadillo
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Odete da Cruz E Silva
- Grupo de Neurociências e Sinalização, iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Alexandra Nunes
- iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
8
|
Lodi A, Saha A, Lu X, Wang B, Sentandreu E, Collins M, Kolonin MG, DiGiovanni J, Tiziani S. Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism. NPJ Precis Oncol 2017; 1:18. [PMID: 29202102 PMCID: PMC5705091 DOI: 10.1038/s41698-017-0024-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022] Open
Abstract
High-throughput screening of a natural compound library was performed to identify the most efficacious combinatorial treatment on prostate cancer. Ursolic acid, curcumin and resveratrol were selected for further analyses and administered in vivo via the diet, either alone or in combination, in a mouse allograft model of prostate cancer. All possible combinations of these natural compounds produced synergistic effects on tumor size and weight, as predicted in the screens. A subsequent untargeted metabolomics and metabolic flux analysis using isotopically labeled glutamine indicated that the compound combinations modulated glutamine metabolism. In addition, ASCT2 levels and STAT3, mTORC1 and AMPK activity were modulated to a greater extent by the combinations compared to the individual compounds. Overall, this approach can be useful for identifying synergistic combinations of natural compounds for chemopreventive and therapeutic interventions.
Collapse
Affiliation(s)
- Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX USA
| | - Xiyuan Lu
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Bo Wang
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Enrique Sentandreu
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Meghan Collins
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX USA
- Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX USA
- Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX USA
| |
Collapse
|
9
|
Buck A, Aichler M, Huber K, Walch A. In Situ Metabolomics in Cancer by Mass Spectrometry Imaging. Adv Cancer Res 2016; 134:117-132. [PMID: 28110648 DOI: 10.1016/bs.acr.2016.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolomics is a rapidly evolving and a promising research field with the expectation to improve diagnosis, therapeutic treatment prediction, and prognosis of particular diseases. Among all techniques used to assess the metabolome in biological systems, mass spectrometry imaging is the method of choice to qualitatively and quantitatively analyze metabolite distribution in tissues with a high spatial resolution, thus providing molecular data in relation to cancer histopathology. The technique is ideally suited to study tissues molecular content and is able to provide molecular biomarkers or specific mass signatures which can be used in classification or the prognostic evaluation of tumors. Recently, it was shown that FFPE tissue samples are also suitable for metabolic analyses. This progress in methodology allows access to a highly valuable resource of tissues believed to widen and strengthen metabolic discovery-driven studies.
Collapse
Affiliation(s)
- A Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - M Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - K Huber
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - A Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
10
|
Abstract
Metabonomic techniques have considerable potential in the field of clinical diagnostics, typifying the application of a translational research paradigm. Care must be taken at all stages to apply appropriate methodology with accurate patient selection and profiling, and rigorous data acquisition and handling, to ensure clinical validity.An ever-increasing number of publications in a wide range of diseases and diverse patient groups suggest a variety of potential clinical uses; prospective studies in large validation cohorts are required to bring metabonomics into routine clinical practice. In this chapter, the utility of metabonomics as a diagnostic tool will be discussed.
Collapse
Affiliation(s)
- Lucy C Hicks
- Department of Medicine, Imperial College London, London, UK
| | | | | |
Collapse
|
11
|
Deng MJ, Lin XD, Lin QT, Wen DF, Zhang ML, Wang XQ, Gao HC, Xu JP. A 1H-NMR Based Study on Hemolymph Metabolomics in Eri Silkworm after Oral Administration of 1-Deoxynojirimycin. PLoS One 2015; 10:e0131696. [PMID: 26148185 PMCID: PMC4492494 DOI: 10.1371/journal.pone.0131696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023] Open
Abstract
We aimed to investigate whether 1-deoxynojirimycin (DNJ) modulates glycometabolism and has toxicity in Eri silkworm (Samia cynthia ricini, Saturniidae). In this paper, hemolymph metabolites were used to explore metabolic changes after oral administration of DNJ or mulberry latex and to characterize the biological function of DNJ at the metabolic and systemic levels. Hemolymph samples were collected from fourth-instar larvae of Eri silkworm and ex-vivo high-resolution 1H nuclear magnetic resonance (NMR) spectra were acquired from the collected hemolymph samples. Then the obtained spectra were analyzed by principal component analysis (PCA) and independent-samples t-test. Metabolic pattern recognition analysis of hemolymph samples indicated that the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) were significantly different from the control group. Moreover, compared to the control group, the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) showed the decreased levels of citrate, succinate, fumarate, malate, and glutamine in hemolymph, the groups of 0.25% DNJ and the mixture of 0.5% DNJ and latex (1:1) showed the increased levels of trehalose and lactate. In addition, mulberry leaves exude latex was highly toxic to Eri silkworm because rich unidentified high-molecular-weight factor (s) acted as toxic substances. In our results, latex caused 20 deaths among 50 fourth-instar larvae of Eri silkmoth, but DNJ or the mixture did not caused death. All these results suggest that DNJ has a positive impact on the reverse glycometabolism by modulating glycometabolism and inhibiting glucogenesis and energy metabolism. DNJ is a secure substance as a single-ingredient antidiabetic medicine due to its nontoxicity and bioactivity.
Collapse
Affiliation(s)
- Ming-Jie Deng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Dong Lin
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, China
| | - Qiu-Ting Lin
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, China
| | - De-Fu Wen
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mei-Ling Zhang
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, China
| | - Xian-Qin Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, China
| | - Hong-Chang Gao
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, China
- * E-mail: (JPX); (HCG)
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- * E-mail: (JPX); (HCG)
| |
Collapse
|
12
|
A gas chromatography-mass spectrometry based study on urine metabolomics in rats chronically poisoned with hydrogen sulfide. BIOMED RESEARCH INTERNATIONAL 2015; 2015:295241. [PMID: 25954748 PMCID: PMC4411453 DOI: 10.1155/2015/295241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 11/18/2022]
Abstract
Gas chromatography-mass spectrometry (GS-MS) in combination with multivariate statistical analysis was applied to explore the metabolic variability in urine of chronically hydrogen sulfide- (H2S-) poisoned rats relative to control ones. The changes in endogenous metabolites were studied by partial least squares-discriminate analysis (PLS-DA) and independent-samples t-test. The metabolic patterns of H2S-poisoned group are separated from the control, suggesting that the metabolic profiles of H2S-poisoned rats were markedly different from the controls. Moreover, compared to the control group, the level of alanine, d-ribose, tetradecanoic acid, L-aspartic acid, pentanedioic acid, cholesterol, acetate, and oleic acid in rat urine of the poisoning group decreased, while the level of glycine, d-mannose, arabinofuranose, and propanoic acid increased. These metabolites are related to amino acid metabolism as well as energy and lipid metabolism in vivo. Studying metabolomics using GC-MS allows for a comprehensive overview of the metabolism of the living body. This technique can be employed to decipher the mechanism of chronic H2S poisoning, thus promoting the use of metabolomics in clinical toxicology.
Collapse
|
13
|
Application of metabolomics in drug resistant breast cancer research. Metabolites 2015; 5:100-18. [PMID: 25693144 PMCID: PMC4381292 DOI: 10.3390/metabo5010100] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 08/18/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022] Open
Abstract
The metabolic profiles of breast cancer cells are different from normal mammary epithelial cells. Breast cancer cells that gain resistance to therapeutic interventions can reprogram their endogenous metabolism in order to adapt and proliferate despite high oxidative stress and hypoxic conditions. Drug resistance in breast cancer, regardless of subgroups, is a major clinical setback. Although recent advances in genomics and proteomics research has given us a glimpse into the heterogeneity that exists even within subgroups, the ability to precisely predict a tumor’s response to therapy remains elusive. Metabolomics as a quantitative, high through put technology offers promise towards devising new strategies to establish predictive, diagnostic and prognostic markers of breast cancer. Along with other “omics” technologies that include genomics, transcriptomics, and proteomics, metabolomics fits into the puzzle of a comprehensive systems biology approach to understand drug resistance in breast cancer. In this review, we highlight the challenges facing successful therapeutic treatment of breast cancer and the innovative approaches that metabolomics offers to better understand drug resistance in cancer.
Collapse
|
14
|
Aftab O, Engskog MKR, Haglöf J, Elmsjö A, Arvidsson T, Pettersson C, Hammerling U, Gustafsson MG. NMR spectroscopy-based metabolic profiling of drug-induced changes in vitro can discriminate between pharmacological classes. J Chem Inf Model 2014; 54:3251-8. [PMID: 25321343 DOI: 10.1021/ci500502f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Drug-induced changes in mammalian cell line models have already been extensively profiled at the systemic mRNA level and subsequently used to suggest mechanisms of action for new substances, as well as to support drug repurposing, i.e., identifying new potential indications for drugs already licensed for other pharmacotherapy settings. The seminal work in this field, which includes a large database and computational algorithms for pattern matching, is known as the "Connectivity Map" (CMap). However, the potential of similar exercises at the metabolite level is still largely unexplored. Only recently, the first high-throughput metabolomic assay pilot study was published, which involved screening the metabolic response to a set of 56 kinase inhibitors in a 96-well format. Here, we report results from a separately developed metabolic profiling assay, which leverages (1)H NMR spectroscopy to the quantification of metabolic changes in the HCT116 colorectal cancer cell line, in response to each of 26 compounds. These agents are distributed across 12 different pharmacological classes covering a broad spectrum of bioactivity. Differential metabolic profiles, inferred from multivariate spectral analysis of 18 spectral bins, allowed clustering of the most-tested drugs, according to their respective pharmacological class. A more-advanced supervised analysis, involving one multivariate scattering matrix per pharmacological class and using only 3 spectral bins (3 metabolites), showed even more distinct pharmacology-related cluster formations. In conclusion, this type of relatively fast and inexpensive profiling seems to provide a promising alternative to that afforded by mRNA expression analysis, which is relatively slow and costly. As also indicated by the present pilot study, the resulting metabolic profiles do not seem to provide as information-rich signatures as those obtained using systemic mRNA profiling, but the methodology holds strong promise for significant refinement.
Collapse
Affiliation(s)
- Obaid Aftab
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University , Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Nugent JL, McCoy AN, Addamo CJ, Jia W, Sandler RS, Keku TO. Altered tissue metabolites correlate with microbial dysbiosis in colorectal adenomas. J Proteome Res 2014; 13:1921-9. [PMID: 24601673 PMCID: PMC3993967 DOI: 10.1021/pr4009783] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Several
studies have linked bacterial dysbiosis with elevated risk
of colorectal adenomas and cancer. However, the functional implications
of gut dysbiosis remain unclear. Gut bacteria contribute to nutrient
metabolism and produce small molecules termed the “metabolome”,
which may contribute to the development of neoplasia in the large
bowel. We assessed the metabolome in normal rectal mucosal biopsies
of 15 subjects with colorectal adenomas and 15 nonadenoma controls
by liquid chromatography and gas chromatography time-of-flight mass
spectrometry. Quantitative real-time PCR was used to measure abundances
of specific bacterial taxa. We identified a total of 274 metabolites.
Discriminant analysis suggested a separation of metabolomic profiles
between adenoma cases and nonadenoma controls. Twenty-three metabolites
contributed to the separation, notably an increase in adenoma cases
of the inflammatory metabolite prostaglandin E2 and a decrease in
antioxidant-related metabolites 5-oxoproline and diketogulonic acid.
Pathway analysis suggested that differential metabolites were significantly
related to cancer, inflammatory response, carbohydrate metabolism,
and GI disease pathways. Abundances of six bacterial taxa assayed
were increased in cases. The 23 differential metabolites demonstrated
correlations with bacteria that were different between cases and controls.
These findings suggest that metabolic products of bacteria may be
responsible for the development of colorectal adenomas and CRC.
Collapse
Affiliation(s)
- Julia L Nugent
- School of Medicine, University of North Carolina at Chapel Hill , 321 South Columbia Street, Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Ochi H, Sakai Y, Koishihara H, Abe F, Bamba T, Fukusaki E. Monitoring the ripening process of Cheddar cheese based on hydrophilic component profiling using gas chromatography-mass spectrometry. J Dairy Sci 2013; 96:7427-41. [DOI: 10.3168/jds.2013-6897] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
|
18
|
Albrecht E, Waldenberger M, Krumsiek J, Evans AM, Jeratsch U, Breier M, Adamski J, Koenig W, Zeilinger S, Fuchs C, Klopp N, Theis FJ, Wichmann HE, Suhre K, Illig T, Strauch K, Peters A, Gieger C, Kastenmüller G, Doering A, Meisinger C. Metabolite profiling reveals new insights into the regulation of serum urate in humans. Metabolomics 2013; 10:141-151. [PMID: 24482632 PMCID: PMC3890072 DOI: 10.1007/s11306-013-0565-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 07/03/2013] [Indexed: 01/27/2023]
Abstract
Serum urate, the final breakdown product of purine metabolism, is causally involved in the pathogenesis of gout, and implicated in cardiovascular disease and type 2 diabetes. Serum urate levels highly differ between men and women; however the underlying biological processes in its regulation are still not completely understood and are assumed to result from a complex interplay between genetic, environmental and lifestyle factors. In order to describe the metabolic vicinity of serum urate, we analyzed 355 metabolites in 1,764 individuals of the population-based KORA F4 study and constructed a metabolite network around serum urate using Gaussian Graphical Modeling in a hypothesis-free approach. We subsequently investigated the effect of sex and urate lowering medication on all 38 metabolites assigned to the network. Within the resulting network three main clusters could be detected around urate, including the well-known pathway of purine metabolism, as well as several dipeptides, a group of essential amino acids, and a group of steroids. Of the 38 assigned metabolites, 25 showed strong differences between sexes. Association with uricostatic medication intake was not only confined to purine metabolism but seen for seven metabolites within the network. Our findings highlight pathways that are important in the regulation of serum urate and suggest that dipeptides, amino acids, and steroid hormones are playing a role in its regulation. The findings might have an impact on the development of specific targets in the treatment and prevention of hyperuricemia.
Collapse
Affiliation(s)
- Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Krumsiek
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anne M. Evans
- Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, NC 27713 USA
| | - Ulli Jeratsch
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michaela Breier
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Munich, Germany
- Member of German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Wolfgang Koenig
- Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Sonja Zeilinger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christiane Fuchs
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Norman Klopp
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Hanover Unified Biobank, Hanover Medical School, Hanover, Germany
| | - Fabian J. Theis
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - H.-Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry, and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- Klinikum Grosshadern, Munich, Germany
| | - Karsten Suhre
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City-Qatar Foundation, Doha, Qatar
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Hanover Unified Biobank, Hanover Medical School, Hanover, Germany
| | - Konstantin Strauch
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Munich Heart Alliance, Munich, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Angela Doering
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Central Hospital of Augsburg, Monitoring Trends and Determinants on Cardiovascular Diseases/Cooperative Research in the Region of Augsburg Myocardial Infarction Registry, Augsburg, Germany
| |
Collapse
|
19
|
Identification of plasma metabolomic profiling for diagnosis of esophageal squamous-cell carcinoma using an UPLC/TOF/MS platform. Int J Mol Sci 2013; 14:8899-911. [PMID: 23615477 PMCID: PMC3676763 DOI: 10.3390/ijms14058899] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/08/2013] [Accepted: 04/18/2013] [Indexed: 01/24/2023] Open
Abstract
Epidemiological studies indicated that esophageal squamous-cell carcinoma (ESCC) is still one of the most common causes of cancer incidence in the world. Searching for valuable markers including circulating endogenous metabolites associated with the risk of esophageal cancer, is extremely important A comparative metabolomics study was performed by using ultraperformance liquid chromatography-electrospray ionization-accurate mass time-of-flight mass spectrometry to analyze 53 pairs of plasma samples from ESCC patients and healthy controls recruited in Huaian, China. The result identified a metabolomic profiling of plasma including 25 upregulated metabolites and five downregulated metabolites, for early diagnosis of ESCC. With a database-based verification protocol, 11 molecules were identified, and six upregulated molecules of interest in ESCC were found to belong to phospholipids as follows: phosphatidylserine, phosphatidic acid, phosphatidyl choline, phosphatidylinositol, phosphatidyl ethanolamine, and sphinganine 1-phosphate. Clinical estimation of metabolic biomarkers through hierarchical cluster analysis in plasma samples from 17 ESCC patients and 29 healthy volunteers indicated that the present metabolite profile could distinguish ESCC patients from healthy individuals. The cluster of aberrant expression of these metabolites in ESCC indicates the critical role of phospholipid metabolism in the oncogenesis of ESCC and suggests its potential ability to assess the risk of ESCC development in addition to currently used risk factors.
Collapse
|
20
|
Booth SC, Weljie AM, Turner RJ. Computational tools for the secondary analysis of metabolomics experiments. Comput Struct Biotechnol J 2013; 4:e201301003. [PMID: 24688685 PMCID: PMC3962093 DOI: 10.5936/csbj.201301003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/17/2012] [Accepted: 12/24/2012] [Indexed: 01/30/2023] Open
Abstract
Metabolomics experiments have become commonplace in a wide variety of disciplines. By identifying and quantifying metabolites researchers can achieve a systems level understanding of metabolism. These studies produce vast swaths of data which are often only lightly interpreted due to the overwhelmingly large amount of variables that are measured. Recently, a number of computational tools have been developed which enable much deeper analysis of metabolomics data. These data have been difficult to interpret as understanding the connections between dozens of altered metabolites has often relied on the biochemical knowledge of researchers and their speculations. Modern biochemical databases provide information about the interconnectivity of metabolism which can be automatically polled using metabolomics secondary analysis tools. Starting with lists of altered metabolites, there are two main types of analysis: enrichment analysis computes which metabolic pathways have been significantly altered whereas metabolite mapping contextualizes the abundances and significances of measured metabolites into network visualizations. Many different tools have been developed for one or both of these applications. In this review the functionality and use of these software is discussed. Together these novel secondary analysis tools will enable metabolomics researchers to plumb the depths of their data and produce farther reaching biological conclusions than ever before.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biological Sciences, University of Calgary, Calgary, AB. 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Aalim M Weljie
- Department of Pharmacology, University of Pennsylvania, Philadelphia, United States
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB. 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
21
|
Romick-Rosendale LE, Lui VWY, Grandis JR, Wells SI. The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutat Res 2013; 743-744:78-88. [PMID: 23333482 DOI: 10.1016/j.mrfmmm.2013.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is a rare inherited recessive disease caused by mutations in one of fifteen genes known to encode FA pathway components. In response to DNA damage, nuclear FA proteins associate into high molecular weight complexes through a cascade of post-translational modifications and physical interactions, followed by the repair of damaged DNA. Hematopoietic cells are particularly sensitive to the loss of these interactions, and bone marrow failure occurs almost universally in FA patients. FA as a disease is further characterized by cancer susceptibility, which highlights the importance of the FA pathway in tumor suppression, and will be the focus of this review. Acute myeloid leukemia is the most common cancer type, often subsequent to bone marrow failure. However, FA patients are also at an extreme risk of squamous cell carcinoma (SCC) of the head and neck and gynecological tract, with an even greater incidence in those individuals who have received a bone marrow transplant and recovered from hematopoietic disease. FA tumor suppression in hematopoietic versus epithelial compartments could be mechanistically similar or distinct. Definition of compartment specific FA activities is now critical to assess the effects of today's bone marrow failure treatments on tomorrow's solid tumor development. It is our hope that current therapies can then be optimized to decrease the risk of malignant transformation in both hematopoietic and epithelial cells. Here we review our current understanding of the mechanisms of action of the Fanconi anemia pathway as it contributes to stress responses, DNA repair and squamous cell carcinoma susceptibility.
Collapse
Affiliation(s)
- Lindsey E Romick-Rosendale
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Vivian W Y Lui
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Susanne I Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|