1
|
Hu X, Liu W, Yan Y, Deng H, Cai Y. Tropinone reductase: A comprehensive review on its role as the key enzyme in tropane alkaloids biosynthesis. Int J Biol Macromol 2023; 253:127377. [PMID: 37839598 DOI: 10.1016/j.ijbiomac.2023.127377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
TAs, including hyoscyamine and scopolamine, were used to treat neuromuscular disorders ranging from nerve agent poisoning to Parkinson's disease. Tropinone reductase I (TR-I; EC 1.1.1.206) catalyzed the conversion of tropinone into tropine in the biosynthesis of TAs, directing the metabolic flow towards hyoscyamine and scopolamine. Tropinone reductase II (TR-II; EC 1.1.1.236) was responsible for the conversion of tropinone into pseudotropine, diverting the metabolic flux towards calystegine A3. The regulation of metabolite flow through both branches of the TAs pathway seemed to be influenced by the enzymatic activity of both enzymes and their accessibility to the precursor tropinone. The significant interest in the utilization of metabolic engineering for the efficient production of TAs has highlighted the importance of TRs as crucial enzymes that govern both the direction of metabolic flow and the yield of products. This review discussed recent advances for the TRs sources, properties, protein structure and biocatalytic mechanisms, and a detailed overview of its crucial role in the metabolism and synthesis of TAs was summarized. Furthermore, we conducted a detailed investigation into the evolutionary origins of these two TRs. A prospective analysis of potential challenges and applications of TRs was presented.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Song C, Ma J, Li G, Pan H, Zhu Y, Jin Q, Cai Y, Han B. Natural Composition and Biosynthetic Pathways of Alkaloids in Medicinal Dendrobium Species. FRONTIERS IN PLANT SCIENCE 2022; 13:850949. [PMID: 35599884 PMCID: PMC9121007 DOI: 10.3389/fpls.2022.850949] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/30/2022] [Indexed: 05/12/2023]
Abstract
Dendrobium is the second biggest genus in the Orchidaceae family, some of which have both ornamental and therapeutic values. Alkaloids are a group of active chemicals found in Dendrobium plants. Dendrobine has emerged specific pharmacological and therapeutic properties. Although Dendrobium alkaloids have been isolated and identified since the 1930s, the composition of alkaloids and their biosynthesis pathways, including metabolic intermediates, alkaloid transporters, concrete genes involved in downstream pathways, and associated gene clusters, have remained unresolved scientific issues. This paper comprehensively reviews currently identified and tentative alkaloids from the aspect of biogenic pathways or metabolic genes uncovered based on the genome annotations. The biosynthesis pathways of each class of alkaloids are highlighted. Moreover, advances of the high-throughput sequencing technologies in the discovery of Dendrobium alkaloid pathways have been addressed. Applications of synthetic biology in large-scale production of alkaloids are also described. This would serve as the basis for further investigation into Dendrobium alkaloids.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an, China
| | - Jingbo Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Guohui Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Haoyu Pan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yanfang Zhu
- College of Life Science, Huaibei Normal University, Huaibei, China
| | - Qing Jin
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an, China
| |
Collapse
|
3
|
Chen X, Li Q, Xu X, Ding G, Guo S, Li B. Effects of the Endophytic Fungus MF23 on Dendrobium nobile Lindl. in an Artificial Primary Environment. ACS OMEGA 2021; 6:10047-10053. [PMID: 34056160 PMCID: PMC8153664 DOI: 10.1021/acsomega.0c06325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The quality of Dendrobium nobile Lindl. is related to its endophytic fungi. It has been reported that the mycorrhizal fungus MF23 helps to increase the content of dendrobine in Dendrobium, but few studies have explained the mechanism underlying this phenomenon. In a previous study, we verified the mechanism of symbiosis between MF23 and D. nobile on agar medium. The research carried out in this study on bark medium, similar to the natural environment, is of great importance because of its benefits for wide application. We found a significant effect, especially in the later period of cultivation, in which the highest dendrobine content in the experimental group was 0.147%, which is equivalent to 2.88 times that of the control group, and suggesting that MF23 promoted D. nobile in the natural environment, which verifies the application of the technique in field conditions. This result also implied that post-modification enzyme genes might play an important role in stimulating the biosynthesis of dendrobine.
Collapse
|
4
|
Chen Q, Xie B, Zhou L, Sun L, Li S, Chen Y, Shi S, Li Y, Yu M, Li W. A Tailor-Made Self-Sufficient Whole-Cell Biocatalyst Enables Scalable Enantioselective Synthesis of (R)-3-Quinuclidinol in a High Space-Time Yield. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Qian Chen
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Baogang Xie
- Office of School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Liping Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lili Sun
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Shanshan Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuhan Chen
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Shan Shi
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yang Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Mingan Yu
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
5
|
Wu N, Jian D, Xiang M, Chen M, Lan X, Liao Z, Liu X. Biochemical characterization reveals the functional divergence of two tropinone reductases from
Przewalskia tangutica. Biotechnol Appl Biochem 2019; 66:597-606. [DOI: 10.1002/bab.1760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Nianyang Wu
- Key Laboratory of Eco‐environments in Three Gorges Reservoir Region (Ministry of Education), SWU‐TAAHC Medicinal Plant Joint R&D Centre, School of Life SciencesSouthwest University Chongqing People's Republic of China
| | - Dongqin Jian
- Key Laboratory of Eco‐environments in Three Gorges Reservoir Region (Ministry of Education), SWU‐TAAHC Medicinal Plant Joint R&D Centre, School of Life SciencesSouthwest University Chongqing People's Republic of China
| | - Min Xiang
- Key Laboratory of Eco‐environments in Three Gorges Reservoir Region (Ministry of Education), SWU‐TAAHC Medicinal Plant Joint R&D Centre, School of Life SciencesSouthwest University Chongqing People's Republic of China
| | - Min Chen
- SWU‐TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical SciencesSouthwest University Chongqing People's Republic of China
| | - Xiaozhong Lan
- TAAHC‐SWU Medicinal Plant Joint R&D Centre, Tibetan Collaborative Innovation Centre of Agricultural and Animal Husbandry ResourcesTibet Agricultural and Animal Husbandry College Nyingchi of Tibet People's Republic of China
| | - Zhihua Liao
- Key Laboratory of Eco‐environments in Three Gorges Reservoir Region (Ministry of Education), SWU‐TAAHC Medicinal Plant Joint R&D Centre, School of Life SciencesSouthwest University Chongqing People's Republic of China
| | - Xiaoqiang Liu
- Key Laboratory of Eco‐environments in Three Gorges Reservoir Region (Ministry of Education), SWU‐TAAHC Medicinal Plant Joint R&D Centre, School of Life SciencesSouthwest University Chongqing People's Republic of China
| |
Collapse
|
6
|
Wang W, Yu H, Li T, Li L, Zhang G, Liu Z, Huang T, Zhang Y. Comparative Proteomics Analyses of Pollination Response in Endangered Orchid Species Dendrobium Chrysanthum. Int J Mol Sci 2017; 18:ijms18122496. [PMID: 29168730 PMCID: PMC5751103 DOI: 10.3390/ijms18122496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Pollination is a crucial stage in plant reproductive process. The self-compatibility (SC) and self-incompatibility (SI) mechanisms determined the plant genetic diversity and species survival. D. chrysanthum is a highly valued ornamental and traditional herbal orchid in Asia but has been declared endangered. The sexual reproduction in D. chrysanthum relies on the compatibility of pollination. To provide a better understanding of the mechanism of pollination, the differentially expressed proteins (DEP) between the self-pollination (SP) and cross-pollination (CP) pistil of D. chrysanthum were investigated using proteomic approaches—two-dimensional electrophoresis (2-DE) coupled with tandem mass spectrometry technique. A total of 54 DEP spots were identified in the two-dimensional electrophoresis (2-DE) maps between the SP and CP. Gene ontology analysis revealed an array of proteins belonging to following different functional categories: metabolic process (8.94%), response to stimulus (5.69%), biosynthetic process (4.07%), protein folding (3.25%) and transport (3.25%). Identification of these DEPs at the early response stage of pollination will hopefully provide new insights in the mechanism of pollination response and help for the conservation of the orchid species.
Collapse
Affiliation(s)
- Wei Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Hongyang Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Tinghai Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Lexing Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Guoqiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China.
| | - Zhongjian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China.
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Yongxia Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Transcriptome Analysis of Genes Involved in Dendrobine Biosynthesis in Dendrobium nobile Lindl. Infected with Mycorrhizal Fungus MF23 (Mycena sp.). Sci Rep 2017; 7:316. [PMID: 28331229 PMCID: PMC5428410 DOI: 10.1038/s41598-017-00445-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/27/2017] [Indexed: 11/09/2022] Open
Abstract
Content determination and microscopic observation proved that dendrobine accumulation in the stem of Dendrobium nobile Lindl. increased after infection with mycorrhizal fungus MF23 (Mycena sp.). Large-scale transcriptome sequencing of symbiotic and asymbiotic D. nobile revealed that 30 unigenes encoding proteins were possibly related to the biosynthesis of dendrobine sesquiterpene backbone. A qRT-PCR experiment of 16 unigenes, selected randomly, proved that there were significant changes in the expression levels of AACT, MVD, PMK and TPS21 at 9 weeks after inoculation. These results implied that MF23 might stimulate dendrobine biosynthesis by regulating the expressions of genes involved in the mevalonate (MVA) pathway. The biogenetic pathway of dendrobine was suggested systematically according to the structural features of dendrobine alkaloids and their sesquiterpene precursors, which implied that post-modification enzymes might play a major role in dendrobine biosynthesis. Thus, genes encoding post-modification enzymes, including cytochrome P450, aminotransferase and methyltransferase, were screened for their possible involvement in dendrobine biosynthesis. This study provides a good example of endophytes promoting the formation of bioactive compounds in their host and paves the way for further investigation of the dendrobine biosynthetic pathway.
Collapse
|
8
|
Li Q, Ding G, Li B, Guo SX. Transcriptome Analysis of Genes Involved in Dendrobine Biosynthesis in Dendrobium nobile Lindl. Infected with Mycorrhizal Fungus MF23 (Mycena sp.). Sci Rep 2017. [PMID: 28331229 DOI: 10.1038/s41598-017-00445-9/2045-2322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Content determination and microscopic observation proved that dendrobine accumulation in the stem of Dendrobium nobile Lindl. increased after infection with mycorrhizal fungus MF23 (Mycena sp.). Large-scale transcriptome sequencing of symbiotic and asymbiotic D. nobile revealed that 30 unigenes encoding proteins were possibly related to the biosynthesis of dendrobine sesquiterpene backbone. A qRT-PCR experiment of 16 unigenes, selected randomly, proved that there were significant changes in the expression levels of AACT, MVD, PMK and TPS21 at 9 weeks after inoculation. These results implied that MF23 might stimulate dendrobine biosynthesis by regulating the expressions of genes involved in the mevalonate (MVA) pathway. The biogenetic pathway of dendrobine was suggested systematically according to the structural features of dendrobine alkaloids and their sesquiterpene precursors, which implied that post-modification enzymes might play a major role in dendrobine biosynthesis. Thus, genes encoding post-modification enzymes, including cytochrome P450, aminotransferase and methyltransferase, were screened for their possible involvement in dendrobine biosynthesis. This study provides a good example of endophytes promoting the formation of bioactive compounds in their host and paves the way for further investigation of the dendrobine biosynthetic pathway.
Collapse
Affiliation(s)
- Qing Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Gang Ding
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Biao Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China.
| | - Shun-Xing Guo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
9
|
Li Q, Li B, Zhou LS, Ding G, Li B, Guo SX. Molecular analysis of polysaccharide accumulation in Dendrobium nobile infected with the mycorrhizal fungus Mycena sp. RSC Adv 2017. [DOI: 10.1039/c7ra02010d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
By RNA-Seq, some candidate genes involved in the polysaccharide accumulation inDendrobium nobileinfected with the mycorrhizal fungusMycenasp. were identified and assessed.
Collapse
Affiliation(s)
- Qing Li
- Institute of Medicinal Plant Development
- Peking Union Medical College
- Chinese Academy of Medical Sciences
- Beijing 100193
- People's Republic of China
| | - Bing Li
- Institute of Medicinal Plant Development
- Peking Union Medical College
- Chinese Academy of Medical Sciences
- Beijing 100193
- People's Republic of China
| | - Li-Si Zhou
- Institute of Medicinal Plant Development
- Peking Union Medical College
- Chinese Academy of Medical Sciences
- Beijing 100193
- People's Republic of China
| | - Gang Ding
- Institute of Medicinal Plant Development
- Peking Union Medical College
- Chinese Academy of Medical Sciences
- Beijing 100193
- People's Republic of China
| | - Biao Li
- Institute of Medicinal Plant Development
- Peking Union Medical College
- Chinese Academy of Medical Sciences
- Beijing 100193
- People's Republic of China
| | - Shun-Xing Guo
- Institute of Medicinal Plant Development
- Peking Union Medical College
- Chinese Academy of Medical Sciences
- Beijing 100193
- People's Republic of China
| |
Collapse
|
10
|
Qiang W, Xia K, Zhang Q, Zeng J, Huang Y, Yang C, Chen M, Liu X, Lan X, Liao Z. Functional characterisation of a tropine-forming reductase gene from Brugmansia arborea, a woody plant species producing tropane alkaloids. PHYTOCHEMISTRY 2016; 127:12-22. [PMID: 26988730 DOI: 10.1016/j.phytochem.2016.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
Brugmansia arborea is a woody plant species that produces tropane alkaloids (TAs). The gene encoding tropine-forming reductase or tropinone reductase I (BaTRI) in this plant species was functionally characterised. The full-length cDNA of BaTRI encoded a 272-amino-acid polypeptide that was highly similar to tropinone reductase I from TAs-producing herbal plant species. The purified 29kDa recombinant BaTRI exhibited maximum reduction activity at pH 6.8-8.0 when tropinone was used as substrate; it also exhibited maximum oxidation activity at pH 9.6 when tropine was used as substrate. The Km, Vmax and Kcat values of BaTRI for tropinone were 2.65mM, 88.3nkatmg(-1) and 2.93S(-1), respectively, at pH 6.4; the Km, Vmax and Kcat values of TRI from Datura stramonium (DsTRI) for tropinone were respectively 4.18mM, 81.20nkatmg(-1) and 2.40S(-1) at pH 6.4. At pH 6.4, 6.8 and 7.0, BaTRI had a significantly higher activity than DsTRI. Analogues of tropinone, 4-methylcyclohexanone and 3-quinuclidinone hydrochloride, were also used to investigate the enzymatic kinetics of BaTRI. The Km, Vmax and Kcat values of BaTRI for tropine were 0.56mM, 171.62nkat.mg(-1) and 5.69S(-1), respectively, at pH 9.6; the Km, Vmax and Kcat values of DsTRI for tropine were 0.34mM, 111.90nkatmg(-1) and 3.30S(-1), respectively, at pH 9.6. The tissue profiles of BaTRI differed from those in TAs-producing herbal plant species. BaTRI was expressed in all examined organs but was most abundant in secondary roots. Finally, tropane alkaloids, including hyoscyamine, anisodamine and scopolamine, were detected in various organs of B. arborea by HPLC. Interestingly, scopolamine constituted most of the tropane alkaloids content in B. arborea, which suggests that B. arborea is a scopolamine-rich plant species. The scopolamine content was much higher in the leaves and stems than in other organs. The gene expression and TAs accumulation suggest that the biosynthesis of hyoscyamine, especially scopolamine, occurred not only in the roots but also in the aerial parts of B. arborea.
Collapse
Affiliation(s)
- Wei Qiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ke Xia
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qiaozhuo Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Junlan Zeng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuanshe Huang
- College of Agronomy, Anshun University, Anshun 561000, China
| | - Chunxian Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Min Chen
- SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoqiang Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Agricultural and Animal Husbandry College, Tibet University, Nyingchi of Tibet 860000, China
| | - Zhihua Liao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Reinhardt N, Fischer J, Coppi R, Blum E, Brandt W, Dräger B. Substrate flexibility and reaction specificity of tropinone reductase-like short-chain dehydrogenases. Bioorg Chem 2014; 53:37-49. [PMID: 24583623 DOI: 10.1016/j.bioorg.2014.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/23/2014] [Accepted: 01/26/2014] [Indexed: 01/28/2023]
Abstract
Annotations of protein or gene sequences from large scale sequencing projects are based on protein size, characteristic binding motifs, and conserved catalytic amino acids, but biochemical functions are often uncertain. In the large family of short-chain dehydrogenases/reductases (SDRs), functional predictions often fail. Putative tropinone reductases, named tropinone reductase-like (TRL), are SDRs annotated in many genomes of organisms that do not contain tropane alkaloids. SDRs in vitro often accept several substrates complicating functional assignments. Cochlearia officinalis, a Brassicaceae, contains tropane alkaloids, in contrast to the closely related Arabidopsis thaliana. TRLs from Arabidopsis and the tropinone reductase isolated from Cochlearia (CoTR) were investigated for their catalytic capacity. In contrast to CoTR, none of the Arabidopsis TRLs reduced tropinone in vitro. NAD(H) and NADP(H) preferences were relaxed in two TRLs, and protein homology models revealed flexibility of amino acid residues in the active site allowing binding of both cofactors. TRLs reduced various carbonyl compounds, among them terpene ketones. The reduction was stereospecific for most of TRLs investigated, and the corresponding terpene alcohol oxidation was stereoselective. Carbonyl compounds that were identified to serve as substrates were applied for modeling pharmacophores of each TRL. A database of commercially available compounds was screened using the pharmacophores. Compounds identified as potential substrates were confirmed by turnover in vitro. Thus pharmacophores may contribute to better predictability of biochemical functions of SDR enzymes.
Collapse
Affiliation(s)
- Nicole Reinhardt
- Institute of Pharmacy, Faculty of Science I, Martin Luther University Halle-Wittenberg, Hoher Weg 8, D-06120 Halle, Germany
| | - Juliane Fischer
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
| | - Ralph Coppi
- Institute of Pharmacy, Faculty of Science I, Martin Luther University Halle-Wittenberg, Hoher Weg 8, D-06120 Halle, Germany
| | - Elke Blum
- Institute of Pharmacy, Faculty of Science I, Martin Luther University Halle-Wittenberg, Hoher Weg 8, D-06120 Halle, Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
| | - Birgit Dräger
- Institute of Pharmacy, Faculty of Science I, Martin Luther University Halle-Wittenberg, Hoher Weg 8, D-06120 Halle, Germany.
| |
Collapse
|
12
|
Chen W, Qian Y, Wu X, Sun Y, Wu X, Cheng X. Inhibiting replication of begomoviruses using artificial zinc finger nucleases that target viral-conserved nucleotide motif. Virus Genes 2014; 48:494-501. [PMID: 24474330 DOI: 10.1007/s11262-014-1041-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/16/2014] [Indexed: 11/26/2022]
Abstract
Geminiviridae consists of a large group of single-stranded DNA viruses that cause tremendous losses worldwide. Frequent mixed infection and high rates of recombination and mutation allow them to adapt rapidly to new hosts and overcome hosts' resistances. Therefore, an effective strategy able to confer plants with resistance against multiple begomoviruses is needed. In the present study, artificial zinc finger proteins were designed based on a conserved sequence motif of begomoviruses. DNA-binding affinities and specificities of these artificial zinc fingers were evaluated using electrophoretic mobility shift assay. Artificial zinc finger nuclease (AZFNs) were then constructed based on the ones with the highest DNA-binding affinities. In vitro digest and transient expression assay showed that these AZFNs can efficiently cleave the target sequence and inhibit the replication of different begomoviruses. These results suggest that artificial zinc finger protein technology may be used to achieve resistance against multiple begomoviruses.
Collapse
Affiliation(s)
- Wei Chen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Kushwaha AK, Sangwan NS, Trivedi PK, Negi AS, Misra L, Sangwan RS. Tropine forming tropinone reductase gene from Withania somnifera (Ashwagandha): biochemical characteristics of the recombinant enzyme and novel physiological overtones of tissue-wide gene expression patterns. PLoS One 2013; 8:e74777. [PMID: 24086372 PMCID: PMC3783447 DOI: 10.1371/journal.pone.0074777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/26/2013] [Indexed: 01/24/2023] Open
Abstract
Withania somnifera is one of the most reputed medicinal plants of Indian systems of medicine synthesizing diverse types of secondary metabolites such as withanolides, alkaloids, withanamides etc. Present study comprises cloning and E. coli over-expression of a tropinone reductase gene (WsTR-I) from W. somnifera, and elucidation of biochemical characteristics and physiological role of tropinone reductase enzyme in tropane alkaloid biosynthesis in aerial tissues of the plant. The recombinant enzyme was demonstrated to catalyze NADPH-dependent tropinone to tropine conversion step in tropane metabolism, through TLC, GC and GC-MS-MS analyses of the reaction product. The functionally active homodimeric ∼60 kDa enzyme catalyzed the reaction in reversible manner at optimum pH 6.7. Catalytic kinetics of the enzyme favoured its forward reaction (tropine formation). Comparative 3-D models of landscape of the enzyme active site contours and tropinone binding site were also developed. Tissue-wide and ontogenic stage-wise assessment of WsTR-I transcript levels revealed constitutive expression of the gene with relatively lower abundance in berries and young leaves. The tissue profiles of WsTR-I expression matched those of tropine levels. The data suggest that, in W. somnifera, aerial tissues as well possess tropane alkaloid biosynthetic competence. In vivo feeding of U-[14C]-sucrose to orphan shoot (twigs) and [14C]-chasing revealed substantial radiolabel incorporation in tropinone and tropine, confirming the de novo synthesizing ability of the aerial tissues. This inherent independent ability heralds a conceptual novelty in the backdrop of classical view that these tissues acquire the alkaloids through transportation from roots rather than synthesis. The TR-I gene expression was found to be up-regulated on exposure to signal molecules (methyl jasmonate and salicylic acid) and on mechanical injury. The enzyme's catalytic and structural properties as well as gene expression profiles are discussed with respect to their physiological overtones.
Collapse
Affiliation(s)
- Amit Kumar Kushwaha
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
| | - Neelam Singh Sangwan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Arvind Singh Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
| | - Laxminarain Misra
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
| | - Rajender Singh Sangwan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
- Bio-Processing Unit (An Autonomous Institute under Department of Biotechnology, Govt. of India), Interim Facility, C-127, Phase-8, Industrial Area, S.A.S. Nagar, Mohali, Punjab, India
- * E-mail:
| |
Collapse
|
14
|
Zhang WX, Xu GC, Huang L, Pan J, Yu HL, Xu JH. Highly Efficient Synthesis of (R)-3-Quinuclidinol in a Space–Time Yield of 916 g L–1 d–1 Using a New Bacterial Reductase ArQR. Org Lett 2013; 15:4917-9. [DOI: 10.1021/ol402269k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wen-Xia Zhang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’ s Republic of China
| | - Guo-Chao Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’ s Republic of China
| | - Lei Huang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’ s Republic of China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’ s Republic of China
| | - Hui-Lei Yu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’ s Republic of China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’ s Republic of China
| |
Collapse
|
15
|
Cheng X, Chen W, Zhou Z, Liu J, Wang H. Functional characterization of a novel tropinone reductase-like gene in Dendrobium nobile Lindl. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:958-64. [PMID: 23566874 DOI: 10.1016/j.jplph.2013.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 05/26/2023]
Abstract
Dendrobium nobile, a herbal medicine plant, contains many important alkaloids and other secondary metabolites with pharmacological and clinical effects. However, the biosynthetic pathway of these secondary metabolites is largely unknown. In present study, a cDNA sequence (DnTR2) that encodes a peptide with high similarity to known tropinone reductase (TR) was cloned from D. nobile Lindl. Sequence comparison and phylogenetic analysis showed that DnTR2 was evolutionarily distant from those well-characterized subgroups of TRs. qRT-PCR revealed that DnTR2 was expressed constitutively in all three vegetative organs (leaves, stems and roots) and was regulated by methyl jasmonate (MeJA), salicylic acid (SA) and nitrogen oxide (NO). Catalytic activity analysis using recombinant protein found that DnTR2 was not able to reduce tropinone, but reduced the two structural analogs of tropinone, 3-quinuclidinone hydrochloride and 4-methylcyclohexanone. Structural modeling and comparison suggested that the substrate specificity of TRs may not be determined by their phylogenetic relationships but by the amino acids that compose the substrate binding pocket. To verify this hypothesis, a site-directed mutagenesis was performed and it successfully restored the DnTR2 with tropinone reduction activity. Our results also showed that the substrate specificity of TRs was determined by a few residues that compose the substrate binding pocket which may have an important role for directed selecting of TRs with designated substrate specificities.
Collapse
Affiliation(s)
- Xiaofei Cheng
- College of Life and Environmental Science, Hangzhou Normal University, 310036 Hangzhou, China
| | | | | | | | | |
Collapse
|