1
|
Zhang R, Zhang Y, Liu T, Jiang B, Li Z, Qu Y, Chen Y, Li Z. Utilizing Variants Identified with Multiple Genome-Wide Association Study Methods Optimizes Genomic Selection for Growth Traits in Pigs. Animals (Basel) 2023; 13:ani13040722. [PMID: 36830509 PMCID: PMC9952664 DOI: 10.3390/ani13040722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Improving the prediction accuracies of economically important traits in genomic selection (GS) is a main objective for researchers and breeders in the livestock industry. This study aims at utilizing potentially functional SNPs and QTLs identified with various genome-wide association study (GWAS) models in GS of pig growth traits. We used three well-established GWAS methods, including the mixed linear model, Bayesian model and meta-analysis, as well as 60K SNP-chip and whole genome sequence (WGS) data from 1734 Yorkshire and 1123 Landrace pigs to detect SNPs related to four growth traits: average daily gain, backfat thickness, body weight and birth weight. A total of 1485 significant loci and 24 candidate genes which are involved in skeletal muscle development, fatty deposition, lipid metabolism and insulin resistance were identified. Compared with using all SNP-chip data, GS with the pre-selected functional SNPs in the standard genomic best linear unbiased prediction (GBLUP), and a two-kernel based GBLUP model yielded average gains in accuracy by 4 to 46% (from 0.19 ± 0.07 to 0.56 ± 0.07) and 5 to 27% (from 0.16 ± 0.06 to 0.57 ± 0.05) for the four traits, respectively, suggesting that the prioritization of preselected functional markers in GS models had the potential to improve prediction accuracies for certain traits in livestock breeding.
Collapse
Affiliation(s)
- Ruifeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Zhang
- Institute of Neuroscience, Panzhihua University, Panzhihua 617000, China
| | - Tongni Liu
- Genetic Data Center, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bo Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhenyang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Youping Qu
- Guangdong IPIG Technology Co., Ltd., Guangzhou 510006, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhengcao Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Correspondence:
| |
Collapse
|
2
|
Colicins of Escherichia coli Lead to Resistance against the Diarrhea-Causing Pathogen Enterotoxigenic E. coli in Pigs. Microbiol Spectr 2022; 10:e0139622. [PMID: 36190425 PMCID: PMC9603048 DOI: 10.1128/spectrum.01396-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gut microbes can affect host adaptation to various environment conditions. Escherichia coli is a common gut species, including pathogenic strains and nonpathogenic strains. This study was conducted to investigate the effects of different E. coli strains in the gut on the health of pigs. In this study, the complete genomes of two E. coli strains isolated from pigs were sequenced. The whole genomes of Y18J and the enterotoxigenic E. coli strain W25K were compared to determine their roles in pig adaptation to disease. Y18J was isolated from feces of healthy piglets and showed strong antimicrobial activity against W25K in vitro. Gene knockout experiments and complementation analysis followed by modeling the microbe-microbe interactions demonstrated that the antagonistic mechanism of Y18J against W25K relied on the bacteriocins colicin B and colicin M. Compared to W25K, Y18J is devoid of exotoxin-coding genes and has more secondary-metabolite-biosynthetic gene clusters. W25K carries more genes involved in genome replication, in accordance with a shorter cell cycle observed during a growth experiment. The analysis of gut metagenomes in different pig breeds showed that colicins B and M were enriched in Laiwu pigs, a Chinese local breed, but were scarce in boars and Duroc pigs. IMPORTANCE This study revealed the heterogeneity of E. coli strains from pigs, including two strains studied by both in silico and wet experiments in detail and 14 strains studied by bioinformatics analysis. E. coli Y18J may improve the adaptability of pigs toward disease resistance through the production of colicins B and M. Our findings could shed light on the pathogenic and harmless roles of E. coli in modern animal husbandry, leading to a better understanding of intestinal-microbe-pathogen interactions in the course of evolution.
Collapse
|
3
|
Yousuf S, Li A, Feng H, Lui T, Huang W, Zhang X, Xie L, Miao X. Genome-Wide Expression Profiling and Networking Reveals an Imperative Role of IMF-Associated Novel CircRNAs as ceRNA in Pigs. Cells 2022; 11:2638. [PMID: 36078046 PMCID: PMC9454643 DOI: 10.3390/cells11172638] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Intramuscular fat (IMF) deposition is a biological process that has a strong impact on the nutritional and sensorial properties of meat, with relevant consequences on human health. Pork loins determine the effects of marbling on the sensory attributes and meat quality properties, which differ among various pig breeds. This study explores the crosstalk of non-coding RNAs with mRNAs and analyzes the potential pathogenic role of IMF-associated competing endogenous RNA (ceRNA) in IMF tissues, which offer a framework for the functional validation of key/potential genes. A high-throughput whole-genome transcriptome analysis of IMF tissues from longissimus dorsi muscles of Large White (D_JN) and Laiwu (L_JN) pigs resulted in the identification of 283 differentially expressed circRNAs (DECs), including two key circRNAs (circRNA-23437, circRNA-08840) with potential binding sites for multiple miRNAs regulating the whole network. The potential ceRNA mechanism identified the DEC target miRNAs-mRNAs involved in lipid metabolism, fat deposition, meat quality, and metabolic syndrome via the circRNA-miRNA-mRNA network, concluding that ssc-mir-370 is the most important target miRNA shared by both key circRNAs. TGM2, SLC5A6, ECI1, FASN, PER1, SLC25A34, SOD1, and COL5A3 were identified as hub genes through an intensive protein-protein interaction (PPI) network analysis of target genes acquired from the ceRNA regulatory network. Functional enrichments, pathway examinations, and qRT-PCR analyses infer their implications in fat/cholesterol metabolism, insulin secretion, and fatty acid biosynthesis. Here, circRNAs and miRNA sequencing accompanied by computational techniques were performed to analyze their expressions in IMF tissues from the longissimus dorsi muscles of two pig breeds. Their target gene evolutionary trajectories, expression profiling, functional enrichments, subcellular localizations, and structural advances with high-throughput protein modeling, following genomic organizations, will provide new insights into the underlying molecular mechanisms of adipocyte differentiation and IMF deposition and a much-needed qualitative framework for future research to improve meat quality and its role as a biomarker to treat lipid metabolic syndromes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiangyang Miao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Shi S, Shao D, Yang L, Liang Q, Han W, Xue Q, Qu L, Leng L, Li Y, Zhao X, Dong P, Walugembe M, Kayang BB, Muhairwa AP, Zhou H, Tong H. Whole Genome Analyses Reveal Novel Genes Associated with Chicken Adaptation to Tropical and Frigid Environments. J Adv Res 2022; 47:13-25. [PMID: 35907630 PMCID: PMC10173185 DOI: 10.1016/j.jare.2022.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/17/2022] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Investigating the genetic footprints of historical temperature selection can get insights to the local adaptation and feasible influences of climate change on long-term population dynamics. OBJECT Chicken is a significative species to study genetic adaptation on account of its similar domestication track related to human activity with the most diversified varieties. Yet, few studies have demonstrated the genetic signatures of its adaptation to naturally tropical and frigid environments. METHOD Here, we generated whole genome resequencing of 119 domesticated chickens in China including the following breeds which are in order of breeding environmental temperature from more tropical to more frigid: Wenchang chicken (WCC), green-shell chicken (GSC), Tibetan chicken (TBC), and Lindian chicken (LDC). RESULTS Our results showed WCC branched off earlier than LDC with an evident genetic admixture between WCC and LDC, suggesting their closer genetic relationship. Further comparative genomic analyses solute carrier family 33 member 1 (SLC33A1) and thyroid stimulating hormone receptor (TSHR) genes exhibited stronger signatures for positive selection in the genome of the more tropical WCC. Furthermore, genotype data from about 3,000 African local ecotypes confirmed that allele frequencies of single nucleotide polymorphisms (SNPs) in these 2 genes appeared strongly associated with tropical environment adaptation. In addition, the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) gene exhibited a strong signature for positive selection in the LDC genome, and SNPs with marked allele frequency differences indicated a significant relationship with frigid environment adaptation. CONCLUSION Our findings partially clarify how selection footprints from environmental temperature stress can lead to advantageous genomic adaptions to tropical and frigid environments in poultry and provide a valuable resource for selective breeding of chickens.
Collapse
Affiliation(s)
- Shourong Shi
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Lingyun Yang
- Novogene Bioinformatics Institute, Beijing 10089, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing 10089, China
| | - Wei Han
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Qian Xue
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Liang Qu
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Li Leng
- College of Animal Science and technology, Northeast Agricultural University, Harbin, Heilongjiang, 150038, China
| | - Yishu Li
- Tropical Crop Germplasm Research Institute, Haikou, Hainan, 571101, China
| | - Xiaogang Zhao
- Agriculture and Animal Husbandry Rural and Science and Technology Bureau, Xiangcheng County, Ganzi Tibetan Autonomous Prefecture, Sichuan, 626000, China
| | - Ping Dong
- Agriculture and Animal Husbandry Rural and Science and Technology Bureau, Xiangcheng County, Ganzi Tibetan Autonomous Prefecture, Sichuan, 626000, China
| | - Muhammed Walugembe
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011, USA
| | - Boniface B Kayang
- Department of Animal Science, University of Ghana, Legon, Accra 233, Ghana
| | - Amandus P Muhairwa
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3000 Chuo Kikuu, Morogoro, Tanzania
| | - Huaijun Zhou
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Haibing Tong
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China.
| |
Collapse
|
5
|
Petrelli S, Buglione M, Maselli V, Troiano C, Larson G, Frantz L, Manin A, Ricca E, Baccigalupi L, Wright D, Pietri C, Fulgione D. Population genomic, olfactory, dietary, and gut microbiota analyses demonstrate the unique evolutionary trajectory of feral pigs. Mol Ecol 2022; 31:220-237. [PMID: 34676935 PMCID: PMC11497273 DOI: 10.1111/mec.16238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Domestication is an intriguing evolutionary process. Many domestic populations are subjected to strong human-mediated selection, and when some individuals return to the wild, they are again subjected to selective forces associated with new environments. Generally, these feral populations evolve into something different from their wild predecessors and their members typically possess a combination of both wild and human selected traits. Feralisation can manifest in different forms on a spectrum from a wild to a domestic phenotype. This depends on how the rewilded domesticated populations can readapt to natural environments based on how much potential and flexibility the ancestral genome retains after its domestication signature. Whether feralisation leads to the evolution of new traits that do not exist in the wild or to convergence with wild forms, however, remains unclear. To address this question, we performed population genomic, olfactory, dietary, and gut microbiota analyses on different populations of Sus scrofa (wild boar, hybrid, feral and several domestic pig breeds). Porcine single nucleotide polymorphisms (SNPs) analysis shows that the feral population represents a cluster distinctly separate from all others. Its members display signatures of past artificial selection, as demonstrated by values of FST in specific regions of the genome and bottleneck signature, such as the number and length of runs of homozygosity. Generalised FST values, reacquired olfactory abilities, diet, and gut microbiota variation show current responses to natural selection. Our results suggest that feral pigs are an independent evolutionary unit which can persist so long as levels of human intervention remain unchanged.
Collapse
Affiliation(s)
- Simona Petrelli
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| | - Maria Buglione
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| | - Valeria Maselli
- Department of BiologyUniversity of Naples Federico IINaplesItaly
| | - Claudia Troiano
- Department of HumanitiesUniversity of Naples Federico IINaplesItaly
| | - Greger Larson
- The Palaeogenomics & Bio‐Archaeology Research NetworkResearch Laboratory for Archaeology and History of ArtUniversity of OxfordOxfordUK
| | - Laurent Frantz
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Aurelie Manin
- The Palaeogenomics & Bio‐Archaeology Research NetworkResearch Laboratory for Archaeology and History of ArtUniversity of OxfordOxfordUK
| | - Ezio Ricca
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IINapoliItaly
| | - Loredana Baccigalupi
- Task Force on Microbiome StudiesUniversity of Naples Federico IINapoliItaly
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Dominic Wright
- IFM Biology, AVIAN Behavioural Genomics and Physiology GroupLinköping UniversityLinköpingSweden
| | - Christian Pietri
- Fédération Départementale des Chasseurs de Haute‐Corse (FDCHC)Résidence Nouvelle‐CornicheSt Joseph, BastiaFrance
| | - Domenico Fulgione
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IINapoliItaly
| |
Collapse
|
6
|
Al-Soudy AS, Maselli V, Galdiero S, Kuba MJ, Polese G, Di Cosmo A. Identification and Characterization of a Rhodopsin Kinase Gene in the Suckers of Octopus vulgaris: Looking around Using Arms? BIOLOGY 2021; 10:biology10090936. [PMID: 34571813 PMCID: PMC8465341 DOI: 10.3390/biology10090936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Octopus arms are a fascinating and evolutionarily unique sensory organ, with hundreds of motile suckers, each with thousands of sensory cells, lining eight highly flexible arms. Scientifically, there are many open questions regarding the sensory capabilities of the arms and specifically the highly innervated suckers. In our present work, we used a multidisciplinary approach to fully characterize the light-sensing molecule, Ov-GRK1, in the suckers, skin and retina of Octopus vulgaris. We sequenced the O. vulgaris GRK1 gene, defining a phylogenetic tree and performing a 3D structure model prediction. We found differences in the relative expression of mRNA in different sucker types at several locations along the arm, which might indicate a functional difference. Using labeling methods, we localized the expression to the highly sensitive sucker rim. Our findings indicate that octopus suckers, in specific areas of the arm, might have the ability for light sensing. We therefore suggest that suckers are tactile, chemical and light sensors. Abstract In their foraging behavior octopuses rely on arm search movements outside the visual field of the eyes. In these movements the environment is explored primarily by the suckers that line the entire length of the octopus arm. In this study, for the first time, we report the complete characterization of a light-sensing molecule, Ov-GRK1, in the suckers, skin and retina of Octopus vulgaris. We sequenced the O. vulgaris GRK1 gene, defining a phylogenetic tree and performing a 3D structure model prediction. Furthermore, we found differences in relative mRNA expression in different sucker types at several arm levels, and localized it through in situ hybridization. Our findings suggest that the suckers in octopus arms are much more multimodal than was previously shown, adding the potential for light sensing to the already known mechanical and chemical sensing abilities.
Collapse
Affiliation(s)
- Al-Sayed Al-Soudy
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (A.-S.A.-S.); (V.M.); (G.P.)
| | - Valeria Maselli
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (A.-S.A.-S.); (V.M.); (G.P.)
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Michael J. Kuba
- Department of Neurobiology, Hebrew University of Jerusalem, P.O. Box 12271, Jerusalem 91120, Israel;
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0945, Japan
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (A.-S.A.-S.); (V.M.); (G.P.)
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (A.-S.A.-S.); (V.M.); (G.P.)
- Correspondence:
| |
Collapse
|
7
|
Wang L, Xie Y, Chen W, Zhang Y, Zeng Y. Identification and functional prediction of long noncoding RNAs related to intramuscular fat content in Laiwu pigs. Anim Biosci 2021; 35:115-125. [PMID: 34289582 PMCID: PMC8738936 DOI: 10.5713/ab.21.0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/03/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Intramuscular fat (IMF) is a critical economic indicator of pork quality. Studies on IMF among different pig breeds have been performed via high-throughput sequencing, but comparisons within the same pig breed remain unreported. Methods This study was performed to explore the gene profile and identify candidate long noncoding RNA (lncRNAs) and mRNAs associated with IMF deposition among Laiwu pigs with different IMF contents. Based on the longissimus dorsi muscle IMF content, eight pigs from the same breed and management were selected and divided into two groups: a high IMF (>12%, H) and low IMF group (<5%, L). Whole-transcriptome sequencing was performed to explore the differentially expressed (DE) genes between these two groups. Results The IMF content varied greatly among Laiwu pig individuals (2.17% to 13.93%). Seventeen DE lncRNAs (11 upregulated and 6 downregulated) and 180 mRNAs (112 upregulated and 68 downregulated) were found. Gene Ontology analysis indicated that the following biological processes played an important role in IMF deposition: fatty acid and lipid biosynthetic processes; the extracellular signal-regulated kinase cascade; and white fat cell differentiation. In addition, the peroxisome proliferator-activated receptor, phosphatidylinositol-3-kinase-protein kinase B, and mammalian target of rapamycin pathways were enriched in the pathway analysis. Intersection analysis of the target genes of DE lncRNAs and mRNAs revealed seven candidate genes associated with IMF accumulation. Five DE lncRNAs and 20 DE mRNAs based on the pig quantitative trait locus database were identified and shown to be related to fat deposition. The expression of five DE lncRNAs and mRNAs was verified by quantitative real time polymerase chain reaction (qRT-PCR). The results of qRT-PCR and RNA-sequencing were consistent. Conclusion These results demonstrated that the different IMF contents among pig individuals may be due to the DE lncRNAs and mRNAs associated with lipid droplets and fat deposition.
Collapse
Affiliation(s)
- Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yuhuai Xie
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yongqing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| |
Collapse
|
8
|
Analysis and preliminary validation of the molecular mechanism of fat deposition in fatty and lean pigs by high-throughput sequencing. Mamm Genome 2019; 30:71-80. [PMID: 30843090 PMCID: PMC6491413 DOI: 10.1007/s00335-019-09795-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/25/2019] [Indexed: 01/06/2023]
Abstract
Fat deposition in muscle includes intramuscular fat (IMF) and intermuscular fat. IMF content is an index of pork quality; however, because IMF content is difficult to measure in vivo in young animals, conventional breeding for IMF content is difficult to carry out. The mechanism and progression of animal fat deposition is not well understood, and there are currently no effective control methods. In this study, using Laiwu and large white pigs as the research subjects and RNA sequencing technology, we analyzed the genetic mechanism of animal fat deposition in pigs. Specifically, we analyzed the features of lncRNAs and their potential target genes. We obtained 464 million clean reads, from which 907 lncRNAs were identified. The cis and trans analysis identified target genes, including genes that were upregulated (286) and downregulated (621) in the fatty and lean pigs. ENSSSCG00000008692_ADD1, ENSSSCG00000023124_ADD1 and ENSSSCG00000005918_DGAT1 were validated as target genes of the lncRNAs and were shown to be closely related to fat deposition. These results provide a basis for studying the different metabolic lncRNA expression of IMF deposition. In addition, as the valuable model animal to study the mechanisms of obesity, pigs may represent a new avenue for studying human obesity.
Collapse
|
9
|
Wang Y, Ma C, Sun Y, Li Y, Kang L, Jiang Y. Dynamic transcriptome and DNA methylome analyses on longissimus dorsi to identify genes underlying intramuscular fat content in pigs. BMC Genomics 2017; 18:780. [PMID: 29025412 PMCID: PMC5639760 DOI: 10.1186/s12864-017-4201-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/08/2017] [Indexed: 01/12/2023] Open
Abstract
Background The intramuscular fat content (IMF) refers to the amount of fat within muscles, including the sum of phospholipids mainly found in cell membranes, triglycerides and cholesterol, and is determined both by hyperplasia and hypertrophy of adipocyte during the development of pigs. The IMF content is an important economic trait that is genetically controlled by multiple genes. The Laiwu pig is an indigenous fatty pig breed distributed in North China, characterized by excessively higher level of IMF content (9%~12%), therefore, is suitable for the identification of genes controlling IMF variations. To identify genes underlying IMF deposition, we performed genome-wide transcriptome and methylome analyses on longissimus dorsi (LD) muscle in Laiwu pigs across four developmental stages. Results A total of 22,524 expressed genes were detected and 1158 differentially expressed genes (DEGs) were hierarchically clustered in the LD muscle over four developmental stages from 60 d to 400 d. These genes were significantly clustered into four temporal expression profiles, and genes participating in fat cell differentiation and lipid biosynthesis processes were identified. From 120 d to 240 d, the period with the maximum IMF deposition rate, the lipid biosynthesis related genes (FOSL1, FAM213B and G0S2), transcription factors (TFs) (EGR1, KLF5, SREBF2, TP53 and TWIST1) and enriched pathways (steroid biosynthesis and fatty acid biosynthesis) were revealed; and fat biosynthesis relevant genes showing differences in DNA methylation in gene body or intergenic region were detected, such as FASN, PVALB, ID2, SH3PXD2B and EGR1. Conclusions This study provides a comprehensive landscape of transcriptome of the LD muscle in Laiwu pigs ranging from 60 to 400 days old, and methylome of the LD muscle in 120 d and 240 d Laiwu pigs. A set of candidate genes and TFs involved in fat biosynthesis process were identified, which were probably responsible for IMF deposition. The results from this study would provide a reference for the identification of genes controlling IMF variation, and for exploring molecular mechanisms underlying IMF deposition in pigs. Electronic supplementary material The online version of this article (10.1186/s12864-017-4201-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuding Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Cai Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yi Li
- Central Hospital of Taian, Taian, 271018, People's Republic of China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China.
| |
Collapse
|
10
|
Cui J, Chen W, Liu J, Xu T, Zeng Y. Study on quantitative expression of PPARγ and ADRP in muscle and its association with intramuscular fat deposition of pig. SPRINGERPLUS 2016; 5:1501. [PMID: 27652074 PMCID: PMC5014771 DOI: 10.1186/s40064-016-3187-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023]
Abstract
Background Intramuscular fat (intramuscular fat, IMF) is one of the important traits of pork quality. How to reasonably improve the intramuscular fat content is the most focus researchers. Some possible regulation of intramuscular fat deposition of candidate genes to cause the attention of people. The objective of this study was to elucidate the relationship between peroxisome proliferator-activated receptor γ (PPARγ) and adipose differentiation-related protein (ADRP) mRNA expression and intramuscular fat (IMF) deposition in the muscle tissue of three breeds of pig: Laiwu (LW), Lulai Black (LL), and Large White (LY). Results qPCR analysis of the PPARγ and ADRP genes in the three breeds of pig revealed PPARγ and ADRP mRNA expression profiles of LW > LL > LY and LL > LW > LY, respectively. PPARγ mRNA expression was significantly and positively correlated with IMF deposition (p < 0.05). There were significant correlations between PPARγ and ADRP mRNA expression levels (p < 0.01). Conclusions These results suggest correlations between PPARγ and ADRP in fat deposition and regulation in pigs, PPARγ gene may be a main effector of IMF content and play an important role during adipocyte differentiation in pigs, thereby providing new information to further elucidate molecular mechanisms associated with intramuscular fat deposition in Laiwu pigs and provides new data for further molecular studies of mechanisms underlying intramuscular fat deposition in human obesity. The continued elucidation of specific genetic mechanisms between PPARγ and ADRP warrants further studies.
Collapse
Affiliation(s)
- Jingxiang Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018 China.,Weifang University of Science and Technology, Shouguang, 262700 Shandong China
| | - Wei Chen
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018 China
| | - Jie Liu
- Weifang University of Science and Technology, Shouguang, 262700 Shandong China
| | - Tao Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Yongqing Zeng
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018 China
| |
Collapse
|
11
|
Yang Y, Tang Z, Fan X, Xu K, Mu Y, Zhou R, Li K. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle. Sci Rep 2016; 6:29039. [PMID: 27352850 PMCID: PMC4926253 DOI: 10.1038/srep29039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/14/2016] [Indexed: 01/28/2023] Open
Abstract
Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals.
Collapse
Affiliation(s)
- Yalan Yang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R.China
| | - Zhonglin Tang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R.China
| | - Xinhao Fan
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Kui Xu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Yulian Mu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Rong Zhou
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Kui Li
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R.China
| |
Collapse
|
12
|
Yang H, Xu XL, Ma HM. The complete sequence of mitochondrial genome of Laiwu Black pig (Sus Scrofa). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:1060-1. [PMID: 24960570 DOI: 10.3109/19401736.2014.928867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the present study, the ear tissue of an adult Laiwu Black pig is from the Shandong province of China. The complete mitochondrial genome of Laiwu Black pig was determined by polymerase chain reaction (PCR). The complete mitochondrial genome is 16,710 bp, and it contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, a control region (D-loop), with the genome organization and gene order being identical to that of the typical vertebrates.
Collapse
Affiliation(s)
- Hu Yang
- a College of Animal Science and Technology of Hunan Agricultural University , Changsha , P.R. China and.,b College of Life Sciences and Resource Environment of Yichun University , Yichun , P.R. China
| | - Xing-Li Xu
- b College of Life Sciences and Resource Environment of Yichun University , Yichun , P.R. China
| | - Hai-Ming Ma
- a College of Animal Science and Technology of Hunan Agricultural University , Changsha , P.R. China and
| |
Collapse
|