1
|
Huang J, Wang T, Qiu Y, Hassanyar AK, Zhang Z, Sun Q, Ni X, Yu K, Guo Y, Yang C, Lü Y, Nie H, Lin Y, Li Z, Su S. Differential Brain Expression Patterns of microRNAs Related to Olfactory Performance in Honey Bees ( Apis mellifera). Genes (Basel) 2023; 14:genes14051000. [PMID: 37239360 DOI: 10.3390/genes14051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
MicroRNAs (miRNAs) play a vital role in the nerve regulation of honey bees (Apis mellifera). This study aims to investigate the differences in expression of miRNAs in a honey bee's brain for olfactory learning tasks and to explore their potential role in a honey bee's olfactory learning and memory. In this study, 12 day old honey bees with strong and weak olfactory performances were utilized to investigate the influence of miRNAs on olfactory learning behavior. The honey bee brains were dissected, and a small RNA-seq technique was used for high-throughput sequencing. The data analysis of the miRNA sequences revealed that 14 differentially expressed miRNAs (DEmiRNAs) between the two groups, strong (S) and weak (W), for olfactory performance in honey bees were identified, which included seven up-regulated and seven down-regulated. The qPCR verification results of the 14 miRNAs showed that four miRNAs (miR-184-3p, miR-276-3p, miR-87-3p, and miR-124-3p) were significantly associated with olfactory learning and memory. The target genes of these DEmiRNAs were subjected to the GO database annotation and KEGG pathway enrichment analyses. The functional annotation and pathway analysis showed that the neuroactive ligand-receptor interaction pathway, oxidative phosphorylation, biosynthesis of amino acids, pentose phosphate pathway, carbon metabolism, and terpenoid backbone biosynthesis may be a great important pathway related to olfactory learning and memory in honey bees. Our findings together further explained the relationship between olfactory performance and the brain function of honey bees at the molecular level and provides a basis for further study on miRNAs related to olfactory learning and memory in honey bees.
Collapse
Affiliation(s)
- Jingnan Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianbao Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanmei Qiu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aqai Kalan Hassanyar
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaonan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Laboratory of Evolution and Diversity Biology, UMR5174, University Toulouse III Paul Sabatier, CNRS, 31062 Toulouse, France
| | - Qiaoling Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xiaomin Ni
- Faculty of Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Kejun Yu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongkang Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Changsheng Yang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yang Lü
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157041, China
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiguo Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Academy of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Tsvetkov N, Zayed A. Searching beyond the streetlight: Neonicotinoid exposure alters the neurogenomic state of worker honey bees. Ecol Evol 2021; 11:18733-18742. [PMID: 35003705 PMCID: PMC8717355 DOI: 10.1002/ece3.8480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Neonicotinoid insecticides have been implicated in honey bee declines, with many studies showing that sublethal exposure impacts bee behaviors such as foraging, learning, and memory. Despite the large number of ecotoxicological studies carried out to date, most focus on a handful of worker phenotypes leading to a "streetlight effect" where the a priori choice of phenotypes to measure may influence the results and conclusions arising from the studies. This bias can be overcome with the use of toxicological transcriptomics, where changes in gene expression can provide a more objective view of how pesticides alter animal traits. Here, we used RNA sequencing to examine the changes in neurogenomic states of nurse and forager honey bees that were naturally exposed to neonicotinoids in the field and artificially exposed to neonicotinoids in a controlled experiment. We found that neonicotinoid exposure influenced the neurogenomic state of foragers and nurses in different ways; foragers experienced shifts in expression of genes involved in cognition and development, while nurses experienced shifts in expression of genes involved in metabolism. Our study suggests that neonicotinoids influence nurse and forager bees in a different manner. We also found no to minimal overlap in the differentially expressed genes in our study and in previously published studies, which might help reconcile the seemingly contradictory results often reported in the neonicotinoid literature.
Collapse
Affiliation(s)
| | - Amro Zayed
- Department of BiologyYork UniversityTorontoONCanada
| |
Collapse
|
3
|
Tropilaelaps mercedesae parasitism changes behavior and gene expression in honey bee workers. PLoS Pathog 2021; 17:e1009684. [PMID: 34237116 PMCID: PMC8266070 DOI: 10.1371/journal.ppat.1009684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
Tropilaelaps mercedesae is one of the most problematic honey bee parasites and has become more threatening to the beekeeping industry. Tropilaelaps can easily parasitize immature honey bees (larvae and pupae) and have both lethal and sublethal effects on the individual worker bees. Our study for the first time experimentally assessed the effects of T. mercedesae on olfactory learning, flight ability, homing ability as well as transcriptional changes in parasitized adult honey bees. T. mercedesae infestation had negative impacts on olfactory associated function, flight ability, and homing rate. The volume of the mushroom body significantly increased in infested honey bees, which may be correlated to the lower sucrose responsiveness as well as lower learning ability in the infested bees. The gene expression involved in immune systems and carbohydrate transport and metabolism were significantly different between infested bees and non-infested bees. Moreover, genes function in cell adhesion play an essential role in olfactory sensory in honey bees. Our findings provide a comprehensive understanding of European honey bees in response to T. mercedesae infestation, and could be used to further investigate the complex molecular mechanisms in honey bees under parasitic stress. In recent decades, there has been serious concern about the decline of honey bees in the world. One of the most serious factors contributing to bee population declines is mite parasitism. Although Varroa destructor is the most widespread globally, Tropilaelaps mercedesae displays greater threat to bee colonies due to its smaller size, shorter phoretic phase, more rapid locomotion, as well as faster reproductive rate. Tropilaelaps mites, originally parasite of the giant Asian honey bees, now becoming an emerging threat of European honey bees (Apis mellifera) in Asian area. This work aimed to investigate the influence of T. mercedesae infestation on behavior and gene expression in A. mellifera. Our results highlight the T. mercedesae infestation induced negative effects of olfactory learning, flight ability, homing ability of honey bee workers. Moreover, we found that T. mercedesae infestation caused the up-regulation of genes involved in immune systems and carbohydrate mechanism which were correlated to the different olfactory learning performance in infested honeybee. In addition, genes function in cell adhesion play an essential role in olfactory sensory in honey bees. Our results increase the knowledge of proximate mechanisms in honey bee responding to parasitic stress.
Collapse
|
4
|
Effect of Astragalus membranaceus Oral Solution on Lifespan and Learning and Memory Ability of Honey Bees. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5745048. [PMID: 32351998 PMCID: PMC7174962 DOI: 10.1155/2020/5745048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/03/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
In this study, the effects of Astragalus membranaceus oral solution on lifespan and learning and memory abilities of honey bees were evaluated. Two groups of bees were fed with sucrose syrup (50%) containing low dose (1.33%) and high dose (13.3%) of A. membranaceus oral solution, respectively. The proboscis extension response (PER) analysis was applied to examine the learning and memory capabilities of bees. Two genes related to memory formation in honey bees were determined by real-time PCR. High dose (13.3%) of A. membranaceus significantly decreased the mean lifespan of bees compared to the bees fed with low dose (1.33%) and control bees. No significant differences in lifespan of bees were found between low-dose-fed bees and control bees. The results of PER experiments showed apparent improvement in the memorizing ability of the high-dose group (in comparison with the control group). Moreover, the relative expression levels of Nmdar1 in the low-dose group and control group were significantly lower than those in the high-dose group. It is preliminarily concluded that A. membranaceus has an adverse effect on the mean lifespan of honey bees but might be helpful in strengthening memories.
Collapse
|
5
|
Gashout HA, Guzman-Novoa E, Goodwin PH, Correa-Benítez A. Impact of sublethal exposure to synthetic and natural acaricides on honey bee (Apis mellifera) memory and expression of genes related to memory. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104014. [PMID: 31923391 DOI: 10.1016/j.jinsphys.2020.104014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Acaricides are used by beekeepers in honey bee (Apis mellifera L.) colonies to control parasitic mites, but may also have adverse effects to honey bees. In this study, five commonly used acaricides were tested for their sublethal effects on memory and expression of neural-related genes in honey bees. Memory measured with the proboscis extension reflex (PER) assay was significantly reduced by topical treatment of bees with a single LD05 dose of formic acid at 2 and 24 h post treatment (hpt). However, tau-fluvalinate, amitraz, coumaphos, and formic acid, but not thymol, resulted in memory loss at 48 hpt. The LD05 doses of the acraricides did not affect expression of neuroligin-1, related to memory, or expression of major royal jelly protein-1, related to both memory and development, although expression of both genes was affected at LD50 doses. The LD05 doses of thymol, formic acid, amitraz and coumaphos increased defensin-1 expression, which is related to both memory and immunity. The effect of thymol, however, may have been due to its impact on the immune response rather than memory. This study demonstrates that acaricides vary in their effects on bee's memory, and that the widely used acaricide, formic acid, is particularly damaging.
Collapse
Affiliation(s)
- Hanan A Gashout
- Plant Protection Dept., Faculty of Agriculture, University of Tripoli, P. O. Box 13538, Tripoli, Libya; School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada.
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
| | - Adriana Correa-Benítez
- Departamento de Medicina y Zootecnia en Abejas, FMVZ, UNAM, Cd. Univ., Mexico 04510, Mexico
| |
Collapse
|
6
|
Li L, Su S, Perry CJ, Elphick MR, Chittka L, Søvik E. Large-scale transcriptome changes in the process of long-term visual memory formation in the bumblebee, Bombus terrestris. Sci Rep 2018; 8:534. [PMID: 29323174 PMCID: PMC5765018 DOI: 10.1038/s41598-017-18836-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 01/05/2023] Open
Abstract
Many genes have been implicated in mechanisms of long-term memory formation, but there is still much to be learnt about how the genome dynamically responds, transcriptionally, during memory formation. In this study, we used high-throughput sequencing to examine how transcriptome profiles change during visual memory formation in the bumblebee (Bombus terrestris). Expression of fifty-five genes changed immediately after bees were trained to associate reward with a single coloured chip, and the upregulated genes were predominantly genes known to be involved in signal transduction. Changes in the expression of eighty-one genes were observed four hours after learning a new colour, and the majority of these were upregulated and related to transcription and translation, which suggests that the building of new proteins may be the predominant activity four hours after training. Several of the genes identified in this study (e.g. Rab10, Shank1 and Arhgap44) are interesting candidates for further investigation of the molecular mechanisms of long-term memory formation. Our data demonstrate the dynamic gene expression changes after associative colour learning and identify genes involved in each transcriptional wave, which will be useful for future studies of gene regulation in learning and long-term memory formation.
Collapse
Affiliation(s)
- Li Li
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Songkun Su
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Clint J Perry
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
- Institute for Advanced Study, Wallotstrasse 19, D-14193, Berlin, Germany
| | - Eirik Søvik
- Department of Science and Mathematics, Volda University College, 6100, Volda, Norway
| |
Collapse
|
7
|
Genome-wide DNA methylation changes associated with olfactory learning and memory in Apis mellifera. Sci Rep 2017; 7:17017. [PMID: 29208987 PMCID: PMC5717273 DOI: 10.1038/s41598-017-17046-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022] Open
Abstract
The honeybee is a model organism for studying learning and memory formation and its underlying molecular mechanisms. While DNA methylation is well studied in caste differentiation, its role in learning and memory is not clear in honeybees. Here, we analyzed genome-wide DNA methylation changes during olfactory learning and memory process in A. mellifera using whole genome bisulfite sequencing (WGBS) method. A total of 853 significantly differentially methylated regions (DMRs) and 963 differentially methylated genes (DMGs) were identified. We discovered that 440 DMRs of 648 genes were hypermethylated and 274 DMRs of 336 genes were hypomethylated in trained group compared to untrained group. Of these DMGs, many are critical genes involved in learning and memory, such as Creb, GABABR and Ip3k, indicating extensive involvement of DNA methylation in honeybee olfactory learning and memory process. Furthermore, key enzymes for histone methylation, RNA editing and miRNA processing also showed methylation changes during this process, implying that DNA methylation can affect learning and memory of honeybees by regulating other epigenetic modification processes.
Collapse
|
8
|
Lateralization of gene expression in the honeybee brain during olfactory learning. Sci Rep 2016; 6:34727. [PMID: 27703214 PMCID: PMC5050455 DOI: 10.1038/srep34727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 09/20/2016] [Indexed: 12/17/2022] Open
Abstract
In the last decade, it has been demonstrated that brain functional asymmetry occurs not only in vertebrates but also in invertebrates. However, the mechanisms underlying functional asymmetry remain unclear. In the present study, we trained honeybees of the same parentage and age, on the proboscis extension reflex (PER) paradigm with only one antenna in use. The comparisons of gene expression between the left and right hemispheres were carried out using high throughput sequencing. Our research revealed that gene expression in the honeybee brain is also asymmetric, with more genes having higher expression in the right hemisphere than the left hemisphere. Our studies show that during olfactory learning, the left hemisphere is more responsible for long term memory and the right hemisphere is more responsible for the learning and short term memory.
Collapse
|
9
|
Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees. Sci Rep 2015; 5:16223. [PMID: 26531238 PMCID: PMC4632027 DOI: 10.1038/srep16223] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/08/2015] [Indexed: 11/09/2022] Open
Abstract
DNA methylation and demethylation are epigenetic mechanisms involved in memory formation. In honey bees DNA methyltransferase (Dnmt) function is necessary for long-term memory to be stimulus specific (i.e. to reduce generalization). So far, however, it remains elusive which genes are targeted and what the time-course of DNA methylation is during memory formation. Here, we analyse how DNA methylation affects memory retention, gene expression, and differential methylation in stimulus-specific olfactory long-term memory formation. Out of 30 memory-associated genes investigated here, 9 were upregulated following Dnmt inhibition in trained bees. These included Dnmt3 suggesting a negative feedback loop for DNA methylation. Within these genes also the DNA methylation pattern changed during the first 24 hours after training. Interestingly, this was accompanied by sequential activation of the DNA methylation machinery (i.e. Dnmts and Tet). In sum, memory formation involves a temporally complex epigenetic regulation of memory-associated genes that facilitates stimulus specific long-term memory in the honey bee.
Collapse
|
10
|
Differential protein expression analysis following olfactory learning in Apis cerana. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:1053-61. [DOI: 10.1007/s00359-015-1042-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 11/26/2022]
|
11
|
Neuroligin-associated microRNA-932 targets actin and regulates memory in the honeybee. Nat Commun 2014; 5:5529. [PMID: 25409902 DOI: 10.1038/ncomms6529] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggests small non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) control levels of mRNA expression during experience-related remodelling of the brain. Here we use an associative olfactory learning paradigm in the honeybee Apis mellifera to examine gene expression changes in the brain during memory formation. Brain transcriptome analysis reveals a general downregulation of protein-coding genes, including asparagine synthetase and actin, and upregulation of ncRNAs. miRNA-mRNA network predictions together with PCR validation suggest miRNAs including miR-210 and miR-932 target the downregulated protein-coding genes. Feeding cholesterol-conjugated antisense RNA to bees results in the inhibition of miR-210 and of miR-932. Loss of miR-932 impairs long-term memory formation, but not memory acquisition. Functional analyses show that miR-932 interacts with Act5C, providing evidence for direct regulation of actin expression by an miRNA. An activity-dependent increase in miR-932 expression may therefore control actin-related plasticity mechanisms and affect memory formation in the brain.
Collapse
|
12
|
Qin QH, Wang ZL, Tian LQ, Gan HY, Zhang SW, Zeng ZJ. The integrative analysis of microRNA and mRNA expression in Apis mellifera following maze-based visual pattern learning. INSECT SCIENCE 2014; 21:619-636. [PMID: 24136738 DOI: 10.1111/1744-7917.12065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
The honeybee (Apis mellifera) is a social insect with strong sensory capacity and diverse behavioral repertoire and is recognized as a good model organism for studying the neurobiological basis of learning and memory. In this study, we analyzed the changes in microRNA (miRNA) and messenger RNA (mRNA) following maze-based visual learning using next-generation small RNA sequencing and Solexa/lllumina Digital Gene Expression tag profiling (DGE). For small RNA sequencing, we obtained 13 367 770 and 13 132 655 clean tags from the maze and control groups, respectively. A total of 40 differentially expressed known miRNAs were detected between these two samples, and all of them were up-regulated in the maze group compared to the control group. For DGE, 5 681 320 and 5 939 855 clean tags were detected from the maze and control groups, respectively. There were a total of 388 differentially expressed genes between these two samples, with 45 genes up-regulated and 343 genes down-regulated in the maze group, compared to the control group. Additionally, the expression levels of 10 differentially expressed genes were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the expression trends of eight of them were consistent with the DGE result, although the degree of change was lower in amplitude. The integrative analysis of miRNA and mRNA expression showed that, among the 40 differentially expressed known miRNAs and 388 differentially expressed genes, 60 pairs of miRNA/mRNA were identified as co-expressed in our present study. These results suggest that both miRNA and mRNA may play a pivotal role in the process of learning and memory in honeybees. Our sequencing data provide comprehensive miRNA and gene expression information for maze-based visual learning, which will facilitate understanding of the molecular mechanisms of honeybee learning and memory.
Collapse
Affiliation(s)
- Qiu-Hong Qin
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | | | | | | | | | | |
Collapse
|