1
|
Niu F, Gu F, Zhao M, Gao Y, Tu W, Kou M, Pan W. Aggregation and Growth Mechanism of Ovalbumin and Sodium Carboxymethylcellulose Colloidal Particles under Thermal Induction. Biomacromolecules 2023; 24:1532-1543. [PMID: 36908256 DOI: 10.1021/acs.biomac.3c00063] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Ovalbumin (OVA)/sodium carboxymethylcellulose (CMC) colloidal particles were prepared with different compactness and morphologies by regulating the interaction between proteins and polysaccharides during heating. Electrostatic interactions between the amine groups of OVA (-NH3+) and carboxyl groups of CMC (-COO-) enhanced complex formation. The protein conformation change benefited the hydrophobic interaction between the particles. Proteins in colloidal particles were unfolded/folded under thermal induction to form aggregates having more β-sheet structures. When the OVA/CMC ratio was 1:2, the initially loosely connected OVA/CMC aggregation changed into a uniform sphere between 25 and 90 °C. The mass ratio of OVA to CMC within the final colloidal particle (90 °C) was about 1:1.4. The OVA/CMC particle stability was maintained with hydrogen bonding, hydrophobicity, and disulfide bond. When OVA levels were predominant, OVA and CMC developed an approximately hollow sphere. Moreover, the final colloidal particle composition showed the OVA-to-CMC ratio as 3:1 (w/w). OVA bound into colloidal particle pores to increase compactness. Moreover, OVA and CMC bound to the colloidal particle while the particle shrank, thereby increasing the compactness of colloidal particles. There was a significant decrease in ABTS•+ scavenging activity of curcumin compared with that of the particles with a ratio of 1:2. Thus, the rational adjustment of the structure of colloidal particles could effectively enhance their functional characteristics, providing a new way for the controlled release of the active ingredients.
Collapse
Affiliation(s)
- Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Mengdi Zhao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yi Gao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weiwei Tu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Mengxuan Kou
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
2
|
Liu C, Lv N, Xu YQ, Tong H, Sun Y, Huang M, Ren G, Shen Q, Wu R, Wang B, Cao Z, Xie H. pH-dependent interaction mechanisms between β-lactoglobulin and EGCG: Insights from multi-spectroscopy and molecular dynamics simulation methods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Hajizadeh S, Dicko C, Bülow L. Interaction of haemin with albumin-based macroporous cryogel: Adsorption isotherm and fluorescence quenching studies. Front Bioeng Biotechnol 2022; 10:1072153. [DOI: 10.3389/fbioe.2022.1072153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Albumin-based cryogels for capturing haemin were synthesised by crosslinking different biomolecules, bovine serum albumin (BSA) and ovalbumin (OVA). The impact of the protein and coupling agent concentrations on cryogel’s mechanical properties, swelling ratios and polymerisation yields, as well as autoclaving as a post-treatment on the cryogel, were studied. We found that BSA (50 mg/ml) and the crosslinker (N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, 46 mg/ml) formed a cryogel with optimum physical characteristics at a comparatively low protein concentration. The cryogel’s mechanical stability was increased using a double-layer cryogel approach by crosslinking the BSA proteins at subzero temperature inside an acrylamide and hydroxyethyl methacrylate premade cryogels. Batch binding and kinetic adsorption isotherms of haemin on the cryogels were assessed to evaluate their binding capacity toward the porphyrin molecule. The results showed that single-layer cryogels (BSA and OVA) had a higher capacity (∼0.68 mg/ml gel) and higher reaction rate constant towards haemin adsorption than double-layer gels. In contrast, the double-layer cryogels had higher mechanical strength than single-layer gels. The experimental results suggested that the cryogels followed the Freundlich model and the pseudo-second-order isotherm for batch adsorption and kinetics, respectively. The interaction between haemin and the gels was studied by fluorescence quenching. We found between 1.1 and 1.6 binding sites for different cryogels.
Collapse
|
4
|
Molecular docking studies on the binding interaction and stability of ovalbumin with an intramolecular charge transfer dye 4-dicyanomethylene-2,6-dimethyl-4H-pyran in the presence of an antibiotic: Tetracycline. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Zhou W, Peng C, Wang D, Li J, Tu Z, Zhang L. Interaction Mechanism between OVA and Flavonoids with Different Hydroxyl Groups on B-Ring and Effect on Antioxidant Activity. Foods 2022; 11:foods11091302. [PMID: 35564025 PMCID: PMC9099482 DOI: 10.3390/foods11091302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Ovalbumin (OVA) is a common carrier with high efficiency to deliver flavonoids. The aim of this study was to investigate the interaction mechanism of OVA and four flavonoids (quercetin (Que), myricetin (Myri), isorhamnetin (Ish), and kaempferol (Kaem)) with similar structures by fluorescence spectra, SDS−PAGE, FT−IR, and molecular docking analysis, and the effect on the antioxidant abilities of flavonoids was also evaluated. Results indicated that the antioxidant activity of flavonoids was positively correlated to the number of phenolic hydroxyl groups of on the B-ring, and weakened when the C-3′ position was replaced by a methoxy group. The addition of OVA enhanced the antioxidant activity of Que/Kaem, while it masked the antioxidant activity of Myri. The formation of Que/Myri/Ish/Kaem−OVA complexes was a spontaneous exothermic process driven mainly by hydrogen bond and van der Waals force, which could result in the change in OVA conformation and induce the transformation of α-helix to β-sheet. Among these, Kaem exhibited the strongest binding ability with OVA, and showed the greatest impact on the secondary and conformational structure of OVA, followed by Que. The hydroxylation of C-3′ and methoxylation of C-5′ weaken the interaction of Kaem with OVA. Molecular docking analysis suggested that Que, Myri, Ish, and Kaem formed six, three, five, and four hydrogen bonds with OVA, and the number of hydrogen bonds was not positively correlated with their binding constants. Our findings can provide a theoretical basis for the application of OVA on improving the antioxidant activity of flavonoids, and may help to explain the delivery efficiency of OVA on different bioactive constituents.
Collapse
Affiliation(s)
| | | | | | | | | | - Lu Zhang
- Correspondence: ; Tel.: +86-791-8812-0965
| |
Collapse
|
6
|
Insights from alpha-Lactoalbumin and beta-Lactoglobulin into mechanisms of nanoliposome-whey protein interactions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Niu F, Du Y, Zhang Q, Zhang B, Hu D, Ma S, Gu F, Pan W. Ovalbumin/carboxymethylcellulose colloids: Particle compactness and interfacial stability. Food Chem 2022; 372:131223. [PMID: 34614464 DOI: 10.1016/j.foodchem.2021.131223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/19/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022]
Abstract
A protein/polysaccharide colloidal particle was prepared via combined complex coacervation and heat-induction. When the ratio of ovalbumin (OVA) to carboxymethylcellulose (CMC) was at 1:2, loose flexible particles (low Df) with low surface hydrophobicity were obtained. Conversely, dense and compact particles (high Df) were easily formed at a higher OVA/CMC ratio. Only in the appropriate OVA/CMC ratio, pH will have a greater impact on the colloidal particles. At the pH value of 4.4, the OVA/CMC ratio had a greater impact on the colloidal particles compared to pH. The emulsion stabilized by loose particles had a mean particle size of 3888 nm and was easily flocculated and creamed. On the other hand, compact particles formed a stable emulsion, which had a higher exponent of Δr2 (0.867) and could resist flocculation during the 7 days storage. As such, the results showed that stable emulsion could be realized by utilizing compact particles as emulsifiers.
Collapse
Affiliation(s)
- Fuge Niu
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Anhui Rongda Poultry Development Co., Ltd., Xuancheng 242200, China.
| | - Yixuan Du
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiuping Zhang
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Bin Zhang
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Demei Hu
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shuang Ma
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weichun Pan
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
8
|
Visentini FF, Perez AA, Santiago LG. Bioactive compounds: Application of albumin nanocarriers as delivery systems. Crit Rev Food Sci Nutr 2022; 63:7238-7268. [PMID: 35238254 DOI: 10.1080/10408398.2022.2045471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enriched products with bioactive compounds (BCs) show the capacity to produce a wide range of possible health effects. Most BCs are essentially hydrophobic and sensitive to environmental factors; so, encapsulation becomes a strategy to solve these problems. Many globular proteins have the intrinsic ability to bind, protect, encapsulate, and introduce BCs into nutraceutical or pharmaceutical matrices. Among them, albumins as human serum albumin (HSA), bovine serum albumin (BSA), ovalbumin (OVA) and α-lactalbumin (ALA) are widely abundant, available, and applied in many industrial sectors, becoming promissory materials to encapsulate BCs. Therefore, this review focuses on researches about the main groups of natural origin BCs (namely phenolic compounds, lipids, vitamins, and carotenoids), the different types of nanostructures based on albumins to encapsulate them and the main fields of application for BCs-loaded albumin systems. In this context, phenolic compounds (catechins, quercetin, and chrysin) are the most extensively BCs studied and encapsulated in albumin-based nanocarriers. Other extensively studied subgroups are stilbenes and curcuminoids. Regarding lipids and vitamins; terpenes, carotenoids (β-carotene), and xanthophylls (astaxanthin) are the most considered. The main application areas of BCs are related to their antitumor, anti-inflammatory, and antioxidant properties. Finally, BSA is the most used albumin to produced BCs-loaded nanocarriers.
Collapse
Affiliation(s)
- Flavia F Visentini
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Adrián A Perez
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Liliana G Santiago
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
9
|
Wang Q, Pan MH, Chiou YS, Li Z, Wei S, Yin X, Ding B. Mechanistic understanding of the effects of ovalbumin-nanoliposome interactions on ovalbumin emulsifying properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Razzak MA, Li J, Choi SS. Egg-Curry: Insights into the Interaction Between Curcumin and Ovalbumin Using Spectroscopic Analyses and Protein-Ligand Docking Simulations. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09704-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Evaluation of ovalbumin nanocarriers to promote the vehiculization and antifungal properties of cinnamaldehyde in aqueous media. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Akhtar A, Aslam S, Khan S, McClements DJ, Khalid N, Maqsood S. Utilization of diverse protein sources for the development of protein-based nanostructures as bioactive carrier systems: A review of recent research findings (2010-2021). Crit Rev Food Sci Nutr 2021; 63:2719-2737. [PMID: 34565242 DOI: 10.1080/10408398.2021.1980370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Consumer awareness of the relationship between health and nutrition has caused a substantial increase in the demand for nutraceuticals and functional foods containing bioactive compounds (BACs) with potential health benefits. However, the direct incorporation of many BACs into commercial food and beverage products is challenging because of their poor matrix compatibility, chemical instability, low bioavailability, or adverse impact on food quality. Advanced encapsulation technologies are therefore being employed to overcome these problems. In this article, we focus on the utilization of plant and animal derived proteins to fabricate micro and nano-particles that can be used for the oral delivery of BACs such as omega-3 oils, vitamins and nutraceuticals. This review comprehensively discusses different methods being implemented for fabrications of protein-based delivery vehicles, types of proteins used, and their compatibility for the purpose. Finally, some of the challenges and limitations of different protein matrices for encapsulation of BACs are deliberated upon. Various approaches have been developed for the fabrication of protein-based microparticles and nanoparticles, including injection-gelation, controlled denaturation, and antisolvent precipitation methods. These methods can be used to construct particle-based delivery systems with different compositions, sizes, surface hydrophobicity, and electrical characteristics, thereby enabling them to be used in a wide range of applications.
Collapse
Affiliation(s)
- Aqsa Akhtar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sadia Aslam
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
Fu L, Liu G, Zhao D, Yuan L, Lu K. Interaction of two peptide drugs with biomacromolecules analyzed by molecular docking and multi-spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119673. [PMID: 33751958 DOI: 10.1016/j.saa.2021.119673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/08/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Peptide drugs, which are mainly used for the treatment of AIDS, myeloma, and breast cancer, have evolved rapidly owing to their high efficacy and low side effects. The interaction mechanisms of two peptide drugs with two biological macromolecules (protein and DNA), which are of great significance in disease prevention and drug design, were investigated using molecular docking, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, UV-visible spectroscopy and viscosity measurements. The interaction between a series of common drugs and ovalbumin (OVA) was simulated by molecular docking, and two peptide drugs with the highest energy values, namely atazanavir and carfilzomib, were selected; the binding energy values of these drugs with OVA were -59.20 and -55.93 kcal/mol, respectively. The Kb values of the interaction of the two drugs with OVA/DNA were in the range of 104-107 M-1, and the binding affinity of the drugs was stronger with OVA than with DNA. Hydrogen bonds and van der Waals forces were very important for the binding between drugs and OVA through molecular docking studies, and it was consistent with experimental results (ΔH < 0, ΔH < 0). The synchronous fluorescence spectrum showed that the interaction caused a change to the original structure of OVA, and atazanavir had a greater effect on OVA than carfilzomib. CD spectrum analysis also demonstrated that the conformation of OVA changed slightly. The interaction between atazanavir and DNA was mainly driven by hydrophobic forces (ΔH > 0 and ΔH > 0), whereas the major interaction forces involved in the binding of carfilzomib with DNA were hydrogen bonds and van der Waals forces. DNA melting studies, UV-visible spectroscopy, CD spectroscopy and viscosity measurements established that the interaction between the drugs and DNA was groove binding.
Collapse
Affiliation(s)
- Linna Fu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China
| | - Guangbin Liu
- Chemical College, Zhengzhou University, Zhengzhou 450001, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Libo Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kui Lu
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China.
| |
Collapse
|
14
|
Jamali N, Soureshjani EH, Mobini GR, Samare-Najaf M, Clark CCT, Saffari-Chaleshtori J. Medicinal plant compounds as promising inhibitors of coronavirus (COVID-19) main protease: an in silico study. J Biomol Struct Dyn 2021; 40:8073-8084. [PMID: 33970805 DOI: 10.1080/07391102.2021.1906749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The novel Coronavirus (COVID-19) has spread rapidly across the globe and has involved more than 215 countries and territories. Due to a lack of effective therapy or vaccine, urgent and concerted efforts are needed to identify therapeutic targets and medications. COVID-19 main protease represents a major target for drug treatment to inhibit viral function. The present study sought to evaluate medicinal plant compounds as potential inhibitors of the COVID-19 main protease using molecular docking and molecular dynamic analysis. The PDB files of COVID-19 main protease and some medicinal plant compounds were retrieved from the Protein Data Bank (http://www.rcsb.org) and Pubchem server, respectively. The Gromacs software was used for simulation studies, and molecular docking analysis was done using Autodock 4.2. The COVID-19 main protease simulation, compared with some phytochemicals docked to the COVID-19 main protease, were analyzed. Glabridin, catechin, and fisetin had the greatest tendency to interact with the COVID-19 main protease by hydrogen and hydrophobic interactions. Docking of these phytochemicals to COVID-19 main protease led to an increase in the radius of gyration (Rg), decrease in the Root mean square fluctuation (RMSF), and induced variation in COVID-19 main protease secondary structure. The high tendency interaction of glabridin, catechin, and fisetin to COVID-19 main protease induced conformational changes on this enzyme. These interactions can lead to enzyme inhibition. This simulated study indicates that these phytochemicals may be considered as potent inhibitors of the viral protease; however, more investigations are required to explore their potential medicinal use.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Navid Jamali
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Heidari Soureshjani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gholam-Reza Mobini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Samare-Najaf
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Javad Saffari-Chaleshtori
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
15
|
Razzak MA, Choi SS. Delineating the interaction mechanism of glabridin and ovalbumin by spectroscopic and molecular docking techniques. Food Chem 2021; 347:128981. [PMID: 33444886 DOI: 10.1016/j.foodchem.2020.128981] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
The interaction between ovalbumin (OVA) and isoflavonoid glabridin (GB) was investigated using spectroscopic and molecular docking techniques. Fluorescence spectroscopy revealed that GB was bound to OVA mainly due to hydrogen bonding and hydrophobic forces. FT-IR spectroscopy showed that the combination of GB and OVA resulted in a decrease in the β-sheet content of OVA and an increase in the α-helix and extended-chain content. All these experimental results were supported and clarified by molecular docking simulations. GB binding was able to inhibit chemical denaturant-induced structural changes in OVA as observed by intrinsic tryptophan and ANS fluorescence. Moreover, GB-OVA complex increased the aqueous solubility of GB by about 4.45 times at pH 7.0. These results provided insights into the interaction between GB and OVA that contributes to the utilization of GB in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Md Abdur Razzak
- Department of Energy Science and Technology, Myongji University, Yongin 17058, Republic of Korea
| | - Shin Sik Choi
- Department of Energy Science and Technology, Myongji University, Yongin 17058, Republic of Korea; Department of Food and Nutrition, Myongji University, Yongin 17058, Republic of Korea.
| |
Collapse
|
16
|
Sumita A, Shoba G, Thamarai Selvan R, Anju K, Balakumaran MD, Kumaran R. Photophysical and molecular docking studies of photoinduced electron transfer (PET) and non-PET based fluorophores of acridinedione derivatives with a glycoprotein: Ovalbumin. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Syed MM, Doshi PJ, Bharshankh A, Dhavale DD, Kate SL, Kulkarni G, Doshi JB, Kulkarni MV. Repurposing of genistein as anti-sickling agent: elucidation by multi spectroscopic, thermophoresis, and molecular modeling techniques. J Biomol Struct Dyn 2020; 40:4038-4050. [PMID: 33305701 DOI: 10.1080/07391102.2020.1852967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sickle cell disease (SCD) is a major medical problem in which mono-therapeutic interventions have so far shown only limited effectiveness. We studied the repurpose of genistein, which could prevent sickle hemoglobin from polymerizing under hypoxic conditions in this disease. Genistein an important nutraceutical molecule found in soybean. The present study examines the repurposing genistein as an anti- sickling agent. Genistein shows inhibition of Hb S polymerization as well as a sickle reversal. Also, we have explored the interaction of the genistein with sickle hemoglobin (Hb S), using fluorescence, far-UV-CD spectroscopy, MicroScale Thermophoresis (MST), FTIR, combined with molecular modeling computations. The quenching constant decreases with increasing temperature, a characteristic that coincides with the static type of quenching mechanism. Temperature-dependent fluorescence measurements and molecular modeling studies reveal that apart from the hydrogen bonding, electrostatic interactions also play a crucial role in genistein and Hb S complex formation. In silico, distribution prediction of adsorption, digestion, metabolism, excretion, and toxicity (ADME/Tox) based on physical and chemical properties show that genistein is nontoxic and has ideal drug properties. The helicity and thermophoretic mobility of Hb S was a change in the presence of genistein, which leads to the destabilizing the Hb S polymer was examined using CD and MST, respectively. Our results open up the possibility for a promising therapeutic approach for the SCD by repurposed genistein as an anti-sickling agent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muntjeeb M Syed
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Pooja J Doshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Ankita Bharshankh
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Dilip D Dhavale
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Sudam L Kate
- Maharashtra Arogya Mandal's, Sumatibhai Shah Ayurved Ahavidyalaya - College of Ayurveda and Research Centre Hadapsar, Pune, Maharashtra, India
| | - Girish Kulkarni
- Maharashtra Arogya Mandal's, Sumatibhai Shah Ayurved Ahavidyalaya - College of Ayurveda and Research Centre Hadapsar, Pune, Maharashtra, India
| | - Jignesh B Doshi
- Toxoid Purification Department, Serum Institute of India Ltd, Hadapsar, Pune, Maharashtra, India
| | - Mohan V Kulkarni
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| |
Collapse
|
18
|
Arumugam V, Rajamanikandan R, Ilanchelian M, Xu H, Moodley KG, Gao Y. Spectroscopic and thermodynamic studies on binding behaviour of an ionic liquid, 2′,3′-Epoxypropyl-N-methyl-2-oxopyrrolidinium acetate, with bovine serum albumin (BSA). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Jaglińska K, Polak B, Klimek-Turek A, Pomastowski P, Buszewski B, Dzido TH. Retardation of some drugs in thin-layer chromatographic systems with impregnated silica gel plates with hen's egg white and bovine serum albumin. J Chromatogr A 2020; 1625:461277. [PMID: 32709329 DOI: 10.1016/j.chroma.2020.461277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
The influence of impregnation the chromatographic plate adsorbent layer, silica, with hen's egg white albumin (OVA) or bovine serum albumin (BSA) on the retention of some popular medicines (paracetamol, aminophenazone, theophylline, caffeine, acetanilide, ciprofloxacin, tramadol, acetylsalicylic acid, acebutolol) is investigated. The effect of composition and buffer pH of the mobile phase on solute separation selectivity is also studied. The chromatographic systems with and without above mentioned albumins and their influence on investigated drug retention are compared. In general, it has been turned out that retention of tested medicines in systems with the sorbent impregnated with albumin significantly increase relative to those with non-impregnated.
Collapse
Affiliation(s)
- Kamila Jaglińska
- Physical Chemistry Department. Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| | - Beata Polak
- Physical Chemistry Department. Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Anna Klimek-Turek
- Physical Chemistry Department. Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Paweł Pomastowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies. Nicolaus Copernicus University in Torun, 4 Wileńska Street, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies. Nicolaus Copernicus University in Torun, 4 Wileńska Street, 87-100 Toruń, Poland
| | - Tadeusz H Dzido
- Physical Chemistry Department. Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
20
|
de Lyra ACF, Dos Santos Silva AL, Dos Santos ECL, López AMQ, da Silva JCS, Figueiredo IM, Santos JCC. Molecular interaction of sulfonamides and ovalbumin, an allergenic egg protein, exploring biophysical, theoretical and biological studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117747. [PMID: 31727521 DOI: 10.1016/j.saa.2019.117747] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Biophysical, theoretical and biological in vitro studies were carried out to evaluate the interaction of the main allergen protein of egg white (ovalbumin, OVA) with sulphonamides (SA): sulphathiazole (S1), sulfaquinoxaline (S2), sulfadimethoxine (S3) and sulfamethazine (S4). The binding constants for the OVA-SA supramolecular complexes ranged from 1.20 to 30.66 × 105 M-1, observing the following order of affinity: S1 > S2 > S4 > S3. The preferential forces in the stabilization of the OVA complexes with S2 and S3 were hydrogen bonds and Van der Waals forces, whereas for OVA-S1 and OVAS4, were electrostatic interactions. Interaction process led to a change in the native structure of the protein, which may potentiate its natural allergenicity. Cations Ca(II), Mg(II) and Fe(III) favor the interaction of OVA with S1 and S2. The theoretical studies performed were consistent with the spectroscopic data. Finally, it was found that the interaction process for sulfonamides evaluated with OVA change the inhibition activity profile these antibiotics against strains of Escherichia coli ATCC 25922 and Bacillus megaterium APFSG3isox, but not the minimal inhibitory concentration values.
Collapse
Affiliation(s)
- Ana Carolina Fradique de Lyra
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A. C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | - Amanda L Dos Santos Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A. C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | - Elane Cristina L Dos Santos
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A. C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | - Ana Maria Queijeiro López
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A. C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | - Júlio Cosme S da Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A. C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | - Isis Martins Figueiredo
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A. C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | - Josué Carinhanha Caldas Santos
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A. C. Simões, 57072-900 Maceió, Alagoas, Brazil.
| |
Collapse
|
21
|
Yan C, Zhou Z. Ellagic acid can act as a chaperone and suppress the heat-induced amyloid-like aggregation of ovalbumin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Lamichhane S, Lee S. Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Arch Pharm Res 2020; 43:118-133. [PMID: 31916145 DOI: 10.1007/s12272-020-01204-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Albumin is a biocompatible, non-immunogenic and versatile drug carrier system. It has been widely used to extend the half-life, enhance stability, provide protection from degradation and allow specific targeting of therapeutic agents to various disease states. Understanding the role of albumin as a drug delivery and distribution system has increased remarkably in the recent years from the development of albumin-binding prodrugs to albumin as a drug carrier system. The extraordinary surface property of albumin makes it possible to bind various endogenous and exogenous molecules. This review succinctly deals with several albumin-drug conjugates and nanoparticles along with their preparation techniques and focuses on surface-modified albumin and targeting of albumin formulation to specific organs and tissues. It also summarizes research efforts on albumin nanoparticles used for delivering drugs to tumor cells and describes their role in permeation through tumor vasculature and in receptor mediated endocytosis, which is also described in this review. The versatility of albumin and ease of preparation makes it a suitable drug carrier system, swhich is the major objective of this review.
Collapse
Affiliation(s)
- Shrawani Lamichhane
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu, 704-701, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu, 704-701, Republic of Korea.
| |
Collapse
|
23
|
Aamir Qureshi M, Javed S. Structural dynamics studies on the binding of aflatoxin B 1 to chicken egg albumin using spectroscopic techniques and molecular docking. J Biomol Struct Dyn 2019; 38:3144-3155. [PMID: 31378144 DOI: 10.1080/07391102.2019.1652690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aflatoxin B1, a mycotoxin produced by large number of Aspergillus species including Aspergillus flavus and Aspergillus parasiticus, has been described as the most potent carcinogenic mycotoxin. In this study, we have used a multiple spectroscopic and molecular docking approach to investigate the interaction of aflatoxin B1 (AFB1) with chicken egg albumin (CEA). Fluorescence spectroscopy, UV-Vis spectroscopy, and three-dimensional fluorescence spectroscopic techniques were employed to gain insight into the conformational changes in CEA in the presence of AFB1. Fluorescence spectroscopy revealed ligand-induced quenching in the fluorescence emission spectra of CEA upon binding with AFB1. Hyperchromic effect was observed in case of the ground state complex formation between CEA and AFB1 by UV-Vis spectroscopy. To gain further comprehension into the site of binding of AFB1 to CEA, competitive site marker displacement assay was performed using warfarin site marker. The magnitude of ΔG value calculated from fluorescence-based method was negative which confirmed spontaneous process. The results obtained suggest that the binding is enthalpy driven and van der Waals force and hydrogen bonds are stabilizing the AFB1-CEA complex. Three-dimensional fluorescence studies also confirmed the quenching in the fluorescence intensity around tryptophan residues in CEA. Circular dichroism assessment revealed reduction in the alpha helical content of CEA in the presence of AFB1. Molecular docking studies showed hydrophobic interaction, van der Waals forces, and hydrogen bonds as major forces present in interaction between CEA and AFB1. The overall study confirms conformational and structural alteration in the protein due to binding of AFB1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Aamir Qureshi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
24
|
Syed MM, Doshi PJ, Dhavale DD, Doshi JB, Kate SL, Kulkarni G, Sharma N, Uppuladinne M, Sonavane U, Joshi R, Kulkarni MV. Potential of isoquercitrin as antisickling agent: a multi-spectroscopic, thermophoresis and molecular modeling approach. J Biomol Struct Dyn 2019; 38:2717-2736. [PMID: 31315526 DOI: 10.1080/07391102.2019.1645735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sickle cell disease is an inherited disease caused by point mutation in hemoglobin (β-globin gene). Under oxygen saturation, sickle hemoglobin form polymers, leading to rigid erythrocytes. The transition of the blood vessels is altered and initiated by the adhesion of erythrocytes, neutrophils and endothelial cells. Sickle Hemoglobin (HbS) polymerization is a major cause in red blood cells (RBC), promoting sickling and destruction of RBCs. Isoquercitrin, a medicinal bioactive compound found in various medicinal plants, has multiple health benefits. The present study examines the potential of isoquercitrin as an anti-sickle agent, showing a significant decrease in the rate of polymerization as well as sickling of RBCs. Isoquercitrin-induced graded alteration in absorbance and fluorescence of HbS, confirmed their interaction. A negative value of ΔG° strongly suggests that it is a spontaneous exothermic reaction induced by entropy. Negative ΔH° and positive ΔS° predicted that hydrogen and hydrophobic binding forces interfered with a hydrophobic microenvironment of β6Val leading to polymerization inhibition of HbS. HbS-Isoquercitrin complex exhibits helical structural changes leading to destabilization of the HbS polymer as confirmed by CD spectroscopy. MST and DSC results indicate greater changes in thermophoretic mobility and thermal stability of sickle hemoglobin in the presence of isoquercitrin, respectively. These findings were also supported by molecular simulation studies using DOCK6 and GROMACS. Hence, we can conclude that isoquercitrin interacts with HbS through hydrogen bonding, which leads to polymerization inhibition. Consequently, isoquercitrin could potentially be used as a medication for the treatment of sickle cell disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muntjeeb M Syed
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Pooja J Doshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Dilip D Dhavale
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | | | - Sudam L Kate
- College of Ayurveda and Research Centre Hadapsar, Maharashtra Arogya Mandal's Sumatibhai Shah Ayurved Mahavidyalaya, Pune, India
| | - Girish Kulkarni
- College of Ayurveda and Research Centre Hadapsar, Maharashtra Arogya Mandal's Sumatibhai Shah Ayurved Mahavidyalaya, Pune, India
| | - Neeru Sharma
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Mallikarjunachari Uppuladinne
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Uddhavesh Sonavane
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Rajendra Joshi
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Mohan V Kulkarni
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| |
Collapse
|
25
|
Visentini FF, Perez AA, Santiago LG. Self-assembled nanoparticles from heat treated ovalbumin as nanocarriers for polyunsaturated fatty acids. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Wu X, Liu L, Li J, Chi F. Proteome analysis using iTRAQ reveals the differentiation between Tibetan and ordinary ovalbumin peptides. Int J Biol Macromol 2019; 132:722-728. [DOI: 10.1016/j.ijbiomac.2019.03.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/16/2019] [Accepted: 03/11/2019] [Indexed: 01/22/2023]
|
27
|
Manivel P, Parthiban M, Ilanchelian M. Exploring the binding mechanism between methylene blue and ovalbumin using spectroscopic analyses and computational simulations. J Biomol Struct Dyn 2019; 38:1838-1847. [DOI: 10.1080/07391102.2019.1618734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Perumal Manivel
- Department of Chemistry, Bharathiar University, Coimbatore, Tamil Nadu, India
- Electro Organic Division, Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
| | - Marimuthu Parthiban
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, Turku, Finland
| | | |
Collapse
|
28
|
Razzak MA, Lee JE, Choi SS. Structural insights into the binding behavior of isoflavonoid glabridin with human serum albumin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Syed MM, Doshi PJ, Kulkarni MV, Dhavale DD, Kadam NS, Kate SL, Doshi JB, Sharma N, Uppuladinne M, Sonavane U, Joshi R, Doshi SJ, Bhattacharya N. Alizarin interaction with sickle hemoglobin: elucidation of their anti-sickling properties by multi-spectroscopic and molecular modeling techniques. J Biomol Struct Dyn 2019; 37:4614-4631. [DOI: 10.1080/07391102.2018.1557557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Muntjeeb M. Syed
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Pooja. J. Doshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Mohan V. Kulkarni
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Dilip D. Dhavale
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Nitin S. Kadam
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Sudam L. Kate
- Maharashtra Arogya Mandal’s Sumatibhai Shah Ayurved Mahavidyalaya, College of Ayurveda and Research Centre Hadapsar, Pune, India
| | - Jignesh B. Doshi
- Toxoid Purification Department, Serum Institute of India Ltd., Hadapsar, Pune, India
| | - Neeru Sharma
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Mallikarjunachari Uppuladinne
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Uddhavesh Sonavane
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Rajendra Joshi
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Saurav J. Doshi
- Institute of Bioinformatics & Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Nandika Bhattacharya
- Institute of Bioinformatics & Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| |
Collapse
|
30
|
Rajamanikandan R, Selva Sharma A, Ilanchelian M. New insights into the binding interaction of food protein ovalbumin with malachite green dye by hybrid spectroscopic and molecular docking analysis. J Biomol Struct Dyn 2019; 37:4292-4300. [PMID: 30451583 DOI: 10.1080/07391102.2018.1550441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ramar Rajamanikandan
- Department of Chemistry, Bharathiar University , Coimbatore , Tamil Nadu , India
| | - Arumugam Selva Sharma
- Department of Chemistry, Bharathiar University , Coimbatore , Tamil Nadu , India.,Department of Green Energy and Technology, Pondicherry University , Puducherry , India
| | | |
Collapse
|
31
|
Abdur Razzak M, Lee JE, Park HH, Park TH, Choi SS. Exploring Binding Mechanisms between Curcumin and Silkworm 30Kc19 Protein Using Spectroscopic Analyses and Computational Simulations. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0285-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Zai K, Yuzuriha K, Kishimura A, Mori T, Katayama Y. Preparation of Complexes between Ovalbumin Nanoparticles and Retinoic Acid for Efficient Induction of Tolerogenic Dendritic Cells. ANAL SCI 2018; 34:1243-1248. [PMID: 29962375 DOI: 10.2116/analsci.18p252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The induction of antigen-specific immunotolerance has been gathering attention concerning the therapy of allergy and autoimmune diseases. Tolerogenic dendritic cells (tDCs) play crucial roles in immunotolerance therapy because they induce anergic responses for auto-reactive helper T cells, and also enhance differentiation to regulatory T cells to maintain tolerance against auto-antigens. All-trans retinoic acid (ATRA) is one of the representative molecules used to induce tDCs. We have proposed a simple formulation of ovalbumin nanoparticles complexed with ATRA (OVA/RA NPs). OVA/RA NPs were taken up by DCs and successfully induced phenotypes of tDCs.
Collapse
Affiliation(s)
- Khadijah Zai
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | | | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University.,Graduate School of Systems Life Sciences, Kyushu University.,Center for Future Chemistry, Kyushu University.,International Research Center for Molecular Systems, Kyushu University
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University.,Graduate School of Systems Life Sciences, Kyushu University.,Center for Future Chemistry, Kyushu University
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University.,Graduate School of Systems Life Sciences, Kyushu University.,Center for Future Chemistry, Kyushu University.,International Research Center for Molecular Systems, Kyushu University.,Centre for Advanced Medicine Innovation, Kyushu University.,Department of Biomedical Engineering, Chung Yuan Christian University
| |
Collapse
|
33
|
Chen Y, Hu J, Yi X, Ding B, Sun W, Yan F, Wei S, Li Z. Interactions and emulsifying properties of ovalbumin with tannic acid. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.088] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Formation of complexes between tannic acid with bovine serum albumin, egg ovalbumin and bovine beta-lactoglobulin. Food Res Int 2017; 102:195-202. [DOI: 10.1016/j.foodres.2017.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 11/18/2022]
|
35
|
Visentini FF, Sponton OE, Perez AA, Santiago LG. Formation and colloidal stability of ovalbumin-retinol nanocomplexes. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.12.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Complexes between ovalbumin nanoparticles and linoleic acid: Stoichiometric, kinetic and thermodynamic aspects. Food Chem 2016; 211:819-26. [DOI: 10.1016/j.foodchem.2016.05.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 12/17/2022]
|
37
|
Li X, Yan Y. Comparative Study of the Interactions between Ovalbumin and five Antioxidants by Spectroscopic Methods. J Fluoresc 2016; 27:213-225. [DOI: 10.1007/s10895-016-1948-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/03/2016] [Indexed: 02/05/2023]
|
38
|
Stănciuc N, Banu I, Turturică M, Aprodu I. pH and heat induced structural changes of chicken ovalbumin in relation with antigenic properties. Int J Biol Macromol 2016; 93:572-581. [PMID: 27616691 DOI: 10.1016/j.ijbiomac.2016.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023]
Abstract
Ovalbumin is the major egg white protein known to induce allergic reactions in humans. A comprehensive evaluation of the structural and antigenicity features of ovalbumin subjected to different pH and heat treatments was performed by combining fluorescence spectroscopic measurements, ELISA and in silico prediction. The intrinsic fluorescence spectra indicated modification of the ovalbumin tertiary structure depending on pH and applied temperature. The heat treatment caused the alteration of ovalbumin structure, which exhibited gradual hydrophobic exposure. The in depths check of ovalbumin molecular model, after performing molecular dynamics simulations, indicated the slight transition toward a typical β-strand dominant structure with the temperature increase. Moreover the immunoenzymatic test was employed to estimate the effect of the pH and thermal treatment on the stability of ovalbumin epitopes. Only a 5.5% reduction of the residual antigenicity was observed when heat treating the ovalbumin samples at pH 7.0, whereas a significant reduction (over 82%) of the antigenicity was obtained at pH 9.5 and temperatures over 80°C. Both pH and thermal treatment affected the conformation of ovalbumin. The reduced recognition of the modified native ovalbumin by specific antibodies at alkaline pH is most probably a consequence of significant changes in the local conformation of the epitopes.
Collapse
Affiliation(s)
- Nicoleta Stănciuc
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201, Galati, Romania(1)
| | - Iuliana Banu
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201, Galati, Romania(1)
| | - Mihaela Turturică
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201, Galati, Romania(1)
| | - Iuliana Aprodu
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201, Galati, Romania(1).
| |
Collapse
|
39
|
Santiago LG, Castro GR. Novel technologies for the encapsulation of bioactive food compounds. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Sponton OE, Perez AA, Carrara CR, Santiago LG. Impact of environment conditions on physicochemical characteristics of ovalbumin heat-induced nanoparticles and on their ability to bind PUFAs. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Complexes of green tea polyphenol, epigalocatechin-3-gallate, and 2S albumins of peanut. Food Chem 2015; 185:309-17. [PMID: 25952873 DOI: 10.1016/j.foodchem.2015.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/17/2015] [Accepted: 04/01/2015] [Indexed: 11/22/2022]
Abstract
2S albumins of peanuts are seed storage proteins, highly homologous in structure and described as major elicitors of anaphylactic reactions to peanut (allergens Ara h 2 and Ara h 6). Epigallocatechin-3-gallate (EGCG) is the most biologically potent polyphenol of green tea. Non-covalent interactions of EGCG with proteins contribute to its diverse biological activities. Here we used the methods of circular dichroism, fluorescence quenching titration, isothermal titration calorimetry and computational chemistry to elucidate interactions of EGCG and 2S albumins. Similarity in structure and overall fold of 2S albumins yielded similar putative binding sites and similar binding modes with EGCG. Binding affinity determined for Ara h 2 was in the range described for complexes of EGCG and other dietary proteins. Binding of EGCG to 2S albumins affects protein conformation, by causing an α-helix to β-structures transition in both proteins. 2S albumins of peanuts may be good carriers of physiologically active green tea catechin.
Collapse
|
42
|
Linoleic acid binding properties of ovalbumin nanoparticles. Colloids Surf B Biointerfaces 2015; 128:219-226. [DOI: 10.1016/j.colsurfb.2015.01.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/21/2015] [Indexed: 11/22/2022]
|
43
|
Phase separation behavior and structural analysis of ovalbumin–gum arabic complex coacervation. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.02.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Ognjenović J, Stojadinović M, Milčić M, Apostolović D, Vesić J, Stambolić I, Atanasković-Marković M, Simonović M, Velickovic TC. Interactions of epigallo-catechin 3-gallate and ovalbumin, the major allergen of egg white. Food Chem 2014; 164:36-43. [PMID: 24996302 DOI: 10.1016/j.foodchem.2014.05.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 01/04/2014] [Accepted: 05/04/2014] [Indexed: 12/24/2022]
Abstract
Polyphenols, the potent plant secondary metabolites, have beneficial effects on human health, but the mechanism(s) by which these effects are exerted is not well understood. Here, we present the detailed analysis of the interactions between the major green tea catechin, epigallo-catechin 3-gallate (EGCG), and the major dietary protein and allergen, ovalbumin (OVA). We show that EGCG binds to the pocket that partly overlaps with the previously identified IgE-binding region in OVA, and that this interaction induces structural changes in the allergen. Moreover, our ex vivo studies reveal that OVA binds IgE and stimulates degranulation of basophils, and that its uptake by monocytes proceeds at a slower rate in the presence of EGCG. This study provides further evidence in support of the proposed mechanism by which EGCG interactions with the food allergens contribute to its diverse biological activities and may impair antigen uptake by antigen-presenting cells.
Collapse
Affiliation(s)
- Jana Ognjenović
- University of Belgrade, Faculty of Chemistry, Belgrade, Serbia.
| | | | - Miloš Milčić
- University of Belgrade, Faculty of Chemistry, Belgrade, Serbia
| | | | - Jelena Vesić
- University of Belgrade, Faculty of Chemistry, Belgrade, Serbia
| | - Ivan Stambolić
- University of Belgrade, Faculty of Chemistry, Belgrade, Serbia
| | - Marina Atanasković-Marković
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia; University Children's Hospital, Belgrade, Serbia
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA
| | | |
Collapse
|
45
|
Shen F, Niu F, Li J, Su Y, Liu Y, Yang Y. Interactions between tea polyphenol and two kinds of typical egg white proteins—ovalbumin and lysozyme: Effect on the gastrointestinal digestion of both proteins in vitro. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.01.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|