1
|
Yue-han Z, Yi-peng C, Zhao-hua H. Effect of different drying techniques on rose ( Rosa rugosa cv. Plena) proteome based on label-free quantitative proteomics. Heliyon 2023; 9:e13158. [PMID: 36747566 PMCID: PMC9898662 DOI: 10.1016/j.heliyon.2023.e13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
To explore the molecular mechanisms of different processing technologies on rose tea (Rosa rugosa cv. Plena), we investigated the rose tea proteome (fresh rose tea [CS], vacuum freeze-drying rose tea [FD], and vacuum microwave rose tea [VD]) using label-free quantification proteomics (LFQ). A total of 2187 proteins were identified, with 1864, 1905, and 1660 proteins identified in CS, FD, and VD, respectively. Of those, 1500 proteins were quantified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation and enrichment analysis of differential expression proteins (DEPs) in VD vs. CS, FD vs. CS, and FD vs. VD showed that these pathways were associated with energy metabolism, the metabolic breakdown of energy substances and protein biosynthesis, such as oxidative phosphorylation, citrate cycle, carbon metabolism pathways, and ribosome and protein processing in endoplasmic reticulum. FD could ensure the synthesis of protein translation and energy metabolism, thereby maintaining the high quality of rose tea.
Collapse
|
2
|
Smita S, Robben M, Deuja A, Accerbi M, Green PJ, Subramanian S, Fennell A. Integrative Analysis of Gene Expression and miRNAs Reveal Biological Pathways Associated with Bud Paradormancy and Endodormancy in Grapevine. PLANTS (BASEL, SWITZERLAND) 2021; 10:669. [PMID: 33807184 PMCID: PMC8067045 DOI: 10.3390/plants10040669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022]
Abstract
Transition of grapevine buds from paradormancy to endodormancy is coordinated by changes in gene expression, phytohormones, transcription factors, and other molecular regulators, but the mechanisms involved in transcriptional and post-transcriptional regulation of dormancy stages are not well delineated. To identify potential regulatory targets, an integrative analysis of differential gene expression profiles and their inverse relationships with miRNA abundance was performed in paradormant (long day (LD) 15 h) or endodormant (short day (SD), 13 h) Vitis riparia buds. There were 400 up- and 936 downregulated differentially expressed genes in SD relative to LD budsGene set and gene ontology enrichment analysis indicated that hormone signaling and cell cycling genes were downregulated in SD relative to LD buds. miRNA abundance and inverse expression analyses of miRNA target genes indicated increased abundance of miRNAs that negatively regulate genes involved with cell cycle and meristem development in endodormant buds and miRNAs targeting starch metabolism related genes in paradormant buds. Analysis of interactions between abundant miRNAs and transcription factors identified a network with coinciding regulation of cell cycle and epigenetic regulation related genes in SD buds. This network provides evidence for cross regulation occurring between miRNA and transcription factors both upstream and downstream of MYB3R1.
Collapse
Affiliation(s)
- Shuchi Smita
- Edgar McFadden BioStress Laboratory, Agronomy, Horticulture, and Plant Science Department, BioSNTR, South Dakota State University, Brookings, SD 57007, USA; (S.S.); (M.R.); (A.D.); (S.S.)
| | - Michael Robben
- Edgar McFadden BioStress Laboratory, Agronomy, Horticulture, and Plant Science Department, BioSNTR, South Dakota State University, Brookings, SD 57007, USA; (S.S.); (M.R.); (A.D.); (S.S.)
| | - Anup Deuja
- Edgar McFadden BioStress Laboratory, Agronomy, Horticulture, and Plant Science Department, BioSNTR, South Dakota State University, Brookings, SD 57007, USA; (S.S.); (M.R.); (A.D.); (S.S.)
| | - Monica Accerbi
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA; (M.A.); (P.J.G.)
| | - Pamela J. Green
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA; (M.A.); (P.J.G.)
| | - Senthil Subramanian
- Edgar McFadden BioStress Laboratory, Agronomy, Horticulture, and Plant Science Department, BioSNTR, South Dakota State University, Brookings, SD 57007, USA; (S.S.); (M.R.); (A.D.); (S.S.)
| | - Anne Fennell
- Edgar McFadden BioStress Laboratory, Agronomy, Horticulture, and Plant Science Department, BioSNTR, South Dakota State University, Brookings, SD 57007, USA; (S.S.); (M.R.); (A.D.); (S.S.)
| |
Collapse
|
3
|
Baldermann S, Homann T, Neugart S, Chmielewski FM, Götz KP, Gödeke K, Huschek G, Morlock GE, Rawel HM. Selected Plant Metabolites Involved in Oxidation-Reduction Processes during Bud Dormancy and Ontogenetic Development in Sweet Cherry Buds ( Prunus avium L.). Molecules 2018; 23:E1197. [PMID: 29772774 PMCID: PMC6099681 DOI: 10.3390/molecules23051197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022] Open
Abstract
Many biochemical processes are involved in regulating the consecutive transition of different phases of dormancy in sweet cherry buds. An evaluation based on a metabolic approach has, as yet, only been partly addressed. The aim of this work, therefore, was to determine which plant metabolites could serve as biomarkers for the different transitions in sweet cherry buds. The focus here was on those metabolites involved in oxidation-reduction processes during bud dormancy, as determined by targeted and untargeted mass spectrometry-based methods. The metabolites addressed included phenolic compounds, ascorbate/dehydroascorbate, reducing sugars, carotenoids and chlorophylls. The results demonstrate that the content of phenolic compounds decrease until the end of endodormancy. After a long period of constancy until the end of ecodormancy, a final phase of further decrease followed up to the phenophase open cluster. The main phenolic compounds were caffeoylquinic acids, coumaroylquinic acids and catechins, as well as quercetin and kaempferol derivatives. The data also support the protective role of ascorbate and glutathione in the para- and endodormancy phases. Consistent trends in the content of reducing sugars can be elucidated for the different phenophases of dormancy, too. The untargeted approach with principle component analysis (PCA) clearly differentiates the different timings of dormancy giving further valuable information.
Collapse
Affiliation(s)
- Susanne Baldermann
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Potsdam, Germany.
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Thomas Homann
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Potsdam, Germany.
| | - Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Frank-M Chmielewski
- Agricultural Climatology, Faculty of Life Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 5, 14195 Berlin, Germany.
| | - Klaus-Peter Götz
- Agricultural Climatology, Faculty of Life Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 5, 14195 Berlin, Germany.
| | - Kristin Gödeke
- IGV-Institut für Getreideverarbeitung GmbH, Arthur-Scheunert-Allee 40/41, 14558, Nuthetal OT Bergholz-Rehbrücke, Germany.
| | - Gerd Huschek
- IGV-Institut für Getreideverarbeitung GmbH, Arthur-Scheunert-Allee 40/41, 14558, Nuthetal OT Bergholz-Rehbrücke, Germany.
| | - Getrud E Morlock
- Chair of Food Sciences, Institute of Nutritional Science, Interdisciplinary Research Center (IFZ), Justus Liebig University Giessen, Heinrich Buff Ring 26-32, D-35392 Giessen, Germany.
| | - Harshadrai M Rawel
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Potsdam, Germany.
| |
Collapse
|
4
|
Guzicka M, Pawlowski TA, Staszak A, Rozkowski R, Chmura DJ. Molecular and structural changes in vegetative buds of Norway spruce during dormancy in natural weather conditions. TREE PHYSIOLOGY 2018; 38:721-734. [PMID: 29300984 DOI: 10.1093/treephys/tpx156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/13/2017] [Accepted: 11/20/2017] [Indexed: 05/08/2023]
Abstract
The dormancy and the growth of trees in temperate climates are synchronized with seasons. Preparation for dormancy and its proper progression are key for survival and development in the next season. Using a unique approach that combined microscopy and proteomic methods, we investigated changes in Norway spruce (Picea abies (L.) H. Karst.) embryonic shoots during four distinct stages of dormancy in natural weather conditions. We identified 13 proteins that varied among dormancy stages, and were linked to regulation of protein level; functioning of chloroplasts and other plastids; DNA and RNA regulation; and oxidative stress. We also found a group of five proteins, related to cold hardiness, that did not differ in expression among stages of dormancy, but had the highest abundancy level. Ultrastructure of organelles is tightly linked to their metabolic activity, and hence may indicate dormancy status. The observed ultrastructure during endodormancy was stable, whereas during ecodormancy, the structural changes were dynamic and related mainly to nucleus, plastids and mitochondria. At the ultrastructural level, the lack of starch and the presence of callose in plasmodesmata in all regions of embryonic shoot were indicators of full endodormancy. At the initiation of ecodormancy, we noted an increase in metabolic activity of organelles, tissue-specific starch hyperaccumulation and degradation. However, in proteomic analysis, we did not find variation in expression of proteins related to starch degradation or to symplastic isolation of cells. The combination of ultrastructural and proteomic methods gave a more complete picture of vegetative bud dormancy than either of them applied separately. We found some changes at the structural level, but not their analogues in the proteome. Our study suggests a very important role of plastids' organization and metabolism, and their protection in the course of dormancy and during the shift from endo- to ecodormancy and the acquisition of growth competence.
Collapse
Affiliation(s)
- Marzenna Guzicka
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Tomasz A Pawlowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Aleksandra Staszak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Roman Rozkowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Daniel J Chmura
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
5
|
Zhang Z, Zhuo X, Zhao K, Zheng T, Han Y, Yuan C, Zhang Q. Transcriptome Profiles Reveal the Crucial Roles of Hormone and Sugar in the Bud Dormancy of Prunus mume. Sci Rep 2018; 8:5090. [PMID: 29572446 PMCID: PMC5865110 DOI: 10.1038/s41598-018-23108-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2017] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
Bud dormancy transition is a vital developmental process for perennial plant survival. The process is precisely regulated by diverse endogenous genetic factors and environmental cues, but the mechanisms are not yet fully understood. Prunus mume is an ideal crop for bud dormancy analysis because of its early spring-flowering characteristics and small sequenced genome. Here, we analyzed the transcriptome profiles at the three endodormancy stages and natural flush stage using RNA sequencing combined with phytohormone and sugar content measurements. Significant alterations in hormone contents and carbohydrate metabolism have been observed, and α-amylases, Glucan Hydrolase Family 17 and diphosphate-glycosyltransferase family might play crucial roles in the interactions between hormones and sugars. The following hypothetical model for understanding the molecular mechanism of bud dormancy in Prunus mume is proposed: low temperatures exposure induces the significant up-regulation of eight C-repeat binding factor genes, which directly promotes all six dormancy-associated MADS-box genes, resulting in dormancy establishment. The prolonged cold and/or subsequently increasing temperature then decreases the expression levels of these two gene families, which alleviates the inhibition of FLOWERING LOCUS T and reopens the growth-promoting pathway, resulting in dormancy release and the initiation of the bud break process.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - XiaoKang Zhuo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Kai Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Deng Y, Hu Z, Shang L, Peng Q, Tang YZ. Transcriptomic Analyses of Scrippsiella trochoidea Reveals Processes Regulating Encystment and Dormancy in the Life Cycle of a Dinoflagellate, with a Particular Attention to the Role of Abscisic Acid. Front Microbiol 2017; 8:2450. [PMID: 29312167 PMCID: PMC5732363 DOI: 10.3389/fmicb.2017.02450] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022] Open
Abstract
Due to the vital importance of resting cysts in the biology and ecology of many dinoflagellates, a transcriptomic investigation on Scrippsiella trochoidea was conducted with the aim to reveal the molecular processes and relevant functional genes regulating encystment and dormancy in dinoflagellates. We identified via RNA-seq 3,874 (out of 166,575) differentially expressed genes (DEGs) between resting cysts and vegetative cells; a pause of photosynthesis (confirmed via direct measurement of photosynthetic efficiency); an active catabolism including β-oxidation, glycolysis, glyoxylate pathway, and TCA in resting cysts (tested via measurements of respiration rate); 12 DEGs encoding meiotic recombination proteins and members of MEI2-like family potentially involved in sexual reproduction and encystment; elevated expressions in genes encoding enzymes responding to pathogens (chitin deacetylase) and ROS stress in cysts; and 134 unigenes specifically expressed in cysts. We paid particular attention to genes pertaining to phytohormone signaling and identified 4 key genes regulating abscisic acid (ABA) biosynthesis and catabolism, with further characterization based on their full-length cDNA obtained via RACE-PCR. The qPCR results demonstrated elevated biosynthesis and repressed catabolism of ABA during the courses of encystment and cyst dormancy, which was significantly enhanced by lower temperature (4 ± 1°C) and darkness. Direct measurements of ABA using UHPLC-MS/MS and ELISA in vegetative cells and cysts both fully supported qPCR results. These results collectively suggest a vital role of ABA in regulating encystment and maintenance of dormancy, akin to its function in seed dormancy of higher plants. Our results provided a critical advancement in understanding molecular processes in resting cysts of dinoflagellates.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Quancai Peng
- Research Center of Analysis and Measurement, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Luu LDW, Octavia S, Zhong L, Raftery M, Sintchenko V, Lan R. Characterisation of the Bordetella pertussis secretome under different media. J Proteomics 2017; 158:43-51. [PMID: 28242451 DOI: 10.1016/j.jprot.2017.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/07/2023]
Abstract
Our understanding of the Bordetella pertussis secretome remains limited including the role of different growth conditions in the secretome. In this study the secretome of L1423, a clinical isolate from the 2008-2012 Australian epidemic, cultured on Stainer-Scholte (SS) and Thalen-IJssel (THIJS) media for 12h was characterised using liquid chromatography-mass spectrometry (LC-MS/MS). In the supernatant, LC-MS/MS identified 260 proteins with 143 bioinformatically predicted to be secreted. Eighty percent of proteins were identified in both media. Proteins secreted were functionally associated with cell surface (41%), pathogenicity (16%) and transport (17%). The most abundant proteins identified were pathogenic proteins including toxins (PtxA and CyaA), adhesins (TcfA) and type III secretion (T3SS) proteins. There were 46 proteins found uniquely in THIJS including 8 virulence associated proteins. These included T3SS proteins, adhesins (FhaL and FhaS) and a putative toxin (BP1251). Nine proteins were found uniquely in SS and these were metabolic and transport-related proteins. None of the unique proteins detected in SS were known to be virulence associated. This study found that THIJS promotes secretion of virulence factors based on the number of unique virulence proteins found and may be a growth media of choice for the study of B. pertussis virulence and vaccine development. BIOLOGICAL SIGNIFICANCE Over the past two decades, the number of B. pertussis notifications has risen despite vaccination. There is a greater need to understand the biology behind B. pertussis infections. The secretome of B. pertussis in two different media was characterised using LC-MS/MS. The results showed that THIJS promotes secretion of importance virulence factors which may be important for the development of vaccines.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ling Zhong
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark Raftery
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - Pathology West, Westmead Hospital, New South Wales, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Xu H, Cao D, Chen Y, Wei D, Wang Y, Stevenson RA, Zhu Y, Lin J. Gene expression and proteomic analysis of shoot apical meristem transition from dormancy to activation in Cunninghamia lanceolata (Lamb.) Hook. Sci Rep 2016; 6:19938. [PMID: 26832850 PMCID: PMC4735791 DOI: 10.1038/srep19938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022] Open
Abstract
In contrast to annual plants, in perennial plants, the shoot apical meristem (SAM) can undergo seasonal transitions between dormancy and activity; understanding this transition is crucial for understanding growth in perennial plants. However, little is known about the molecular mechanisms of SAM development in trees. Here, light and transmission electron microscopy revealed that evident changes in starch granules, lipid bodies, and cell walls thickness of the SAM in C. lanceolata during the transition from dormancy to activation. HPLC-ESI-MS/MS analysis showed that levels of indole-3-acetic acid (IAA) increased and levels of abscisic acid (ABA) decreased from dormant to active stage. Examination of 20 genes and 132 differentially expressed proteins revealed that the expression of genes and proteins potentially involved in cell division and expansion significantly increased in the active stage, whereas those related to the abscisic acid insensitive 3(ABI3), the cytoskeleton and energy metabolism decreased in the dormant stage. These findings provide new insights into the complex mechanism of gene and protein expression and their relation to cytological and physiological changes of SAM in this coniferous species.
Collapse
Affiliation(s)
- Huimin Xu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dechang Cao
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yanmei Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongmei Wei
- School of Life Science, Taizhou University, Zhejiang 318000, China
| | - Yanwei Wang
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Rebecca Ann Stevenson
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Yingfang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Jinxing Lin
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
9
|
Takemura Y, Kuroki K, Jiang M, Matsumoto K, Tamura F. Identification of the expressed protein and the impact of change in ascorbate peroxidase activity related to endodormancy breaking in Pyrus pyrifolia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:121-129. [PMID: 25438144 DOI: 10.1016/j.plaphy.2014.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/30/2014] [Accepted: 11/17/2014] [Indexed: 05/23/2023]
Abstract
Endodormancy is an important feature of perennial deciduous fruit trees that survive in the extreme climates brought about by seasonal variation. To acquire a comprehensive knowledge of the biochemical processes occurring just before endodormancy breaking, the buds collected in the pre-breaking period (PP) phase were used as samples to identify the proteins related to the breaking of endodormancy in the Japanese pear (Pyrus pyrifolia Nakai). Using nano-ESI-LC-MS/MS analysis, 96 proteins were overlapped by analyses of three times and identified as expressed proteins at the PP stage. Among these proteins, dehydrin, several classes of heat shock proteins (HSP), auxin-binding protein, and auxin-induced protein were identified in the floral bud in the PP stage. The majority of these proteins were involved primarily in the oxidation-reduction process. We focused on catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) as enzymes regulating the levels of hydrogen peroxide (H2O2) in the bud. From measurements taken during the deepest period (DP), PP, mid-breaking period (MP), and late-breaking period (LP) of endodormancy, CAT activity decreased gradually, while APX activity also decreased from DP to MP, but then increased rapidly during LP. Protein data for PP and the rapid increase in APX activity observed in LP provided knowledge of the biochemical processes that regulate the consecutive transition from endodormancy breaking to ecodormancy induction in the Japanese pear.
Collapse
Affiliation(s)
- Yoshihiro Takemura
- Faculty of Agriculture, Tottori University, Koyama, Tottori 680-8553, Japan.
| | - Katsuou Kuroki
- Faculty of Agriculture, Tottori University, Koyama, Tottori 680-8553, Japan.
| | - Mingfeng Jiang
- Faculty of Agriculture, Tottori University, Koyama, Tottori 680-8553, Japan.
| | - Kazuhiro Matsumoto
- Fujisaki Farm, Teaching and Research Center for Bio-coexistence, Faculty of Agriculture and Life Science, Hirosaki University, Fujisaki, Aomori 038-3802, Japan.
| | - Fumio Tamura
- Faculty of Agriculture, Tottori University, Koyama, Tottori 680-8553, Japan.
| |
Collapse
|
10
|
Sahukhal GS, Elasri MO. Identification and characterization of an operon, msaABCR, that controls virulence and biofilm development in Staphylococcus aureus. BMC Microbiol 2014; 14:154. [PMID: 24915884 PMCID: PMC4229872 DOI: 10.1186/1471-2180-14-154] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2014] [Accepted: 06/05/2014] [Indexed: 12/02/2022] Open
Abstract
Background Community-acquired, methicillin-resistant Staphylococcus aureus strains often cause localized infections in immunocompromised hosts, but some strains show enhanced virulence leading to severe infections even among healthy individuals with no predisposing risk factors. The genetic basis for this enhanced virulence has yet to be determined. S. aureus possesses a wide variety of virulence factors, the expression of which is carefully coordinated by a variety of regulators. Several virulence regulators have been well characterized, but others have yet to be thoroughly investigated. Previously, we identified the msa gene as a regulator of several virulence genes, biofilm development, and antibiotic resistance. We also found evidence of the involvement of upstream genes in msa function. Results To investigate the mechanism of regulation of the msa gene (renamed msaC), we examined the upstream genes whose expression was affected by its deletion. We showed that msaC is part of a newly defined four-gene operon (msaABCR), in which msaC is a non-protein-coding RNA that is essential for the function of the operon. Furthermore, we found that an antisense RNA (msaR) is complementary to the 5′ end of the msaB gene and is expressed in a growth phase-dependent manner suggesting that it is involved in regulation of the operon. Conclusion These findings allow us to define a new operon that regulates fundamental phenotypes in S. aureus such as biofilm development and virulence. Characterization of the msaABCR operon will allow us to investigate the mechanism of function of this operon and the role of the individual genes in regulation and interaction with its targets. This study identifies a new element in the complex regulatory circuits in S. aureus, and our findings may be therapeutically relevant.
Collapse
Affiliation(s)
- Gyan S Sahukhal
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-0001, USA.
| | | |
Collapse
|