1
|
Zhe Z, Hongjiao Z, Tongtong Y, Kexin W, Jingjing X, Hongrui Z, Siyue Q, Hong A, Bo Q, Huihui Z. The homeostasis of ions and reactive oxygen species in root and shoot play crucial roles in the tolerance of alfalfa to salt alkali stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109175. [PMID: 39362124 DOI: 10.1016/j.plaphy.2024.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
High pH saline-alkali stress, mainly NaHCO3, limited the development of animal husbandry in Songnen Plain. Ion imbalance and reactive oxygen species (ROS) metabolism disorder caused by saline-alkali stress inhibited plant growth. In this study, we compared the differences in ion absorption, transport and ROS metabolism between saline-tolerant alfalfa (ZD) and saline-sensitive alfalfa (ZM) under NaHCO3 stress using physiology and transcripomics techniques. WGCNA analysis identified key genes associated with NaHCO3 stress-induced changes. NaHCO3 stress inhibited the absorption of K+ and Mg2+, but activated Ca2+ signal. Furthermore, ZD maintained higher K+, Mg2+ and Ca2+ contents and the K+/Na+ ratio than ZM, this is mainly related to the higher expression of proteins or channel-encoding genes involved in ion absorption and transport in ZD. Antioxidant enzyme systems can be activated in response to NaHCO3 stress. Peroxidase (EC 1.11.1.6), catalase (EC 1.11.1.7) and glutathione transferase (EC 2.5.1.18) activities were higher in ZD than ZM, and most genes encoding the relevant enzymes also demonstrated a stronger up-regulation trend in ZD. Although NaHCO3 stress inhibited Trx-Prx pathway, ZD related enzymes and their genes were also inhibited less than ZM. WGCNA results identified many genes involved in ion absorption, transport and antioxidant systems that play an important role in NaHCO3 stress adaptation. Collectively, ZD has the stronger ion homeostasis regulation and ROS scavenging ability, so it's more resistant to NaHCO3. The results provide theoretical guidance for further understanding of the molecular mechanism of NaHCO3 resistance and provide potential genes for research to improve saline-alkali tolerance in alfalfa.
Collapse
Affiliation(s)
- Zhang Zhe
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhang Hongjiao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Yao Tongtong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Wang Kexin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xu Jingjing
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhang Hongrui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Qi Siyue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Ao Hong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Qin Bo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China; Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Zhang Huihui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Chen S, Geng X, Lou J, Huang D, Mao H, Lin X. Overexpression of a plasmalemma Na +/H + antiporter from the halophyte Nitraria sibirica enhances the salt tolerance of transgenic poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112061. [PMID: 38461863 DOI: 10.1016/j.plantsci.2024.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
The plasmalemma Na+/H+ antiporter Salt Overly Sensitive 1 (SOS1) is responsible for the efflux of Na+ from the cytoplasm, an important determinant of salt resistance in plants. In this study, an ortholog of SOS1, referred to as NsSOS1, was cloned from Nitraria sibirica, a typical halophyte that grows in deserts and saline-alkaline land, and its expression and function in regulating the salt tolerance of forest trees were evaluated. The expression level of NsSOS1 was higher in leaves than in roots and stems of N. sibirica, and its expression was upregulated under salt stress. Histochemical staining showed that β-glucuronidase (GUS) driven by the NsSOS1 promoter was strongly induced by abiotic stresses and phytohormones including salt, drought, low temperature, gibberellin, and methyl jasmonate, suggesting that NsSOS1 is involved in the regulation of multiple signaling pathways. Transgenic 84 K poplar (Populus alba × P. glandulosa) overexpressing NsSOS1 showed improvements in survival rate, root biomass, plant height, relative water levels, chlorophyll and proline levels, and antioxidant enzyme activities versus non-transgenic poplar (NT) under salt stress. Transgenic poplars accumulated less Na+ and more K+ in roots, stems, and leaves, which had a lower Na+/K+ ratio compared to NT under salt stress. These results indicate that NsSOS1-mediated Na+ efflux confers salt tolerance to transgenic poplars, which show more efficient photosynthesis, better scavenging of reactive oxygen species, and improved osmotic adjustment under salt stress. Transcriptome analysis of transgenic poplars confirmed that NsSOS1 not only mediates Na+ efflux but is also involved in the regulation of multiple metabolic pathways. The results provide insight into the regulatory mechanisms of NsSOS1 and suggest that it could be used to improve the salt tolerance of forest trees.
Collapse
Affiliation(s)
- Shouye Chen
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xin Geng
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jing Lou
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Duoman Huang
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Huiping Mao
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Xiaofei Lin
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
3
|
El-Dakak R, El-Aggan W, Badr G, Helaly A, Tammam A. Positive Salt Tolerance Modulation via Vermicompost Regulation of SOS1 Gene Expression and Antioxidant Homeostasis in Viciafaba Plant. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112477. [PMID: 34834839 PMCID: PMC8621451 DOI: 10.3390/plants10112477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 05/17/2023]
Abstract
Strategic implementation of vermicompost as safe biofertilizer besides defensing saline soils offer dual function solving problems in developing countries. The current study aims to utilize vermicompost (VC) for amelioration of 200mM NaCl in Vicia faba Aspani cultivar and investigate the molecular role of salt overly sensitive pathway (SOS1). The experiment was conducted following a completely randomized design with three replicates. Treatments include 0; 2.5; 5; 10; 15% dried VC intermingled with soil mixture (clay: sand; 1:2) and/or 200 mM NaCl. The results show that salinity stress decreased broad bean fresh and dry weight; and K+/Na+. However, malonedialdehyde and H2O2 contents; increased. Application of 10% VC and salinity stress increases Ca2+ (41% and 50%), K+/Na+ (125% and 89%), Mg2+ (25% and 36%), N (8% and 11%), indole acetic acid (70% and 152%) and proteins (9% and 13%) for root and shoot, respectively, in comparison to salt treated pots. Moreover, all examined enzymatic antioxidants and their substrates increased, except glutathione reductase. A parallel decrease in abscisic acid (75% and 29%) and proline (59% and 58%) was also recorded for roots and leaves, respectively. Interestingly, the highly significant increase in gene expression of SOS1 (45-fold) could drive defense machinery of broad bean to counteract 200 mM NaCl.
Collapse
Affiliation(s)
- Rehab El-Dakak
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (W.E.-A.); (A.T.)
- Correspondence:
| | - Weam El-Aggan
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (W.E.-A.); (A.T.)
| | - Ghadah Badr
- Department of Biological Science, Faculty of Science, Elmergib University, Al Khums P.O. Box 40414, Libya;
| | - Amira Helaly
- Department of Vegetable Crops, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt;
| | - Amel Tammam
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (W.E.-A.); (A.T.)
| |
Collapse
|
4
|
Identification of miR390-TAS3-ARF pathway in response to salt stress in Helianthus tuberosus L. Gene 2020; 738:144460. [PMID: 32045659 DOI: 10.1016/j.gene.2020.144460] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
MicroRNA390 (miR390), an ancient and highly conserved miRNA family in land plants, plays multiple roles in plant growth, development and stress responses. In this study, we isolated and identified MIR390, miR390, TAS3a/b/c, tasiARF-1/2/3 (trans-acting small interfering RNAs influencing Auxin Response Factors) and ARF2/3/4 in Jerusalem artichoke (Helianthus tuberosus L.). Treatment with 100 mM NaCl induced expression of miR390, increased cleavage of TAS3, produced high levels of tasiARFs, and subsequently enhanced cleavage of ARF3/4, which was most likely associated with salt tolerance of the plants. In contrast, treatment with 300 mM NaCl inhibited expression of miR390, attenuated cleavage of TAS3, produced a small amount of tasiARFs, and reduced cleavage of ARF3/4. We proposed that ARF2, one of the targets of tasiARFs, induced under salinity was likely to play an active role in salt tolerance of Jerusalem artichoke. The study of the miR390-TAS3-ARF model in Jerusalem artichoke may broaden our understanding of salt tolerance mechanisms, and provides a theoretical support for further genetic identification and breeding crops with increased tolerance to salt stress.
Collapse
|
5
|
Farhat S, Jain N, Singh N, Sreevathsa R, Dash PK, Rai R, Yadav S, Kumar P, Sarkar AK, Jain A, Singh NK, Rai V. CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Semin Cell Dev Biol 2019; 96:91-99. [PMID: 31075379 DOI: 10.1016/j.semcdb.2019.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
Crop productivity in rice is harshly limited due to high concentration of salt in the soil. To understand the intricacies of the mechanism it is important to unravel the key pathways operating inside the plant cell. Emerging state-of-the art technologies have provided the tools to discover the key components inside the plant cell for salt tolerance. Among the molecular entities, transcription factors and/or other important components of sensing and signaling cascades have been the attractive targets and the role of NHX and SOS1 transporters amply described. Not only marker assisted programs but also transgenic approaches by using reverse genetic strategies (knockout or knockdown) or overexpression have been extensively used to engineer rice crop. CRISPR/Cas is an attractive paradigm and provides the feasibility for manipulating several genes simultaneously. Here, in this review we highlight some of the molecular entities that could be potentially targeted for generating rice amenable to sustain growth under high salinity conditions by employing CRISPR/Cas. We also try to address key questions for rice salt stress tolerance other than what is already known.
Collapse
Affiliation(s)
- Sufia Farhat
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Neha Jain
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Nisha Singh
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Rohini Sreevathsa
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Prasanta K Dash
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Rhitu Rai
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Pramod Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Ajay Jain
- Department of Biotechnology, Amity University, Jaipur, India.
| | - Nagendra K Singh
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| | - Vandna Rai
- National Institute for Plant Biotechnology, IARI, PUSA Campus, New Delhi 110012, India.
| |
Collapse
|
6
|
Fan Y, Yin X, Xie Q, Xia Y, Wang Z, Song J, Zhou Y, Jiang X. Co-expression of SpSOS1 and SpAHA1 in transgenic Arabidopsis plants improves salinity tolerance. BMC PLANT BIOLOGY 2019; 19:74. [PMID: 30764771 PMCID: PMC6376693 DOI: 10.1186/s12870-019-1680-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/07/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Na+ extrusion from cells is important for plant growth in high saline environments. SOS1 (salt overly sensitive 1), an Na+/H+ antiporter located in the plasma membrane (PM), functions in toxic Na+ extrusion from cells using energy from an electrochemical proton gradient produced by a PM-localized H+-ATPase (AHA). Therefore, SOS1 and AHA are involved in plant adaption to salt stress. RESULTS In this study, the genes encoding SOS1 and AHA from the halophyte Sesuvium portulacastrum (SpSOS1 and SpAHA1, respectively) were introduced together or singly into Arabidopsis plants. The results indicated that either SpSOS1 or SpAHA1 conferred salt tolerance to transgenic plants and, as expected, Arabidopsis plants expressing both SpSOS1 and SpAHA1 grew better under salt stress than plants expressing only SpSOS1 or SpAHA1. In response to NaCl treatment, Na+ and H+ in the roots of plants transformed with SpSOS1 or SpAHA1 effluxed faster than wild-type (WT) plant roots. Furthermore, roots co-expressing SpSOS1 and SpAHA1 had higher Na+ and H+ efflux rates than single SpSOS1/SpAHA1-expressing transgenic plants, resulting in the former amassing less Na+ than the latter. As seen from comparative analyses of plants exposed to salinity stress, the malondialdehyde (MDA) content was lowest in the co-transgenic SpSOS1 and SpAHA1 plants, but the K+ level was the highest. CONCLUSION These results suggest SpSOS1 and SpAHA1 coordinate to alleviate salt toxicity by increasing the efficiency of Na+ extrusion to maintain K+ homeostasis and protect the PM from oxidative damage induced by salt stress.
Collapse
Affiliation(s)
- Yafei Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Xiaochang Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Qing Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Youquan Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Zhenyu Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Jie Song
- Shandong Key Laboratory of Plant Stress/College of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Yang Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Xingyu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| |
Collapse
|
7
|
Chen G, Liu C, Gao Z, Zhang Y, Zhang A, Zhu L, Hu J, Ren D, Yu L, Xu G, Qian Q. Variation in the Abundance of OsHAK1 Transcript Underlies the Differential Salinity Tolerance of an indica and a japonica Rice Cultivar. FRONTIERS IN PLANT SCIENCE 2018; 8:2216. [PMID: 29354152 PMCID: PMC5760540 DOI: 10.3389/fpls.2017.02216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/18/2017] [Indexed: 05/03/2023]
Abstract
Salinity imposes a major constraint over the productivity of rice. A set of chromosome segment substitution lines (CSSLs), derived from a cross between the japonica type cultivar (cv.) Nipponbare (salinity sensitive) and the indica type cv. 9311 (moderately tolerant), was scored using a hydroponics system for their salinity tolerance at the seedling stage. Two of the CSSLs, which share a ∼1.2 Mbp stretch of chromosome 4 derived from cv. Nipponbare, were as sensitive to the stress as cv. Nipponbare itself. Fine mapping based on an F2 population bred from a backcross between one of these CSSLs and cv. 9311 narrowed this region to 95 Kbp, within which only one gene (OsHAK1) exhibited a differential (lower) transcript abundance in cv. Nipponbare and the two CSSLs compared to in cv. 9311. The gene was up-regulated by exposure to salinity stress both in the root and the shoot, while a knockout mutant proved to be more salinity sensitive than its wild type with respect to its growth at both the vegetative and reproductive stages. Seedlings over-expressing OsHAK1 were more tolerant than wild type, displaying a superior photosynthetic rate, a higher leaf chlorophyll content, an enhanced accumulation of proline and a reduced level of lipid peroxidation. At the transcriptome level, the over-expression of OsHAK1 stimulated a number of stress-responsive genes as well as four genes known to be involved in Na+ homeostasis and the salinity response (OsHKT1;5, OsSOS1, OsLti6a and OsLti6b). When the stress was applied at booting through to maturity, the OsHAK1 over-expressors out-yielded wild type by 25%, and no negative pleiotropic effects were expressed in plants gown under non-saline conditions. The level of expression of OsHAK1 was correlated with Na+/K+ homeostasis, which implies that the gene should be explored a target for molecular approaches to the improvement of salinity tolerance in rice.
Collapse
Affiliation(s)
- Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yu Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Anpeng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
8
|
Zeng Y, Li Q, Wang H, Zhang J, Du J, Feng H, Blumwald E, Yu L, Xu G. Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:310-321. [PMID: 28627026 PMCID: PMC5785360 DOI: 10.1111/pbi.12773] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 05/18/2023]
Abstract
The NHX-type cation/H+ transporters in plants have been shown to mediate Na+ (K+ )/H+ exchange for salinity tolerance and K+ homoeostasis. In this study, we identified and characterized two NHX homologues, HtNHX1 and HtNHX2 from an infertile and salinity tolerant species Helianthus tuberosus (cv. Nanyu No. 1). HtNHX1 and HtNHX2 share identical 5'- and 3'-UTR and coding regions, except for a 342-bp segment encoding 114 amino acids (L272 to Q385 ) which is absent in HtNHX2. Both hydroponics and soil culture experiments showed that the expression of HtNHX1 or HtNHX2 improved the rice tolerance to salinity. Expression of HtNHX2, but not HtNHX1, increased rice grain yield, harvest index, total nutrient uptake under K+ -limited salt-stress or general nutrient deficiency conditions. The results provide a novel insight into NHX function in plant mineral nutrition.
Collapse
Affiliation(s)
- Yang Zeng
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Qing Li
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Haiya Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Jianliang Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Jia Du
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Huimin Feng
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | | | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
9
|
Chen X, Lu X, Shu N, Wang D, Wang S, Wang J, Guo L, Guo X, Fan W, Lin Z, Ye W. GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS One 2017; 12:e0181450. [PMID: 28723926 PMCID: PMC5517032 DOI: 10.1371/journal.pone.0181450] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/30/2017] [Indexed: 12/03/2022] Open
Abstract
Upland cotton (Gossypium hirsutum L.), an important source of natural fiber, can tolerate relatively high salinity and drought stresses. In the present study, a plasma membrane Na+/H+ antiporter gene, GhSOS1, was cloned from a salt-tolerant genotype of G. hirsutum, Zhong 9807. The expression level of GhSOS1 in cotton roots was significantly upregulated in the presence of high concentrations of NaCl (200 mM), while its transcript abundance was increased when exposed to low temperature and drought stresses. Localization analysis using onion epidermal cells showed that the GhSOS1 protein was localized to the plasma membrane. The overexpression of GhSOS1 in Arabidopsis enhanced tolerance to salt stress, as indicated by a lower MDA content and decreased Na+/K+ ratio in transgenic plants. Moreover, the transcript levels of stress-related genes were significantly higher in GhSOS1 overexpression lines than in wild-type plants under salt treatment. Hence, GhSOS1 may be a potential target gene for enhancing salt tolerance in transgenic plants.
Collapse
Affiliation(s)
- Xiugui Chen
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Na Shu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Xiaoning Guo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Weili Fan
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- * E-mail:
| |
Collapse
|
10
|
Zhou Y, Lai Z, Yin X, Yu S, Xu Y, Wang X, Cong X, Luo Y, Xu H, Jiang X. Hyperactive mutant of a wheat plasma membrane Na +/H + antiporter improves the growth and salt tolerance of transgenic tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:176-186. [PMID: 27968986 DOI: 10.1016/j.plantsci.2016.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 05/04/2023]
Abstract
Wheat SOS1 (TaSOS1) activity could be relieved upon deletion of the C-terminal 168 residues (the auto-inhibitory domain). This truncated form of wheat SOS1 (TaSOS1-974) was shown to increase compensation (compared to wild-type TaSOS1) for the salt sensitivity of a yeast mutant strain, AXT3K, via increased Na+ transportation out of cells during salinity stress. Expression of the plasma membrane proteins TaSOS1-974 or TaSOS1 improved the growth of transgenic tobacco plants compared with wild-type plants under normal conditions. However, plants expressing TaSOS1-974 grew better than TaSOS1-transformed plants. Upon salinity stress, Na+ efflux and K+ influx rates in the roots of transgenic plants expressing TaSOS1-974 or TaSOS1 were greater than those of wild-type plants. Furthermore, compared to TaSOS1-transgenic plants, TaSOS1-974-expressing roots showed faster Na+ efflux and K+ influx, resulting in less Na+ and more K+ accumulation in TaSOS1-974-transgenic plants compared to TaSOS1-transgenic and wild-type plants. TaSOS1-974-expressing plants had the lowest MDA content and electrolyte leakage among all tested plants, indicating that TaSOS1-974 might protect the plasma membrane against oxidative damage generated by salt stress. Overall, TaSOS1-974 conferred higher salt tolerance in transgenic plants compared to TaSOS1. Consistent with this result, transgenic plants expressing TaSOS1-974 showed a better growth performance than TaSOS1-expressing and wild-type plants under saline conditions.
Collapse
Affiliation(s)
- Yang Zhou
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Zesen Lai
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Xiaochang Yin
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Shan Yu
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Yuanyuan Xu
- National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxiao Wang
- National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinli Cong
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Yuehua Luo
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Haixia Xu
- National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xingyu Jiang
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China.
| |
Collapse
|
11
|
Gao J, Sun J, Cao P, Ren L, Liu C, Chen S, Chen F, Jiang J. Variation in tissue Na(+) content and the activity of SOS1 genes among two species and two related genera of Chrysanthemum. BMC PLANT BIOLOGY 2016; 16:98. [PMID: 27098270 PMCID: PMC4839091 DOI: 10.1186/s12870-016-0781-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/13/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Chrysanthemum, a leading ornamental species, does not tolerate salinity stress, although some of its related species do. The current level of understanding regarding the mechanisms underlying salinity tolerance in this botanical group is still limited. RESULTS A comparison of the physiological responses to salinity stress was made between Chrysanthemum morifolium 'Jinba' and its more tolerant relatives Crossostephium chinense, Artemisia japonica and Chrysanthemum crassum. The stress induced a higher accumulation of Na(+) and more reduction of K(+) in C. morifolium than in C. chinense, C. crassum and A. japonica, which also showed higher K(+)/Na(+) ratio. Homologs of an Na(+)/H(+) antiporter (SOS1) were isolated from each species. The gene carried by the tolerant plants were more strongly induced by salt stress than those carried by the non-tolerant ones. When expressed heterologously, they also conferred a greater degree of tolerance to a yeast mutant lacking Na(+)-pumping ATPase and plasma membrane Na(+)/H(+) antiporter activity. The data suggested that the products of AjSOS1, CrcSOS1 and CcSOS1 functioned more effectively as Na (+) excluders than those of CmSOS1. Over expression of four SOS1s improves the salinity tolerance of transgenic plants and the overexpressing plants of SOS1s from salt tolerant plants were more tolerant than that from salt sensitive plants. In addition, the importance of certain AjSOS1 residues for effective ion transport activity and salinity tolerance was established by site-directed mutagenesis and heterologous expression in yeast. CONCLUSIONS AjSOS1, CrcSOS1 and CcSOS1 have potential as transgenes for enhancing salinity tolerance. Some of the mutations identified here may offer opportunities to better understand the mechanistic basis of salinity tolerance in the chrysanthemum complex.
Collapse
Affiliation(s)
- Jiaojiao Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Peipei Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liping Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chen Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|