1
|
La Y, Li Z, Ma X, Bao P, Chu M, Guo X, Liang C, Yan P. Age-dependent changes in the expression and localization of LYZL4, LYZL6 and PCNA during testicular development in the Ashidan yak. Anim Biotechnol 2024; 35:2344213. [PMID: 38669244 DOI: 10.1080/10495398.2024.2344213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Lysozyme like 4 (LYZL4), lysozyme like 6 (LYZL6) and proliferating cell nuclear antigen (PCNA) are implicated in the regulation of testicular function, but there was no research reported available on the expression patterns of LYZL4, LYZL6 and PCNA genes at different developmental stages of yak testes. In this study, we used the qRT-PCR, western blotting and immunohistochemistry estimated the LYZL4, LYZL6 and PCNA gene expression and protein lo-calization at different developmental stages of yak testes. The qPCR results showed that the mRNA expression of LYZL4, LYZL6 and PCNA genes significantly increased with age in the testes of yaks. Western blot results showed that the protein abundance of LYZL4, LYZL6 and PCNA in yak testes was significantly higher after puberty than before puberty. Furthermore, the results of immunohistochemistry indicated that LYZL4, LYZL6 and PCNA may be involved in the regulation of spermatogonia proliferation and Leydig cell function in immature testis. In adult yak testes, LYZL4, LYZL6 and PCNA may involve in the development of round spermatids and primary spermatocytes during testicular development. Our results indicated that LYZL4, LYZL6 and PCNA may be involved in the development of Sertoli cells, Leydig cells and gonocytes in yak testes.
Collapse
Affiliation(s)
- Yongfu La
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Zhongbang Li
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| |
Collapse
|
2
|
Wan RD, Gao X, Wang GW, Wu SX, Yang QL, Zhang YW, Yang QE. Identification of Candidate Genes Related to Hybrid Sterility by Genomic Structural Variation and Transcriptome Analyses in Cattle-yak. J Dairy Sci 2024:S0022-0302(24)01212-8. [PMID: 39414017 DOI: 10.3168/jds.2024-24770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Hybrids between closely related but genetically incompatible species are often inviable or sterile. Cattle-yak, an interspecific hybrid of yak and cattle, exhibits male-specific sterility, which limits the fixation of its desired traits and prevents genetic improvement in yak through crossbreeding. Transcriptome profiles of testicular tissues have been generated in cattle, yak, and cattle-yak; however, the genetic variations underlying differential gene expression associated with hybrid sterility have yet to be elucidated. We detected differences in the cellular composition and gene expression of testes from yak and cattle-yak at 3 mo of age, 10 mo of age and adulthood. Histological analysis revealed that the most advanced germ cells were gonocytes (prospermatogonia) at 3 mo and spermatocytes at 10 mo. Complete spermatogenesis occurred in the seminiferous tubules of adult yak, whereas only spermatogonia and a limited number of spermatocytes were detected in the testis of adult cattle-yak. Transcriptome analysis revealed 180, 6310, and 6112 differentially expressed genes (DEGs) in yak and cattle-yak at each stage, respectively. Next, we examined the spermatogenic cell types in the backcross generation (BC1) and detected the appearance of round spermatids, indicating the partial recovery of spermatogenesis in these animals. Compared with those in cattle-yak, 272 DEGs were identified in the testes of BC1 animals. Notably, we discovered that the expression of X chromosome-linked (X-linked) genes was upregulated in the testis of cattle-yak compared with yak, suggesting a possible abnormality in the process of meiotic sex chromosome inactivation (MSCI) in hybrid animals. We next screened DEGs harboring structural variations (SVs) and identified a list of SV genes associated with spermatogonial development, meiotic recombination, and double-strand break (DSB) repair. Furthermore, we found that the SV genes ESCO2 (establishment of sister chromatid cohesion N-acetyltransferase 2) and BRDT (bromodomain testis associated) may be involved in meiotic arrest of cattle-yak spermatocytes. Overall, our research provides a valuable database for identifying structural variant loci that contribute to hybrid sterility.
Collapse
Affiliation(s)
- Rui-Dong Wan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China
| | - Xue Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China
| | - Guo-Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China
| | - Qi-Lin Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China
| | - Yi-Wen Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China.
| |
Collapse
|
3
|
La Y, Ma X, Bao P, Chu M, Yan P, Guo X, Liang C. Quantitative Proteomic Analysis Reveals Key Proteins Involved in Testicular Development of Yaks. Int J Mol Sci 2024; 25:8433. [PMID: 39126002 PMCID: PMC11313431 DOI: 10.3390/ijms25158433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Male reproductive health is largely determined already in the early development of the testis. Although much work has been carried out to study the mechanisms of testicular development and spermatogenesis, there was previously no information on the differences in the protein composition of yak testicles during early development. In this study, the protein profiles in the testicles of 6- (M6), 18- (M18), and 30-month-old (M30) yaks were comparatively analyzed using TMT proteomics. A total of 5521 proteins were identified, with 13, 1295, and 1397 differentially expressed proteins (DEPs) in 30- vs. 18-, 18- vs. 6-, and 30- vs. 6-month-old testes, respectively. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that DEPs were mainly involved in signaling pathways related to testicular development and spermatogenesis, including the MAPK, PI3K-Akt, Wnt, mTOR, TGF-β, and AMPK signaling pathways. Furthermore, we also identified eight potential proteins (TEX101, PDCL2, SYCP2, SYCP3, COL1A1, COL1A2, ADAM10, and ATF1) that may be related to the testicular development and spermatogenesis of yaks. This study may provide new insights into the molecular mechanisms of the testicular development and spermatogenesis of yaks.
Collapse
Affiliation(s)
- Yongfu La
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
4
|
Cao M, Xiong L, Wang X, Guo S, Hu L, Kang Y, Wu X, Bao P, Chu M, Liang C, Pei J, Guo X. Comprehensive analysis of differentially expressed mRNAs, circRNAs, and miRNAs and their ceRNA network in the testis of cattle-yak, yak, and cattle. Genomics 2024; 116:110872. [PMID: 38849017 DOI: 10.1016/j.ygeno.2024.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Cattle-yak is a hybrid offspring resulting from the crossbreeding of yak and cattle, and it exhibits substantial heterosis in production performance. However, male sterility in cattle-yak remains a concern. Reports suggest that noncoding RNAs are involved in the regulation of spermatogenesis. Therefore, in this study, we comprehensively compared testicular transcription profiles among cattle, yak, and cattle-yak. Numerous differentially expressed genes (DEGs), differentially expressed circRNAs (DECs), and differentially expressed miRNAs (DEMs) were identified in the intersection of two comparison groups, namely cattle versus cattle-yak and yak versus cattle-yak, with the number of DEGs, DECs, and DEMs being 4968, 360, and 59, respectively. The DEGs in cattle-yaks, cattle, and yaks were mainly associated with spermatogenesis, male gamete generation, and sexual reproduction. Concurrently, GO and KEGG analyses indicated that DEC host genes and DEM source genes were involved in the regulation of spermatogenesis. The construction of a potential competing endogenous RNA network revealed that some differentially expressed noncoding RNAs may be involved in regulating the expression of genes related to testicular spermatogenesis, including miR-423-5p, miR-449b, miR-34b/c, and miR-15b, as well as previously unreported miR-6123 and miR-1306, along with various miRNA-circRNA interaction pairs. This study serves as a valuable reference for further investigations into the mechanisms underlying male sterility in cattle-yaks.
Collapse
Affiliation(s)
- Mengli Cao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Liyan Hu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyu Wu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Xian Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| |
Collapse
|
5
|
Wu SX, Wang GW, Fang YG, Chen YW, Jin YY, Liu XT, Jia GX, Yang QE. Transcriptome analysis reveals dysregulated gene expression networks in Sertoli cells of cattle-yak hybrids. Theriogenology 2023; 203:33-42. [PMID: 36966583 DOI: 10.1016/j.theriogenology.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
Cattle-yak, the hybrid offspring of yak and taurine cattle, exhibits male sterility with normal female fertility. Spermatogenesis is arrested in adult cattle-yak, and apoptosis is elevated in spermatogenic cells. Currently, the mechanisms underlying these defects remain elusive. Sertoli cells are the only somatic cells that directly interact with spermatogenic cells in the seminiferous tubules and play essential roles in spermatogenesis. The present study was designed to investigate gene expression signatures and potential roles of Sertoli cells in hybrid sterility in cattle-yak. Immunohistochemical analysis showed that the 5 mC and 5hmC signals in Sertoli cells of cattle-yaks were significantly different from those of age-matched yaks (P < 0.05). Transcriptome profiling of isolated Sertoli cells identified 402 differentially expressed genes (DEGs) between cattle-yaks and yaks. Notably, niche factor glial cell derived neurotrophic factor (GDNF) was upregulated, and genes involved in retinoic acid (RA) biogenesis were changed in Sertoli cells of cattle-yak, suggesting possible impairments of spermatogonial fate decisions. Further studies showed that the numbers of proliferative gonocytes and undifferentiated spermatogonia in cattle-yak were significantly higher than those in yak (P < 0.01). Exogenous GDNF significantly promoted the proliferation of UCHL1-positive spermatogonia in yaks. Therefore, we concluded that altered GDNF expression and RA signaling impacted the fate decisions of undifferentiated spermatogonia in cattle-yak. Together, these findings highlight the role of Sertoli cells and their derived factors in hybrid sterility.
Collapse
Affiliation(s)
- Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - You-Gui Fang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; Agricultural Service Center of Maduo County, Qinghai, 813500, China
| | - Yong-Wei Chen
- Qinghai Headquarter of Animal Husbandry Extension Station, Xining, 810008, China
| | - Yan-Ying Jin
- Center for Animal Disease Control and Prevention of Gangcha County, Qinghai, 812399, China
| | - Xue-Tong Liu
- Shaanxi General Animal Husbandry Station, Xian, Shaanxi, 710010, China
| | - Gong-Xue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China.
| |
Collapse
|
6
|
Zhang GW, Wang L, Wu J, Ye Y, Zhao J, Du Y, Tu Y, Luo Z, Fu S, Zuo F. Evaluation of MYBL1 as the master regulator for pachytene spermatocyte genes dysregulated in interspecific hybrid dzo. J Dairy Sci 2023; 106:4366-4379. [PMID: 37059660 DOI: 10.3168/jds.2022-22963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/08/2022] [Indexed: 04/16/2023]
Abstract
Misregulation of spermatogenesis transcription factors (TF) in hybrids can lead to misexpression, which is a mechanism for hybrid male sterility (HMS). We used dzo (male offspring of Bos taurus ♂ × Bos grunniens ♀) in bovines to investigate the relationship of the key TF with HMS via RNA sequencing and assay for transposase-accessible chromatin with high-throughput sequencing analyses. RNA sequencing showed that the widespread misexpression in dzo was associated with spermatogenesis-related genes and somatic or progenitor genes. The transition from leptotene or zygotene spermatocytes to pachytene spermatocytes may be the key stage for meiosis arrest in dzo. The analysis of TF-binding motif enrichment revealed that the male meiosis-specific master TF MYB proto-oncogene like 1 (MYBL1, known as A-MYB) motif was enriched on the promoters of downregulated pachytene spermatocyte genes in dzo. Assay for transposase-accessible chromatin with high-throughput sequencing revealed that TF-binding sites for MYBL1, nuclear transcription factor Y, and regulatory factor X were enriched in the low-chromatin accessibility region of dzo. The target genes of the MYBL1-binding motif were associated with meiosis-specific genes and significantly downregulated in dzo testis. The transcription factor MYBL1 may be the candidate master regulator for pachytene spermatocyte genes dysregulated in interspecific HMS dzo. This study reported that a few upstream TF regulation changes might exert a cascading effect downstream in a regulatory network as a mechanism for HMS.
Collapse
Affiliation(s)
- Gong-Wei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460, Chongqing, China.
| | - Ling Wang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460, Chongqing, China
| | - Jingjing Wu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Yiru Ye
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Jianjun Zhao
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Yanan Du
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Yun Tu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Zonggang Luo
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Shubing Fu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460, Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460, Chongqing, China.
| |
Collapse
|
7
|
Mipam T, Chen X, Zhao W, Zhang P, Chai Z, Yue B, Luo H, Wang J, Wang H, Wu Z, Wang J, Wang M, Wang H, Zhang M, Wang H, Jing K, Zhong J, Cai X. Single-cell transcriptome analysis and in vitro differentiation of testicular cells reveal novel insights into male sterility of the interspecific hybrid cattle-yak. BMC Genomics 2023; 24:149. [PMID: 36973659 PMCID: PMC10045231 DOI: 10.1186/s12864-023-09251-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Interspecific hybridization plays vital roles in enriching animal diversity, while male hybrid sterility (MHS) of the offspring commonly suffered from spermatogenic arrest constitutes the postzygotic reproductive isolation. Cattle-yak, the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens) can serve as an ideal MHS animal model. Although meiotic arrest was found to contribute to MHS of cattle-yak, yet the cellular characteristics and developmental potentials of male germline cell in pubertal cattle-yak remain to be systematically investigated. RESULTS Single-cell RNA-seq analysis of germline and niche cell types in pubertal testis of cattle-yak and yak indicated that dynamic gene expression of developmental germ cells was terminated at late primary spermatocyte (meiotic arrest) and abnormal components of niche cell in pubertal cattle-yak. Further in vitro proliferation and differentially expressed gene (DEG) analysis of specific type of cells revealed that undifferentiated spermatogonia of cattle-yak exhibited defects in viability and proliferation/differentiation potentials. CONCLUSION Comparative scRNA-seq and in vitro proliferation analysis of testicular cells indicated that not only meiotic arrest contributed to MHS of cattle-yak. Spermatogenic arrest of cattle-yak may originate from the differentiation stage of undifferentiated spermatogonia and niche cells of cattle-yak may provide an adverse microenvironment for spermatogenesis.
Collapse
Affiliation(s)
- TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Mingxiu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hongying Wang
- College of Chemistry & Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Kemin Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Cao M, Wang X, Guo S, Kang Y, Pei J, Guo X. F1 Male Sterility in Cattle-Yak Examined through Changes in Testis Tissue and Transcriptome Profiles. Animals (Basel) 2022; 12:ani12192711. [PMID: 36230452 PMCID: PMC9559613 DOI: 10.3390/ani12192711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Cattle-yak, a crossbreed of cattle and yak, has evident heterosis but F1 male cattle-yak is unable to generate sperm and is sterile, which limits the fixation of heterosis. This study analyzed the differences in testicular tissue development between four-year-old yak and cattle-yak from the perspective of histomorphological changes and sequenced the testicular tissue of the two using RNA-seq technology, examining the differential gene expression related to spermatogenesis and apoptosis. These findings offer a theoretical explanation for the sterility in F1 male cattle-yak that can help yak hybridization. Abstract Male-derived sterility in cattle-yaks, a hybrid deriving from yak and cattle, is a challenging problem. This study compared and analyzed the histomorphological differences in testis between sexually mature yak and cattle-yak, and examined the transcriptome differences employing RNA-seq. The study found that yak seminiferous tubules contained spermatogenic cells at all levels, while cattle-yak seminiferous tubules had reduced spermatogonia (SPG) and primary spermatocyte (Pri-SPC), fewer secondary spermatocytes (Sec-SPC), an absence of round spermatids (R-ST) and sperms (S), and possessed large vacuoles. All of these conditions could have significantly reduced the volume and weight of cattle-yak testis compared to that of yak. RNA-seq analysis identified 8473 differentially expressed genes (DEGs; 3580 upregulated and 4893 downregulated). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment evaluations for DEGs found their relation mostly to spermatogenesis and apoptosis. Among the DEGs, spermatogonia stem cell (SSCs) marker genes (Gfra1, CD9, SOHLH1, SALL4, ID4, and FOXO1) and genes involved in apoptosis (Fas, caspase3, caspase6, caspase7, caspase8, CTSK, CTSB and CTSC) were significantly upregulated, while differentiation spermatogenic cell marker genes (Ccna1, PIWIL1, TNP1, and TXNDC2) and meiosis-related genes (TEX14, TEX15, MEIOB, STAG3 and M1AP) were significantly downregulated in cattle-yak. Furthermore, the alternative splicing events in cattle-yak were substantially decreased than in yak, suggesting that the lack of protein subtypes could be another reason for spermatogenic arrest in cattle-yak testis.
Collapse
Affiliation(s)
- Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: ; Tel.: +86-18993037854
| |
Collapse
|
9
|
Luo H, Mipam T, Wu S, Xu C, Yi C, Zhao W, Chai Z, Chen X, Wu Z, Wang J, Wang J, Wang H, Zhong J, Cai X. DNA methylome of primary spermatocyte reveals epigenetic dysregulation associated with male sterility of cattleyak. Theriogenology 2022; 191:153-167. [PMID: 35988507 DOI: 10.1016/j.theriogenology.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
DNA cytosine methylation modification in the germline is of particular importance since it is a highly heritable epigenetic mark. Although cytosine methylation has been analyzed at the genome-scale for several mammalian species, our knowledge of DNA methylation patterns and the mechanisms underlying male hybrid sterility is still limited in domestic animals such as cattleyak. Here we for the first time show the genome-wide and single-base resolution landscape of methylcytosines (mC) in the primary spermatocyte (PSC) genome of yak with normal spermatogenesis and the inter-specific hybrid cattleyak with male infertility. A comparative investigation revealed that widespread differences are observed in the composition and patterning of DNA cytosine methylation between the two methylomes. Global CG or non-CG DNA methylation levels, as well as the number of mC sites, are increased in cattleyak compared to yak. Notably, the DNA methylome in cattleyak PSC exhibits promoter hypermethylation of meiosis-specific genes and piRNA pathway genes with respect to yak. Furthermore, major retrotransposonson classes are predominantly hypermethylated in cattleyak while those are fully hypomethylated in yak. KEGG pathway enrichment indicates Rap1 signaling and MAPK pathways may play potential roles in the spermatogenic arrest of cattleyak. Our present study not only provides valuable insights into distinct features of the cattleyak PSC methylome but also paves the way toward elucidating the complex, yet highly coordinated epigenetic modification during male germline development for inter-specific hybrid animals.
Collapse
Affiliation(s)
- Hui Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Wang X, Pei J, Guo S, Cao M, Kang Y, Xiong L, La Y, Bao P, Liang C, Yan P, Guo X. Characterization of N6-methyladenosine in cattle-yak testis tissue. Front Vet Sci 2022; 9:971515. [PMID: 36016801 PMCID: PMC9395605 DOI: 10.3389/fvets.2022.971515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 01/12/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common form of eukaryotic mRNA modification, and it has been shown to exhibit broad regulatory activity in yeast, plants, and mammals. The specific role of m6A methylation as a regulator of spermatogenesis, however, has yet to be established. In this experiment, through a series of preliminary studies and methylated RNA immunoprecipitation sequencing, the m6A map of cattle-yak testicular tissue was established as a means of exploring how m6A modification affects cattle-yak male infertility. Cattle-yak testis tissues used in this study were found to contain sertoli cells and spermatogonia. Relative to sexually mature yak samples, those isolated from cattle-yak testis exhibited slightly reduced levels of overall methylation, although these levels were significantly higher than those in samples from pre-sexually mature yaks. Annotation analyses revealed that differentially methylated peaks were most concentrated in exonic regions, with progressively lower levels of concentration in the 3'-untranslated region (UTR) and 5'-UTR regions. To further explore the role of such m6A modification, enrichment analyses were performed on differentially methylated and differentially expressed genes in these samples. For the cattle-yaks vs. 18-months-old yaks group comparisons, differentially methylated genes were found to be associated with spermatogenesis-related GO terms related to the cytoskeleton and actin-binding, as well as with KEGG terms related to the regulation of the actin cytoskeleton and the MAPK signaling pathway. Similarly, enrichment analyses performed for the cattle-yaks vs. 5-years-old yaks comparison revealed differentially methylated genes to be associated with GO terms related to protein ubiquitination, ubiquitin ligase complexes, ubiquitin-dependent protein catabolism, and endocytotic activity, as well as with KEGG terms related to apoptosis and the Fanconi anemia pathway. Overall, enrichment analyses for the cattle-yaks vs. 18-months-old yaks comparison were primarily associated with spermatogenesis, whereas those for the cattle-yaks vs. 5-years-old yaks comparison were primarily associated with apoptosis.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- *Correspondence: Xian Guo
| |
Collapse
|
11
|
Cai X, Wu S, Mipam T, Luo H, Yi C, Xu C, Zhao W, Wang H, Zhong J. Testis transcriptome profiling identified lncRNAs involved in spermatogenic arrest of cattleyak. Funct Integr Genomics 2021; 21:665-678. [PMID: 34626308 DOI: 10.1007/s10142-021-00806-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/31/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023]
Abstract
Cattleyaks are the crossbred offspring between cattle and yaks, exhibiting the prominent adaptability to the harsh environment as yaks and much higher growth performances than yaks around Qinghai-Tibet plateau. Unfortunately, cattleyak cannot be effectively used in yak breeding due to its male infertility resulted from spermatogenic arrest. In this study, we performed RNA sequencing (RNA-seq) and bioinformatics analysis to determine the expression profiles of long noncoding RNA (lncRNA) from cattleyak and yak testis. A total of 604 differentially expressed (DE) lncRNAs (135 upregulated and 469 downregulated) were identified in cattleyak with respect to yak. Through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we identified several DE lncRNAs regulating the mitotic cell cycle processes by targeting the genes significantly associated with the mitotic cell cycle checkpoint and DNA damage checkpoint term and also significantly involved in p53 signaling pathway, mismatch repair and homologous recombination pathway (P < 0.05). The reverse transcription PCR (RT-PCR) and quantitative Real-Time PCR (qRT-PCR) analysis of the randomly selected fourteen DE lncRNAs and the seven target genes validated the RNA-seq data and their true expressions during spermatogenesis in vivo. Molecular cloning and sequencing indicated that the testis lncRNAs NONBTAT012170 and NONBTAT010258 presented higher similarity among different cattleyak and yak individuals. The downregulation of these target genes in cattleyak contributed to the abnormal DNA replication and spermatogenic arrest during the S phase of mitotic cell cycle. This study provided a novel insight into lncRNA expression profile changes associated with spermatogenic arrest of cattleyak.
Collapse
Affiliation(s)
- Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Shixin Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanping Yi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanfei Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Hongying Wang
- College of Chemistry&Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Zhao S, Chen T, Luo X, Chen S, Wang J, Lai S, Jia X. Identification of Novel lncRNA and Differentially Expressed Genes (DEGs) of Testicular Tissues among Cattle, Yak, and Cattle-Yak Associated with Male Infertility. Animals (Basel) 2021; 11:ani11082420. [PMID: 34438876 PMCID: PMC8388754 DOI: 10.3390/ani11082420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cattle-yak is an excellent hybrid of male cattle and female yak, which has many more outstanding production traits, such as better adaptability to high altitudes and better meat quality. However, the male sterility of cattle-yak restricts the utilization of superior heterosis. Few studies have focused on the comprehensive analysis of cattle-yak and its parents, in order to find factors on infertility of the cattle-yak. This study comprehensively analyzed the mRNA and lncRNA expression profiles of testicular tissue samples of cattle, yak, and cattle-yak by RNA-seq technology, and identified some differentially expressed genes that may be related to male sterility of cattle-yak, in order to provide a theoretical basis for solving the problem of breeding work. Abstract Cattle-yak is an excellent hybrid of cattle and yak; they are characterized by better meat quality and stronger adaptability of harsh environments than their parents. However, male sterility of cattle-yak lay restraints on the transmission of heterosis. In this study, next generation sequence technology was performed to profile the testicular tissues transcriptome (lncRNA and mRNA) of cattle, yak, and cattle-yak. We analyzed the features and functions of significant differentially expressed genes among the three breeds. There are 9 DE lncRNAs and 46 DE mRNAs with comparisons of cattle, yak, and cattle-yak. Among them, the upregulated targeting genes, such as IGF1 and VGLL3 of cattle-yak lncRNA, may be related to the derangement of spermatocyte maturation and cell proliferation. Similarly, we found that the LDOC1 gene, which is related to the process of cellular apoptosis, is overexpressed in cattle-yak. GO enrichment analysis demonstrated that the cattle-yak is lacking the regulation of fertilization (GO: 0009566), spermatogenesis process (GO: 0007283), male gamete generation process (GO: 0048232), sexual reproduction (GO: 0019953), and multi-organism reproductive process (GO: 0044703), such processes may play important and positive roles in spermatogenesis and fertilization. Furthermore, the KEGG enrichment analysis showed that the upregulated DEGs of cattle-yak most enriched in Apoptosis (ko04210) and Hippo signaling pathway (ko04390), may lead to excessively dead of cell and inhibit cell growth, resulting in obstruction of meiosis and spermatogenesis processes. This study will enable us to deeper understand the mechanism of male cattle-yak infertility.
Collapse
|
13
|
Robert N, Yan C, Si-Jiu Y, Bo L, He H, Pengfei Z, Hongwei X, Jian Z, Shijie L, Qian Z. Expression of Rad51 and the histo-morphological evaluation of testis of the sterile male cattle-yak. Theriogenology 2021; 172:239-254. [PMID: 34298284 DOI: 10.1016/j.theriogenology.2021.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022]
Abstract
Meiotic recombination is key to the repair of DNA double-strand break damage, provide a link between homologs for proper chromosome segregation as well as ensure genetic diversity in organisms. Defects in recombination often lead to sterility. The ubiquitously expressed Rad51 and the meiosis-specific DMC1 are two closely related recombinases that catalyze the key strand invasion and exchange step of meiotic recombination. This study cloned and sequenced the coding region of cattle-yak Rad51 and determined its mRNA and protein expression levels, evaluated its molecular and evolutionary relationship as well as evaluated the histo-morphological structure of testes in the yellow cattle, yak and the sterile cattle-yak hybrid. The Rad51 gene was amplified using PCR, cloned and sequenced using testicular cDNA from yak and cattle-yak. Real-time PCR was used to examine the expression levels of Rad51/DMC1 mRNA in the cattle, yak and cattle-yak testis while western blotting, immunofluorescence and immunohistochemistry were used to assess the protein expression and localization of Rad51/DMC1 protein in the testicular tissue sections. The results revealed that the mRNA and protein expression of Rad51 and DMC1 are extremely low in the male cattle-yak testis with a corresponding higher incidence of germ cell apoptosis. There was also thinning of the germinal epithelium possibly due to the depletion of the germ cells leading to the widening of the lumen area of the cattle-yak seminiferous tubule. Our findings provide support for the hypothesis that the low expression of Rad51 and DMC1 may contribute to the male hybrid sterility in the cattle-yak.
Collapse
Affiliation(s)
- Niayale Robert
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Cui Yan
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China.
| | - Yu Si-Jiu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China
| | - Liao Bo
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China
| | - Zhao Pengfei
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xu Hongwei
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhang Jian
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Li Shijie
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhang Qian
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
14
|
Niayale R, Cui Y, Adzitey F. Male hybrid sterility in the cattle-yak and other bovines: a review. Biol Reprod 2020; 104:495-507. [PMID: 33185248 DOI: 10.1093/biolre/ioaa207] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/16/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Hybridization is important for both animal breeders attempting to fix new phenotypic traits and researchers trying to unravel the mechanism of reproductive barriers in hybrid species and the process of speciation. In interspecies animal hybrids, gains made in terms of adaptation to environmental conditions and hybrid vigor may be offset by reduced fertility or sterility. Bovine hybrids exhibit remarkable hybrid vigor compared to their parents. However, the F1 male hybrid exhibits sterility, whereas the female is fertile. This male-biased sterility is consistent with the Haldane rule where heterogametic sex is preferentially rare, absent, or sterile in the progeny of two different species. The obstacle of fixing favorable traits and passing them to subsequent generations due to the male sterility is a major setback in improving the reproductive potential of bovines through hybridization. Multiperspective approaches such as molecular genetics, proteomics, transcriptomics, physiology, and endocrinology have been used by several researchers over the past decade in an attempt to unravel the potential mechanisms underlying male hybrid sterility. However, the mechanism of sterility in the hybrid male is still not completely unravelled. This review seeks to provide an update of the mechanisms of the sterility in the cattle-yak and other bovines.
Collapse
Affiliation(s)
- Robert Niayale
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China.,Faculty of Agriculture, Animal Science Department, University for Development Studies, Tamale, Ghana
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Fredrick Adzitey
- Faculty of Agriculture, Animal Science Department, University for Development Studies, Tamale, Ghana
| |
Collapse
|
15
|
Zhao W, Ahmed S, Ahmed S, Yangliu Y, Wang H, Cai X. Analysis of long non-coding RNAs in epididymis of cattleyak associated with male infertility. Theriogenology 2020; 160:61-71. [PMID: 33181482 DOI: 10.1016/j.theriogenology.2020.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/07/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Cattleyak (CY), is a cross breed between cattle and yak (YK), which display equal adaptability to the harsh environment as YK and much higher performances than YK. However, the CY is female fertile and male sterile. Previous studies were conducted on testes tissues to investigate the mechanism of male infertility in CY. There is no systematic research on genes, especially lncRNAs between CY and YK epididymis. In this study, Illumina Hiseq was performed to profile the epididymis transcriptome (lncRNA and mRNA) of CY and YK. In total 18859 lncRNAs were identified, from which lincRNAs 12458, antisense lncRNAs 2345, intronic lncRNAs 3101, and sense lncRNAs 955 respectively. We have identified 345 DE lncRNAs and 3008 DE mRNAs between YK and CY epididymis. Thirteen DEGs were validated by quantitative real-time PCR. Combing with DEG, 14 couples of lncRNAs and their target genes were both DE, and 6 of them including CCDC39, KCNJ16, NECTIN2, MRPL20, PSMC4, and DEFB112 show their potential infertility-related terms such as cellular motility, sperm maturation, sperm storage, cellular junction, folate metabolism, and capacitation. On the other hand, several down-regulated genes such as DEFB124, DEFB126, DEFB125, DEFB127, DEFB129, CES5A, TKDP1, CST3, RNASE9 and CD52 in CY compared to YK were involved in the immune response and sperm maturation. Therefore, comprehensive analysis for lncRNAs and their target genes may enhance our understanding of the molecular mechanisms underlying the process of sperm maturation in CY and may provide important resources for further research.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Saeed Ahmed
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Siraj Ahmed
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Yueling Yangliu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Hongmei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, Sichuan, 610041, China; Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
16
|
Yin S, Qin W, Wang B, Zhou J, Yang L, Xiong X, Li J. Absence of Sirtuin 1 impairs the testicular development in cattleyak by inactivating SF-1. Reprod Domest Anim 2020; 55:1054-1060. [PMID: 32497285 DOI: 10.1111/rda.13737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022]
Abstract
Cattleyak, which are interspecific hybrids between cattle and yak, display much higher growth performances than yak. However, F1 male cattleyak are infertile due to defective testicular development. Sirtuin 1 (SIRT1) is a histone deacetylase that is essential for various biological processes, while the roles of testicular SIRT1 in yak and cattleyak are still poorly understood. Here, we found that SIRT1 was localized in various kinds of yak testicular cells except elongated spermatids while it was deficient in cattleyak testis. Further studies indicated that cattleyak testis exhibited decreased histone acetylation levels on H3 and H4. One of SIRT1 co-factors, steroidogenic factor-1 (SF-1), was lost in cattleyak testis at protein level. Expressions of several SF-1 target genes responsible for Sertoli cell development and steroidogenesis, including STAR, CYP11A1, CYP26B1, FDX1 and HSD3B, decreased significantly in cattleyak testis. In addition, SIRT1-mediated P53 acetylation was not responsible for the cell apoptosis in cattleyak testis. Taken together, our results suggested the deficiency of SIRT1 in yak testis caused inactivation of SF-1 and the impairment of testicular development. This research provides theoretical bases for understanding the mechanism of cattleyak sterility and gives new insights in revealing the roles of SIRT1 in regulating yak testicular development.
Collapse
Affiliation(s)
- Shi Yin
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China.,Key Laboratory of Modem Technology (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu, China
| | - Wenchang Qin
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Bin Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Jingwen Zhou
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Liuqing Yang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Xianrong Xiong
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Jian Li
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
17
|
Li T, Zhang H, Wang X, Yin D, Chen N, Kang L, Zhao X, Ma Y. Cloning, Molecular Characterization and Expression Patterns of DMRTC2 Implicated in Germ Cell Development of Male Tibetan Sheep. Int J Mol Sci 2020; 21:ijms21072448. [PMID: 32244802 PMCID: PMC7177445 DOI: 10.3390/ijms21072448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/14/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
The double sex and mab-3-related transcription factors like family C2 (DMRTC2) gene is indispensable for mammalian testicular function and spermatogenesis. Despite its importance, what expression and roles of DMRTC2 possesses and how it regulates the testicular development and spermatogenesis in sheep, especially in Tibetan sheep, remains largely unknown. In this study, DMRTC2 cDNA from testes of Tibetan sheep was firstly cloned by the RT-PCR method, and its molecular characterization was identified. Subsequently, the expression and localization patterns of DMRTC2 were evaluated by quantitative real-time PCR (qPCR), Western blot, and immunofluorescence. The cloning and sequence analysis showed that the Tibetan sheep DMRTC2 cDNA fragment contained 1113 bp open reading frame (ORF) capable of encoding 370 amino acids, and displayed high identities with some other mammals, which shared an identical DM domain sequence of 47 amino acids ranged from residues 38 to 84. qPCR and Western blot results showed that DMRTC2 was expressed in testes throughout the development stages while not in epididymides (caput, corpus, and cauda), with higher mRNA and protein abundance in Tibetan sheep testes of one- and three-year-old (post-puberty) compared with that of three-month-old (pre-puberty). Immunofluorescence results revealed that immune staining for DMRTC2 protein was observed in spermatids and spermatogonia from post-puberty Tibetan sheep testes, and gonocytes from pre-puberty Tibetan sheep testes. Together, these results demonstrated, for the first time, in sheep, that DMRTC2, as a highly conserved gene in mammals, is essential for sheep spermatogenesis by regulating the proliferation or differentiation of gonocytes and development of spermatids in ram testes at different stages of maturity.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (H.Z.); (X.W.); (D.Y.); (N.C.); (L.K.)
- Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin 733300, China
| | - Hongyu Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (H.Z.); (X.W.); (D.Y.); (N.C.); (L.K.)
| | - Xia Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (H.Z.); (X.W.); (D.Y.); (N.C.); (L.K.)
| | - De′en Yin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (H.Z.); (X.W.); (D.Y.); (N.C.); (L.K.)
| | - Nana Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (H.Z.); (X.W.); (D.Y.); (N.C.); (L.K.)
| | - Lingyun Kang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (H.Z.); (X.W.); (D.Y.); (N.C.); (L.K.)
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (H.Z.); (X.W.); (D.Y.); (N.C.); (L.K.)
- Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin 733300, China
- Correspondence: ; Tel.: +86-931-763-1225
| |
Collapse
|
18
|
Shen Z, Huang L, Jin S, Zheng Y. Cloning and Expression Analysis of Two Kdm Lysine Demethylases in the Testes of Mature Yaks and Their Sterile Hybrids. Animals (Basel) 2020; 10:ani10030521. [PMID: 32244964 PMCID: PMC7142534 DOI: 10.3390/ani10030521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The hybrid of male cattle (Bos taurus) with female yaks (Bos grunniens) is called the cattle–yak. All female cattle–yaks are fertile, but all males are sterile. To date, there is no clear conclusion on the mechanism leading to cattle–yak male sterility. The domain conservation and expression profiles of lysine histone demethylases (KDMs) suggest that they might play important roles during gametogenesis. The objective of this study was to explore the molecular mechanism for male sterility of yak hybrids based on two demethylases, KDM1A and KDM4B. The mRNA and protein expression of KDM1A and KDM4B were dramatically decreased in the testes of adult cattle–yaks compared with adult yaks. In addition, the level of H3K36me3 in the testes of cattle–yaks was significantly lower than in yaks. These results suggest that the male sterility of cattle–yaks might be associated with reduced histone methylation modifications. These results provide valuable epigenetic information regarding the molecular mechanism resulting in male sterility of cattle–yaks. Abstract The objective of this study was to explore the molecular mechanism for male sterility of yak hybrids based on two demethylases. Total RNA was extracted from the testes of adult yaks (n = 10) and yak hybrids (cattle–yaks, n = 10). The coding sequences (CDS) of two lysine demethylases (KDMs), KDM1A and KDM4B, were cloned by RT-PCR. The levels of KDM1A and KDM4B in yaks and cattle–yaks testes were detected using Real-time PCR and Western blotting for mRNA and protein, respectively. In addition, the histone methylation modifications of H3K36me3 and H3K27me3 were compared between testes of yaks and cattle–yaks using ELISA. The CDS of KDM1A and KDM4B were obtained from yak testes. The results showed that the CDS of KDM1A exhibited two variants: variant 1 has a CDS of 2622 bp, encoding 873 amino acids, while variant 2 has a CDS of 2562 bp, encoding 853 amino acids. The CDS of the KDM4B gene was 3351 bp in length, encoding 1116 amino acids. The mRNA and protein expression of KDM1A and KDM4B, as well as the level of H3K36me3, were dramatically decreased in the testes of cattle–yaks compared with yaks. The present results suggest that the male sterility of cattle–yaks might be associated with reduced histone methylation modifications.
Collapse
Affiliation(s)
| | | | | | - Yucai Zheng
- Correspondence: ; Tel.: +86-02885522400; Fax: +86-28-85528039
| |
Collapse
|
19
|
Zhang GW, Wang L, Chen H, Guan J, Wu Y, Zhao J, Luo Z, Huang W, Zuo F. Promoter hypermethylation of PIWI/piRNA pathway genes associated with diminished pachytene piRNA production in bovine hybrid male sterility. Epigenetics 2020; 15:914-931. [PMID: 32141383 DOI: 10.1080/15592294.2020.1738026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Hybrid male sterility (HMS) is a postzygotic reproductive isolation mechanism that enforces speciation. A bovine example of HMS is the yattle (also called dzo), an interspecies hybrid of taurine cattle (Bos taurus) and yak (Bos grunniens). The molecular mechanisms underlying HMS of yattle are not well understood. Epigenetic modifications of DNA methylation and P-element induced wimpy testis (PIWI)-interacting RNA (piRNAs) are important regulators in spermatogenesis. In this study, we investigated DNA methylation patterns and piRNA expression in adult testes in hybrid infertile yattle bulls and fertile cattle and yak bulls using whole genome bisulphite-seq and small RNA-seq. Promoter hypermethylation in yattle were associated with DNA methylation involved in gamete generation, piRNA metabolic processes, spermatogenesis, and spermatid development (P < 2.6 × 10-5). Male infertility in yattle was associated with the promoter hypermethylation-associated silencing of PIWI/piRNA pathway genes including PIWIL1, DDX4, PLD6, MAEL, FKBP6, TDRD1 and TDRD5. The downstream effects of silencing these genes were diminished production of 29- to 31- nucleotide pachytene piRNAs in yattle testes. Hypermethylation events at transposable element loci (LINEs, SINEs, and LTRs) were found in yattle. LINE-derived prepachytene piRNAs increased and SINE-derived prepachytene piRNAs were reduced in yattle testes. Our data suggests that DNA methylation affects the PIWI/piRNA pathway and is involved in gene expression and pachytene piRNA production during spermatogenesis in bovine HMS. DNA hypermethylation and disruption of piRNA production contributed to unsuccessful germ cell development that may drive bovine HMS.
Collapse
Affiliation(s)
- Gong-Wei Zhang
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Ling Wang
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Huiyou Chen
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Jiuqiang Guan
- Yak Research Institution, Sichuan Academy of Grassland Science , Chengdu, Sichuan, China
| | - Yuhui Wu
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Jianjun Zhao
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Zonggang Luo
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Wenming Huang
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science, Southwest University , Chongqing, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University , Chongqing, China
| |
Collapse
|
20
|
Wu S, Mipam T, Xu C, Zhao W, Shah MA, Yi C, Luo H, Cai X, Zhong J. Testis transcriptome profiling identified genes involved in spermatogenic arrest of cattleyak. PLoS One 2020; 15:e0229503. [PMID: 32092127 PMCID: PMC7039509 DOI: 10.1371/journal.pone.0229503] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cattleyak are the hybrid offspring between cattle and yak and combine yak hardiness with cattle productivity. Much attempt has been made to examine the mechanisms of male sterility caused by spermatogenic arrest, but yet there is no research systematically and precisely elucidated testis gene expression profiling between cattleyak and yak. Methods To explore the higher resolution comparative transcriptome map between the testes of yak and cattleyak, and further analyze the mRNA expression dynamics of spermatogenic arrest in cattleyak. We characterized the comparative transcriptome profile from the testes of yak and cattleyak using high-throughput sequencing. Then we used quantitative analysis to validate several differentially expressed genes (DEGs) in testicular tissue and spermatogenic cells. Results Testis transcriptome profiling identified 6477 DEGs (2919 upregulated and 3558 downregulated) between cattleyak and yak. Further analysis revealed that the marker genes and apoptosis regulatory genes for undifferentiated spermatogonia were upregulated, while the genes for differentiation maintenance were downregulated in cattleyak. A majority of DEGs associated with mitotic checkpoint, and cell cycle progression were downregulated in cattleyak during spermatogonial mitosis. Furthermore, almost all DEGs related to synaptonemal complex assembly, and meiotic progression presented no sign of expression in cattleyak. Even worse, dozens of genes involved in acrosome formation, and flagellar development were dominantly downregulated in cattleyak. Conclusion DEGs indicated that spermatogenic arrest of cattleyak may originate from the differentiation stage of spermatogonial stem cells and be aggravated during spermatogonial mitosis and spermatocyte meiosis, which contributes to the scarcely presented sperms in cattleyak.
Collapse
Affiliation(s)
- Shixin Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Mujahid Ali Shah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Hui Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- * E-mail: (XC); (JZ)
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- * E-mail: (XC); (JZ)
| |
Collapse
|
21
|
Sato Y, Kuriwaki R, Hagino S, Shimazaki M, Sambuu R, Hirata M, Tanihara F, Takagi M, Taniguchi M, Otoi T. Abnormal functions of Leydig cells in crossbred cattle-yak showing infertility. Reprod Domest Anim 2020; 55:209-216. [PMID: 31858644 DOI: 10.1111/rda.13609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022]
Abstract
In Mongolia, yak (Bos grunniens) are able to live in alpine areas and their products greatly influence the lives of the local people. Increased vigour in hybridized yak and cattle can offer benefits for livestock farmers. However, male hybrids show reproductive defects resulting from spermatogenesis arrest, affecting the conservation and maintenance of dominant traits in the next generation. The underlying mechanisms involved in hybrid cattle-yak infertility have recently been investigated; however, the genetic cause is still unclear. Androgens and androgen receptor (AR) signalling are required for spermatogenesis. We, therefore, evaluated the expression of AR, 3β-hydroxysteroid dehydrogenase (3βHSD) and 5α-reductase 2 (SRD5A2) in Leydig cells to investigate their function in cattle-yak spermatogenesis. Testicular tissues from yaks (1-3 years old) and hybrids (F1-F3, 2 years old) were collected and subjected to immunohistochemistry and image analyses to investigate the expression of each parameter in the Leydig cells. After maturation at 2 years, the expression levels of AR increased and the levels of 3βHSD decreased, but the SRD5A2 levels remained constant in yak. However, the cattle-yak hybrid F2 showed immature testicular development and significantly different expression levels of AR and 3βHSD compared with mature yak. These results suggest that the decreased expression of AR and increased expression of 3βHSD in the Leydig cells of cattle-yak hybrid testes may represent one of the causes of infertility. Our study might help in solving the problem of infertility in crossbreeding.
Collapse
Affiliation(s)
- Yoko Sato
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi, Japan
| | - Ryota Kuriwaki
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shiki Hagino
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Megumi Shimazaki
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Rentsenkhand Sambuu
- Institute for Extension of Agricultural Advanced Technology, Ulaanbaatar, Mongolia
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Mitsuhiro Takagi
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masayasu Taniguchi
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
22
|
Li YC, Wang GW, Xu SR, Zhang XN, Yang QE. The expression of histone methyltransferases and distribution of selected histone methylations in testes of yak and cattle-yak hybrid. Theriogenology 2020; 144:164-173. [PMID: 31972460 DOI: 10.1016/j.theriogenology.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 01/23/2023]
Abstract
Interspecies hybridization exists widely in nature and plays an important role in animal evolution and adaptation. It is commonly recognized that male offspring of interspecies hybrid are often sterile, which presents a crucial way of reproductive isolation. Currently, the mechanisms underlying interspecies hybrid male sterility are not well understood. Cattle-yak, progeny of yak (Bos grunniens) and cattle (Bos taurus) cross, is a unique animal model for investigating hybrid male sterility. Because histone modifications are vital for spermatogenesis, herein, we examined expressions of histone methyltransferases (HMTs) and distributions of histone methylations in the yak and cattle-yak testis. Histological examination of seminiferous tubules revealed that gonocytes and spermatocytes were established normally, however, spermatogenesis was arrested at the meiosis phase began at 10 months after birth in the hybrids. SUV420H1 was the only HMT examined showing a significant enrichment in cattle-yak testes at 3 months. Relative expressions of MLL5, SETDB1 and SUV420H1 were increased while SETDB2 and EZH2 were decreased in cattle-yak testes at 10 months. Relative concentrations of MLL5 and SUV420H1 were again increased while EHMT2 and PRDM9 expressions were decreased at 24 months. Immunofluorescent detection of selected histone methylations in cross-sections of testicular tissues or meiotic chromosomes demonstrated that depletion of H3K4me3 and significant enrichment of H3K27me3 and H4K20me3 were observed in Sertoli cells of cattle-yak. Levels and localizations of H3K4me3, H3K9me1, H3K9me3 and H4K20me3 were strikingly different in meiotic chromosomes of cattle-yak spermatocytes. These results highlighted the potential roles of histone methylations in spermatogenic failure and hybrid male sterility.
Collapse
Affiliation(s)
- Yong-Chang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shang-Rong Xu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Xining, Qinghai, 810008, China
| | - Xiao-Na Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
23
|
Xu C, Shah MA, Mipam T, Wu S, Yi C, Luo H, Yuan M, Chai Z, Zhao W, Cai X. Bovid microRNAs involved in the process of spermatogonia differentiation into spermatocytes. Int J Biol Sci 2020; 16:239-250. [PMID: 31929752 PMCID: PMC6949159 DOI: 10.7150/ijbs.38232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022] Open
Abstract
The male infertility of cattleyak resulted from spermatogenic arrest has greatly restricted the effective utilization of the heterosis from crossbreeding of cattle and yak. Based on our previous studies, the significant divergences of the transcriptomic and proteomic sequencing between yak and cattleyak prompt us to investigate the critical roles of microRNAs in post-transcriptional regulation of gene expression during spermatogenesis. TUNEL-POD analysis presented sharply decreased spermatogenic cell types and the increased apoptotic spermatogonia in cattleyak. The STA-PUT velocity sedimentation was employed to obtain spermatogonia and spermatocytes from cattle, yak and cattleyak and these spermatogenic cells were verified by the morphological and phenotypic identification. MicroRNA microarray showed that 27 differentially expressed miRNAs were simultaneously identified both in cattleyak vs cattle and in cattleyak vs yak comparisons. Further analysis revealed that the down-regulation of bta-let-7 families, bta-miR-125 and bta-miR-23a might impair the RA-induced differentiation of spermatogonia. Target gene analysis for differentially expressed miRNAs revealed that miRNAs targeted major players involved in vesicle-mediated transport, regulation of protein kinase activity and Pathways in cancer. In addition, spermatogonia transfection analysis revealed that the down-regulation of bta-miR-449a in the cattleyak might block the transition of male germ cells from the mitotic cycle to the meiotic program. The present study provided valuable information for future elucidating the regulatory roles of miRNAs involved in spermatogenic arrest of cattleyak.
Collapse
Affiliation(s)
- Chuanfei Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Mujahid Ali Shah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Hui Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Meng Yuan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| |
Collapse
|
24
|
Kalwar Q, Chu M, Ahmad AA, Ding X, Wu X, Bao P, Yan P. Morphometric Evaluation of Spermatogenic Cells and Seminiferous Tubules and Exploration of Luteinizing Hormone Beta Polypeptide in Testis of Datong Yak. Animals (Basel) 2019; 10:ani10010066. [PMID: 31905946 PMCID: PMC7022877 DOI: 10.3390/ani10010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 12/28/2019] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Previous studies revealed that luteinizing hormone βeta polypeptide (LHB) plays an essential role in fertilization. Therefore, we aimed to confirm the importance of LHB in the testis of yak and to determine their association with male yak fertility. Histomorphological analysis of the testes is essential for predicting the fertilizing ability of the bull. To the best our knowledge, this is the first study to evaluate the micro anatomical changes and histometric alternation in testes of Datong yak. These findings could help to predict the sperm production capacity and to understand the specific molecular mechanisms of LHB during spermatogenesis. Abstract Histological examination of testes is essential for understanding infertility, sex development, and growth. Therefore, to understand the histomorphology of testes at different developmental stages, we performed hematoxylin and eosin staining of Yak testis. Our results revealed that the diameters of spermatogenic cells and their nuclei were significantly larger (p < 0.05) in the testis at six years compared to at six and 18 months. No significant difference was noted between 30 months and six years. The study was designed to compare the expression profile of LHB in Datong yak. The expression pattern of LHB was explored using quantitative PCR, semi-quantitative PCR, molecular bioinformatic, and Western blot analysis. Our observations indicated that expression of LHB was significantly higher (p < 0.05) in the testis of Datong yak. Western blotting indicated that the molecular mass of LHB protein was 16 kDa in yak. The protein encoded by yak LHB included conserved cysteine-knot domain regions. The high expression of LHB in testis indicated that LHB may be vital for the development of male gonads and the fertility of Datong yak.
Collapse
Affiliation(s)
- Qudratullah Kalwar
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Q.K.); (M.C.); (A.A.A.); (X.D.); (X.W.); (P.B.)
- Department of Animal Reproduction Shaheed Benazir Bhutto, University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Q.K.); (M.C.); (A.A.A.); (X.D.); (X.W.); (P.B.)
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Q.K.); (M.C.); (A.A.A.); (X.D.); (X.W.); (P.B.)
- State Key Laboratory of Grassland Agro Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730050, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Q.K.); (M.C.); (A.A.A.); (X.D.); (X.W.); (P.B.)
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Q.K.); (M.C.); (A.A.A.); (X.D.); (X.W.); (P.B.)
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Q.K.); (M.C.); (A.A.A.); (X.D.); (X.W.); (P.B.)
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Q.K.); (M.C.); (A.A.A.); (X.D.); (X.W.); (P.B.)
- Correspondence: ; Tel.: +86-931-211-5288; Fax: +86-931-211-5191
| |
Collapse
|
25
|
Molecular Cloning and Characterization of SYCP3 and TSEG2 Genes in the Testicles of Sexually Mature and Immature Yak. Genes (Basel) 2019; 10:genes10110867. [PMID: 31671664 PMCID: PMC6896015 DOI: 10.3390/genes10110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022] Open
Abstract
Testis-specific genes play an essential part in the centromere union during meiosis in male germ cells, spermatogenesis, and in fertility. Previously, there was no research report available on the expression pattern of SYCP3 and TSEG2 genes in different ages of yaks. Therefore, the current research compared the expression profiling of SYCP3 and TSEG2 genes in testes of yaks. The expression pattern of SYCP3 and TSEG2 mRNA was investigated using qPCR, semi-quantitative PCR, western blot, immunohistochemistry, and molecular bioinformatics. Our findings displayed that SYCP3 and TSEG2 genes were prominently expressed in the testicles of yaks as compared to other organs. On the other hand, the protein encoded by yak SYCP3 contains Cor1/Xlr/Xmr conserved regions, while the protein encoded by yak TSEG2 contains synaptonemal complex central element protein 3. Additionally, multiple alignments sequences indicated that proteins encoded by Datong yak SYCP3 and TSEG2 were highly conserved among mammals. Moreover, western blot analysis specified that the molecular mass of SYCP3 protein was 34-kDa and TSEG2 protein 90-kDa in the yak. Furthermore, the results of immunohistochemistry also revealed the prominent expression of these proteins in the testis of mature yaks, which indicated that SYCP3 and TSEG2 might be essential for spermatogenesis, induction of central element assembly, and homologous recombination.
Collapse
|
26
|
Wu Y, Zhang WX, Zuo F, Zhang GW. Comparison of mRNA expression from Y-chromosome X-degenerate region genes in taurine cattle, yaks and interspecific hybrid bulls. Anim Genet 2019; 50:740-743. [PMID: 31475374 DOI: 10.1111/age.12841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
The yattle (dzo) is an interspecific hybrid of the taurine cattle (Bos taurus) and the domestic yak (Bos grunniens). F1 hybrid yattle bulls are sterile due to spermatogenic arrest and have misregulation of spermatogenesis genes in the testes. However, the expression pattern of Y chromosome-linked genes in cattle, yaks and yattle testes is still unknown. In this study, we analyzed the mRNA expression pattern of 10 genes known to be present as single copies in the X-degenerate region of the bovine male-specific region of the Y chromosome. Using male-specific primers and reverse transcription quantitative PCR, the ubiquitously transcribed tetratricopeptide repeat gene, Y-linked (UTY), oral-facial-digital syndrome 1, Y-linked (OFD1Y) and ubiquitin specific peptidase 9, Y-linked (USP9Y) genes were ubiquitously expressed and significantly more highly expressed in yattle than in cattle and yaks testes (P < 0.001). RNA binding motif protein, Y-linked (RBMY) had testes-specific expression, and eukaryotic translation initiation factor 1A, Y-linked (EIF1AY) was expressed mainly in testis, whereas yattle and cattle did not show significant differences with respect to the expression of RBMY and EIF1AY. Thus, based on the model of yattle bull sterility, the high expression of UTY, OFD1Y and USP9Y may be associated with yattle infertility.
Collapse
Affiliation(s)
- Y Wu
- College of Animal Science, Southwest University, Rongchang, Chongqing, 402460, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, 402460, China
| | - W-X Zhang
- Animal Husbandry and Veterinary Bureau of Rongchang, Rongchang, Chongqing, 402460, China
| | - F Zuo
- College of Animal Science, Southwest University, Rongchang, Chongqing, 402460, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, 402460, China
| | - G-W Zhang
- College of Animal Science, Southwest University, Rongchang, Chongqing, 402460, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, 402460, China
| |
Collapse
|
27
|
Kalwar Q, Ding X, Ahmad AA, Chu M, Wu X, Bao P, Yan P. Expression Analysis of IZUMO1 Gene during Testicular Development of Datong Yak ( Bos Grunniens). Animals (Basel) 2019; 9:ani9060292. [PMID: 31146500 PMCID: PMC6616492 DOI: 10.3390/ani9060292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 11/16/2022] Open
Abstract
Simple Summary IZUMO1 (IZUMO sperm-egg fusion) is a crucial member of the immunoglobulin superfamily, and it plays a vital part in egg sperm interaction, fusion, and in spermatogenesis. Previous studies identified the fundamental role of the IZUMO1 gene in meiosis of bovine spermatogenesis and spermatogenic cell development and fertility. The current study confirmed the significant expression of the IZUMO1 gene with testicular development and its potential role in fertilization of Datong yak. This research explained the biological role of IZUMO1 in yak reproduction; therefore in the future it might provide a novel prospect to apply data on reproduction and to understand the further regulatory mechanisms of the IZUMO1 gene during spermatogenesis of different mammalian species. Abstract The IZUMO1 gene has promising benefits for the national development of novel non-hormonal contraceptives and in the treatments of fertility. Understanding the function of IZUMO1, its mRNA, and protein expression is critical to gain insight into spermatogenesis and promote sperm-egg fusion during reproduction of Datong yak. Therefore, we estimated the IZUMO1 gene expression in different ages of Datong yak by using semi quantitative PCR, qPCR, and western blotting. The results of the qPCR, semi-quantitative PCR and western blotting revealed that the expression level of IZUMO1 mRNA was significantly (p < 0.05) higher in the testis of 30 months and 6 years old followed by 18 and 6 months old Datong yak, respectively. We also predicted secondary and tertiary protein structure of IZUMO1 by using bioinformatics software that the revealed presence of a signal peptide, Izumo domain, immunoglobulin (Ig) like domain, and transmembrane region. Moreover, immunostaining analysis also elucidated that IZUMO1 was more prominent in the testis of 30 months and 6 years old yak, which represented that the IZUMO1 gene expression might be higher during the peak breeding ages (6 to 7 years) of the yak, and play a potential role in spermatogenesis, fertility, and testicular development.
Collapse
Affiliation(s)
- Qudratullah Kalwar
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, Gansu, China.
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Sindh, Pakistan.
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, Gansu, China.
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, Gansu, China.
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730050, Gansu, China.
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, Gansu, China.
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, Gansu, China.
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, Gansu, China.
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, Gansu, China.
| |
Collapse
|
28
|
Zhang GW, Wu Y, Luo Z, Guan J, Wang L, Luo X, Zuo F. Comparison of Y-chromosome-linked TSPY, TSPY2, and PRAMEY genes in Taurus cattle, yaks, and interspecific hybrid bulls. J Dairy Sci 2019; 102:6263-6275. [PMID: 31103297 DOI: 10.3168/jds.2018-15680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/20/2019] [Indexed: 12/28/2022]
Abstract
Domestic yaks (Bos grunniens) and domestic Taurus cattle (Bos taurus) are closely related. An interesting phenomenon in interspecific crossings is male sterility in the F1 hybrid (yattle) and F2 backcross, with no late meiotic cells or spermatids in the seminiferous tubules. The mammalian Y chromosome is crucial for spermatogenesis and male fertility. This study investigated the copy number variations and mRNA of Y-transitional region genes TSPY2 (testis specific protein, Y-linked 2 and testis-specific Y-encoded protein 3-like) and PRAMEY (preferentially expressed antigen in melanoma, Y-linked), and Y-ampliconic region genes TSPY (testis-specific Y-encoded protein 1-like), ZNF280BY (zinc finger protein 280B, Y-linked) and HSFY (heat-shock transcription factor, Y-linked) in mature testes from Taurus cattle, yaks, and yattle. Phylogenetic trees divided 33 copies of TSPY into major 2 types (TSPY-T1 and TSPY-T2), 19 copies of TSPY2 into 2 types (TSPY2-T1 and T2), and 8 copies of PRAMEY into 4 types (PRAMEY-T1 to T4). Searching by the Basic Local Alignment Search Tool of the TSPY2 coding sequences in GenBank revealed that TSPY2 was conserved in Bovidae. The TSPY2-T2 sequences were absent, whereas PRAMEY-T2 and PRAMEY-T4 were amplified on the yak Y chromosome. The average copy numbers of TSPY-T2 and ZNF280BY were significantly different between cattle and yaks. The TSPY-T2, TSPY2, PRAMEY, ZNF280BY, and HSFY genes were uniquely or predominantly expressed in testes. Reverse-transcription quantitative PCR showed that the TSPY-T2, PRAMEY-T2, HSFY, ZNF280BY, protamine 1 (PRM1), and protamine 2 (PRM2) genes were almost not expressed in yattle. The PRM1 and PRM2 genes are used as positive markers for spermatozoa. Thus, our results showed that the genomic structure of the Y-transitional and Y-ampliconic region differed between Taurus cattle and yaks. Dysregulated expression of Y-ampliconic region genes TSPY-T2, HSPY, ZNF280BY, and Y-transitional region gene PRAMEY-T2 may be associated with hybrid male sterility in yattle.
Collapse
Affiliation(s)
- Gong-Wei Zhang
- College of Animal Science, Southwest University, Rongchang, Chongqing, China 402460; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China 402460.
| | - Yuhui Wu
- College of Animal Science, Southwest University, Rongchang, Chongqing, China 402460; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China 402460
| | - Zonggang Luo
- College of Animal Science, Southwest University, Rongchang, Chongqing, China 402460; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China 402460
| | - Jiuqiang Guan
- Yak Research Institution, Sichuan Academy of Grassland Science, Chengdu, Sichuan, China 611731
| | - Ling Wang
- College of Animal Science, Southwest University, Rongchang, Chongqing, China 402460; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China 402460
| | - Xiaolin Luo
- Yak Research Institution, Sichuan Academy of Grassland Science, Chengdu, Sichuan, China 611731
| | - Fuyuan Zuo
- College of Animal Science, Southwest University, Rongchang, Chongqing, China 402460; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China 402460.
| |
Collapse
|
29
|
Cai X, Yu S, Mipam T, Yang F, Zhao W, Liu W, Cao S, Shen L, Zhao F, Sun L, Xu C, Wu S. Comparative analysis of testis transcriptomes associated with male infertility in cattleyak. Theriogenology 2017; 88:28-42. [DOI: 10.1016/j.theriogenology.2016.09.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/18/2016] [Accepted: 09/24/2016] [Indexed: 01/29/2023]
|
30
|
Li B, Luo H, Weng Q, Wang S, Pan Z, Xie Z, Wu W, Liu H, Li Q. Differential DNA methylation of the meiosis-specific geneFKBP6in testes of yak and cattle-yak hybrids. Reprod Domest Anim 2016; 51:1030-1038. [DOI: 10.1111/rda.12794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
Affiliation(s)
- B Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - H Luo
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Q Weng
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - S Wang
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Z Pan
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Z Xie
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - W Wu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - H Liu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Q Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| |
Collapse
|