1
|
Aranda-Barradas ME, Coronado-Contreras HE, Aguilar-Castañeda YL, Olivo-Escalante KD, González-Díaz FR, García-Tovar CG, Álvarez-Almazán S, Miranda-Castro SP, Del Real-López A, Méndez-Albores A. Effect of Different Karyophilic Peptides on Physical Characteristics and In Vitro Transfection Efficiency of Chitosan-Plasmid Nanoparticles as Nonviral Gene Delivery Systems. Mol Biotechnol 2025; 67:723-733. [PMID: 38400988 PMCID: PMC11711767 DOI: 10.1007/s12033-024-01087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
A strategy to increase the transfection efficiency of chitosan-based nanoparticles for gene therapy is by adding nuclear localization signals through karyophilic peptides. Here, the effect of the length and sequence of these peptides and their interaction with different plasmids on the physical characteristics and biological functionality of nanoparticles is reported. The karyophilic peptides (P1 or P2) were used to assemble nanoparticles by complex coacervation with pEGFP-N1, pQBI25 or pSelect-Zeo-HSV1-tk plasmids, and chitosan. Size, polydispersity index, zeta potential, and morphology, as well as in vitro nucleus internalization and transfection capability of nanoparticles were determined. The P2 nanoparticles resulted smaller compared to the ones without peptides or P1 for the three plasmids. In general, the addition of either P1 or P2 did not have a significant impact on the polydispersity index and the zeta potential. P1 and P2 nanoparticles were localized in the nucleus after 30 min of exposure to HeLa cells. Nevertheless, the presence of P2 in pEGFP-N1 and pQBI25 nanoparticles raised their capability to transfect and express the green fluorescent protein. Thus, karyophilic peptides are an efficient tool for the optimization of nonviral vectors for gene delivery; however, the sequence and length of peptides have an impact on characteristics and functionality of nanoparticles.
Collapse
Affiliation(s)
- María Eugenia Aranda-Barradas
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México.
| | - Héctor Eduardo Coronado-Contreras
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Yareli Lizbeth Aguilar-Castañeda
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Karen Donají Olivo-Escalante
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Francisco Rodolfo González-Díaz
- Unidad de Investigación Multidisciplinaria L4 (Morfología Veterinaria y Biología Celular), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| | - Carlos Gerardo García-Tovar
- Unidad de Investigación Multidisciplinaria L4 (Morfología Veterinaria y Biología Celular), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| | - Samuel Álvarez-Almazán
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Susana Patricia Miranda-Castro
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Alicia Del Real-López
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Juriquilla La Mesa, 76230, Santiago de Querétaro, México
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14-A1 (Ciencia y Tecnología de Materiales), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| |
Collapse
|
2
|
Gori A, Lodigiani G, Colombarolli SG, Bergamaschi G, Vitali A. Cell Penetrating Peptides: Classification, Mechanisms, Methods of Study, and Applications. ChemMedChem 2023; 18:e202300236. [PMID: 37389978 DOI: 10.1002/cmdc.202300236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Cell-penetrating peptides (CPPs) encompass a class of peptides that possess the remarkable ability to cross cell membranes and deliver various types of cargoes, including drugs, nucleic acids, and proteins, into cells. For this reason, CPPs are largely investigated in drug delivery applications in the context of many diseases, such as cancer, diabetes, and genetic disorders. While sharing this functionality and some common structural features, such as a high content of positively charged amino acids, CPPs represent an extremely diverse group of elements, which can differentiate under many aspects. In this review, we summarize the most common characteristics of CPPs, introduce their main distinctive features, mechanistic aspects that drive their function, and outline the most widely used techniques for their structural and functional studies. We highlight current gaps and future perspectives in this field, which have the potential to significantly impact the future field of drug delivery and therapeutics.
Collapse
Affiliation(s)
- Alessandro Gori
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Giulia Lodigiani
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Stella G Colombarolli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| | - Greta Bergamaschi
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| |
Collapse
|
3
|
Abstract
AbstractBiophysical studies have a very high impact on the understanding of internalization, molecular mechanisms, interactions, and localization of CPPs and CPP/cargo conjugates in live cells or in vivo. Biophysical studies are often first carried out in test-tube set-ups or in vitro, leading to the complicated in vivo systems. This review describes recent studies of CPP internalization, mechanisms, and localization. The multiple methods in these studies reveal different novel and important aspects and define the rules for CPP mechanisms, hopefully leading to their improved applicability to novel and safe therapies.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000Ljubljana, Slovenia,
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden, , and Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia, 50411
| |
Collapse
|
4
|
Zorko M, Jones S, Langel Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv Drug Deliv Rev 2022; 180:114044. [PMID: 34774552 DOI: 10.1016/j.addr.2021.114044] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Extensive research has been undertaken in the pursuit of anticancer therapeutics. Many anticancer drugs require specificity of delivery to cancer cells, whilst sparing healthy tissue. Cell-penetrating peptides (CPPs), now well established as facilitators of intracellular delivery, have in recent years advanced to incorporate target specificity and thus possess great potential for the targeted delivery of anticancer cargoes. Though none have yet been approved for clinical use, this novel technology has already entered clinical trials. In this review we present CPPs, discuss their classification, mechanisms of cargo internalization and highlight strategies for conjugation to anticancer moieties including their incorporation into therapeutic proteins. As the mainstay of this review, strategies to build specificity into tumor targeting CPP constructs through exploitation of the tumor microenvironment and the use of tumor homing peptides are discussed, whilst acknowledging the extensive contribution made by CPP constructs to target specific protein-protein interactions integral to intracellular signaling pathways associated with tumor cell survival and progression. Finally, antibody/antigen CPP conjugates and their potential roles in cancer immunotherapy and diagnostics are considered. In summary, this review aims to harness the potential of CPP-aided drug delivery for future cancer therapies and diagnostics whilst highlighting some of the most recent achievements in selective delivery of anticancer drugs, including cytostatic drugs, to a range of tumor cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sarah Jones
- University of Wolverhampton, School of Pharmacy, Faculty of Science & Engineering, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden; Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia 50411, Estonia.
| |
Collapse
|
5
|
Abstract
In this introductory chapter, we first define cell-penetrating peptides (CPPs), give short overview of CPP history and discuss several aspects of CPP classification. Next section is devoted to the mechanism of CPP penetration into the cells, where direct and endocytic internalization of CPP is explained. Kinetics of internalization is discussed more extensively, since this topic is not discussed in other chapters of this book. At the end of this section some features of the thermodynamics of CPP interaction with the membrane is also presented. Finally, we present different cargoes that can be transferred into the cells by CPPs and briefly discuss the effect of cargo on the rate and efficiency of penetration into the cells.
Collapse
Affiliation(s)
- Matjaž Zorko
- Medical Faculty, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia.
| | - Ülo Langel
- Department of Biochemistry and Biophysics, University of Stockholm, Stockholm, Sweden.,Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Kim WJ, Kim GR, Cho HJ, Choi JM. The Cysteine-Containing Cell-Penetrating Peptide AP Enables Efficient Macromolecule Delivery to T Cells and Controls Autoimmune Encephalomyelitis. Pharmaceutics 2021; 13:pharmaceutics13081134. [PMID: 34452095 PMCID: PMC8401785 DOI: 10.3390/pharmaceutics13081134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
T cells are key immune cells involved in the pathogenesis of several diseases, rendering them important therapeutic targets. Although drug delivery to T cells is the subject of continuous research, it remains challenging to deliver drugs to primary T cells. Here, we used a peptide-based drug delivery system, AP, which was previously developed as a transdermal delivery peptide, to modulate T cell function. We first identified that AP-conjugated enhanced green fluorescent protein (EGFP) was efficiently delivered to non-phagocytic human T cells. We also confirmed that a nine-amino acid sequence with one cysteine residue was the optimal sequence for protein delivery to T cells. Next, we identified the biodistribution of AP-dTomato protein in vivo after systemic administration, and transduced it to various tissues, such as the spleen, liver, intestines, and even to the brain across the blood–brain barrier. Next, to confirm AP-based T cell regulation, we synthesized the AP-conjugated cytoplasmic domain of CTLA-4, AP-ctCTLA-4 peptide. AP-ctCTLA-4 reduced IL-17A expression under Th17 differentiation conditions in vitro and ameliorated experimental autoimmune encephalomyelitis, with decreased numbers of pathogenic IL-17A+GM-CSF+ CD4 T cells. These results collectively suggest the AP peptide can be used for the successful intracellular regulation of T cell function, especially in the CNS.
Collapse
Affiliation(s)
- Won-Ju Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (W.-J.K.); (G.-R.K.); (H.-J.C.)
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (W.-J.K.); (G.-R.K.); (H.-J.C.)
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Hyun-Jung Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (W.-J.K.); (G.-R.K.); (H.-J.C.)
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (W.-J.K.); (G.-R.K.); (H.-J.C.)
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2220-4765
| |
Collapse
|
7
|
Koo JH, Kim SH, Jeon SH, Kang MJ, Choi JM. Macrophage-preferable delivery of the leucine-rich repeat domain of NLRX1 ameliorates lethal sepsis by regulating NF-κB and inflammasome signaling activation. Biomaterials 2021; 274:120845. [PMID: 33971559 DOI: 10.1016/j.biomaterials.2021.120845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 12/27/2022]
Abstract
Sepsis is an acute systemic inflammatory disease triggered by bacterial infection leading organ dysfunctions that macrophages are responsible for major triggering of systemic inflammation. Treatment options are limited to antibiotics and drugs to manage the symptoms of sepsis, but there are currently no molecular-targeted therapies. Here, we identified a novel macrophage-preferable delivery peptide, C10, which we conjugated to truncated domains of NLRX1 (leucine-rich repeat region (LRR), and nucleotide binding domain (NBD)) to obtain C10-LRR and C10-NBD. Leucine rich amino acid of C10 enables macrophage preferable moieties that efficiently deliver a cargo protein into macrophages in vitro and in vivo. C10-LRR but not C10-NBD significantly improved survival in an LPS-mediated lethal endotoxemia sepsis model. C10-LRR efficiently inhibited IL-6 production in peritoneal macrophages via prevention of IκB degradation and p65 phosphorylation. In addition, C10-LRR negatively regulated IL-1β production by preventing caspase-1 activation with a sustained mitochondrial MAVS level. Finally, co-treatment with anti-TNFα antibody and C10-LRR had a synergistic effect in an LPS-induced sepsis model. Collectively, these findings indicate that C10-LRR could be an effective therapeutic agent to treat systemic inflammation in sepsis by regulating both NF-κB and inflammasome signaling activation.
Collapse
Affiliation(s)
- Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sang-Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Soung-Hoo Jeon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Novák J, Vopálenský V, Pospíšek M, Vedeler A. Co-localization of Interleukin-1α and Annexin A2 at the plasma membrane in response to oxidative stress. Cytokine 2020; 133:155141. [PMID: 32615410 DOI: 10.1016/j.cyto.2020.155141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/11/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
Interleukin-1α (IL-1α) and Annexin A2 (AnxA2) are pleiotropic molecules with both intracellular and extracellular roles. They share several characteristics including unconventional secretion aided by S100 proteins, anchoring of the externalized proteins at the outer surface of the plasma membrane and response to oxidative stress. Although IL-1α and AnxA2 have been implicated in a variety of biological processes, including cancer, little is known about the mechanisms of their cellular release. In the present study, employing the non-cancerous breast epithelial MCF10A cells, we demonstrate that IL-1α and AnxA2 establish a close association in response to oxidative stress. Stress conditions lead to translocation of both proteins towards lamellipodia rich in vimentin and association of full-length IL-1α and Tyr23 phosphorylated AnxA2 with the plasma membrane at peripheral sites depleted of F-actin. Notably, membrane-associated IL-1α and AnxA2 preferentially localize to the outer edges of the MCF10A cell islands, suggesting that the two proteins participate in the communication of these epithelial cells with their neighboring cells. Similarly, in U2OS osteosarcoma cell line both endogenous IL-1α and transiently produced IL-1α/EGFP associate with the plasma membrane. While benign MFC10A cells present membrane-associated IL-1α and AnxA2 at the edges of their cell islands, the aggressive cancerous U2OS cells communicate in such manner also with distant cells.
Collapse
Affiliation(s)
- Josef Novák
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic; Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Václav Vopálenský
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Pospíšek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anni Vedeler
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Koo JH, Kim DH, Cha D, Kang MJ, Choi JM. LRR domain of NLRX1 protein delivery by dNP2 inhibits T cell functions and alleviates autoimmune encephalomyelitis. Theranostics 2020; 10:3138-3150. [PMID: 32194859 PMCID: PMC7053182 DOI: 10.7150/thno.43441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating inflammatory disease of the central nervous system (CNS), which is a chronic progressive disease and is caused by uncontrolled activation of myelin antigen specific T cells. It has high unmet medical needs due to the difficulty of efficient drug delivery into the CNS to control tissue inflammation. In this study, we demonstrate that a fusion protein of NOD-like receptor family member X1 (NLRX1) and blood brain barrier (BBB)-permeable peptide, dNP2 ameliorates experimental autoimmune encephalomyelitis (EAE). Methods: We purified recombinant LRR or NBD regions of NLRX1 protein conjugated with dNP2. To examine intracellular delivery efficiency of the recombinant protein, we incubated the proteins with Jurkat T cells or murine splenic T cells and their delivery efficiency was analyzed by flow cytometry. To investigate the therapeutic efficacy in an EAE model, we injected the recombinant protein into mice with 3 different treatment schemes e.g., prevention, semi-therapeutic, and therapeutic. To analyze their functional roles in T cells, we treated MACS-sorted naïve CD4 T cells with the proteins during their activation and differentiation into Th1, Th17, and Treg cells. Results: dNP2-LRR protein treatment showed significantly higher delivery efficiency than TAT-LRR or LRR alone in Jurkat T cells and mouse splenic T cells. In all three treatment schemes of EAE experiments, dNP2-LRR administration showed ameliorated tissue inflammation and disease severity with reduced number of infiltrating T cells producing inflammatory cytokines such as IFNγ. In addition, dNP2-LRR inhibited T cell activation, cytokine production, and Th1 differentiation. Conclusion: These results suggest that dNP2-LRR is a novel agent, which regulates effector T cell functions and could be a promising molecule for the treatment of CNS autoimmune diseases such as multiple sclerosis.
Collapse
|
10
|
Marculescu C, Lakshminarayanan A, Gault J, Knight JC, Folkes LK, Spink T, Robinson CV, Vallis K, Davis BG, Cornelissen B. Probing the limits of Q-tag bioconjugation of antibodies. Chem Commun (Camb) 2019; 55:11342-11345. [PMID: 31479092 PMCID: PMC6788405 DOI: 10.1039/c9cc02303h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022]
Abstract
Site-selective labelling of antibodies (Abs) can circumvent problems from heterogeneity of conventional conjugation. Here, we evaluate the industrially-applied chemoenzymatic 'Q-tag' strategy based on transglutaminase-mediated (TGase) amide-bond formation in the generation of 89Zr-radiolabelled antibody conjugates. We show that, despite previously suggested high regioselectivity of TGases, in the anti-Her2 Ab Herceptin™ more precise native MS indicates only 70-80% functionalization at the target site (Q298H), in competition with modification at other sites, such as Q3H critically close to the CDR1 region.
Collapse
Affiliation(s)
- Cristina Marculescu
- CRUK/MRC Oxford Institute for Radiation Oncology
, Department of Oncology, University of Oxford
,
Oxford
, OX3 7DQ
, UK
.
;
- Chemistry Research Laboratory
, University of Oxford
,
Oxford
, OX1 3TA
, UK
.
| | - Abirami Lakshminarayanan
- CRUK/MRC Oxford Institute for Radiation Oncology
, Department of Oncology, University of Oxford
,
Oxford
, OX3 7DQ
, UK
.
;
- Chemistry Research Laboratory
, University of Oxford
,
Oxford
, OX1 3TA
, UK
.
| | - Joseph Gault
- Chemistry Research Laboratory
, University of Oxford
,
Oxford
, OX1 3TA
, UK
.
| | - James C. Knight
- CRUK/MRC Oxford Institute for Radiation Oncology
, Department of Oncology, University of Oxford
,
Oxford
, OX3 7DQ
, UK
.
;
| | - Lisa K. Folkes
- CRUK/MRC Oxford Institute for Radiation Oncology
, Department of Oncology, University of Oxford
,
Oxford
, OX3 7DQ
, UK
.
;
| | - Thomas Spink
- CRUK/MRC Oxford Institute for Radiation Oncology
, Department of Oncology, University of Oxford
,
Oxford
, OX3 7DQ
, UK
.
;
| | - Carol V. Robinson
- Chemistry Research Laboratory
, University of Oxford
,
Oxford
, OX1 3TA
, UK
.
| | - Katherine Vallis
- CRUK/MRC Oxford Institute for Radiation Oncology
, Department of Oncology, University of Oxford
,
Oxford
, OX3 7DQ
, UK
.
;
| | - Benjamin G. Davis
- Chemistry Research Laboratory
, University of Oxford
,
Oxford
, OX1 3TA
, UK
.
| | - Bart Cornelissen
- CRUK/MRC Oxford Institute for Radiation Oncology
, Department of Oncology, University of Oxford
,
Oxford
, OX3 7DQ
, UK
.
;
| |
Collapse
|
11
|
Libetti D, Bernardini A, Chiaramonte ML, Minuzzo M, Gnesutta N, Messina G, Dolfini D, Mantovani R. NF-YA enters cells through cell penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:430-440. [PMID: 30296497 DOI: 10.1016/j.bbamcr.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022]
Abstract
Cell Penetrating Peptides -CPPs- are short aminoacidic stretches present in proteins that have the ability to translocate the plasma membrane and facilitate delivery of various molecules. They are usually rich in basic residues, and organized as alpha helices. NF-Y is a transcription factor heterotrimer formed by two Histone Fold Domain -HFD- subunits and the sequence-specific NF-YA. NF-YA possesses two α-helices rich in basic residues. We show that it efficiently enters cells at nanomolar concentrations in the absence of carrier peptides. Mutagenesis identified at least two separate CPPs in the A1 and A2, which overlap with previously identified nuclear localization signals (NLS). The half-life of the transduced protein is short in human cancer cells, longer in mouse C2C12 myoblasts. The internalized NF-YA is capable of trimerization with the HFD subunits and binding to the target CCAAT box. Functionality is further suggested by protein transfection in C2C12 cells, leading to inhibition of differentiation to myotubes. In conclusion, NF-YA contains CPPs, hinting at novel -and unexpected- properties of this subunit.
Collapse
Affiliation(s)
- Debora Libetti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Maria Luisa Chiaramonte
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Mario Minuzzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Graziella Messina
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
12
|
Koo JH, Yoon H, Kim WJ, Cha D, Choi JM. Cell-Penetrating Function of the Poly(ADP-Ribose) (PAR)-Binding Motif Derived from the PAR-Dependent E3 Ubiquitin Ligase Iduna. Int J Mol Sci 2018. [PMID: 29518031 PMCID: PMC5877640 DOI: 10.3390/ijms19030779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates cellular responses such as proteasomal degradation and DNA repair upon interaction with its substrate. We identified a highly cationic region within the PAR-binding motif of Iduna; the region was similar among various species and showed amino acid sequence similarity with that of known cell-penetrating peptides (CPPs). We hypothesized that this Iduna-derived cationic sequence-rich peptide (Iduna) could penetrate the cell membrane and deliver macromolecules into cells. To test this hypothesis, we generated recombinant Iduna-conjugated enhanced green fluorescent protein (Iduna-EGFP) and its tandem-repeat form (d-Iduna-EGFP). Both Iduna-EGFP and d-Iduna-EGFP efficiently penetrated Jurkat cells, with the fluorescence signals increasing dose- and time-dependently. Tandem-repeats of Iduna and other CPPs enhanced intracellular protein delivery efficiency. The delivery mechanism involves lipid-raft-mediated endocytosis following heparan sulfate interaction; d-Iduna-EGFP was localized in the nucleus as well as the cytoplasm, and its residence time was much longer than that of other controls such as TAT and Hph-1. Moreover, following intravenous administration to C57/BL6 mice, d-Iduna-EGFP was efficiently taken up by various tissues, including the liver, spleen, and intestine suggesting that the cell-penetrating function of the human Iduna-derived peptide can be utilized for experimental and therapeutic delivery of macromolecules.
Collapse
Affiliation(s)
- Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Heeseok Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Won-Ju Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Donghun Cha
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
13
|
Kim DH, Park HJ, Lim S, Koo JH, Lee HG, Choi JO, Oh JH, Ha SJ, Kang MJ, Lee CM, Lee CG, Elias JA, Choi JM. Regulation of chitinase-3-like-1 in T cell elicits Th1 and cytotoxic responses to inhibit lung metastasis. Nat Commun 2018; 9:503. [PMID: 29403003 PMCID: PMC5799380 DOI: 10.1038/s41467-017-02731-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 12/20/2017] [Indexed: 01/30/2023] Open
Abstract
Chitinase-3-like-1 (Chi3l1) is known to play a significant role in the pathogenesis of Type 2 inflammation and cancer. However, the function of Chi3l1 in T cell and its clinical implications are largely unknown. Here we show that Chi3l1 expression was increased in activated T cells, especially in Th2 cells. In addition, Chi3l1-deficient T cells are hyper-responsive to TcR stimulation and are prone to differentiating into Th1 cells. Chi3l1-deficient Th1 cells show increased expression of anti-tumor immunity genes and decreased Th1 negative regulators. Deletion of Chi3l1 in T cells in mice show reduced melanoma lung metastasis with increased IFNγ and TNFα-producing T cells in the lung. Furthermore, silencing of Chi3l1 expression in the lung using peptide-siRNA complex (dNP2-siChi3l1) efficiently inhibit lung metastasis with enhanced Th1 and CTL responses. Collectively, this study demonstrates Chi3l1 is a regulator of Th1 and CTL which could be a therapeutic target to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Do-Hyun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Hong-Jai Park
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sangho Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Jin Ouk Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Ji Hoon Oh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, 04763, Korea
| | - Jack A Elias
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
- Division of Medical and Biological Sciences, Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea.
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Korea.
| |
Collapse
|
14
|
dNP2-ctCTLA-4 inhibits German cockroach extract-induced allergic airway inflammation and hyper-responsiveness via inhibition of Th2 responses. Exp Mol Med 2017; 49:e362. [PMID: 28775364 PMCID: PMC5579505 DOI: 10.1038/emm.2017.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/23/2017] [Accepted: 03/03/2017] [Indexed: 12/31/2022] Open
Abstract
German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma.
Collapse
|
15
|
Kim WJ, Koo JH, Cho HJ, Lee JU, Kim JY, Lee HG, Lee S, Kim JH, Oh MS, Suh M, Shin EC, Ko JY, Sohn MH, Choi JM. Protein tyrosine phosphatase conjugated with a novel transdermal delivery peptide, astrotactin 1-derived peptide recombinant protein tyrosine phosphatase (AP-rPTP), alleviates both atopic dermatitis-like and psoriasis-like dermatitis. J Allergy Clin Immunol 2017; 141:137-151. [PMID: 28456618 DOI: 10.1016/j.jaci.2017.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/20/2017] [Accepted: 04/04/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) and psoriasis are the 2 most common chronic inflammatory skin diseases. There is an unmet medical need to overcome limitations for transcutaneous drug development posed by the skin barrier. OBJECTIVE We aimed to identify a novel transdermal delivery peptide and to develop a transcutaneously applicable immunomodulatory protein for treating AD and psoriasis. METHODS We identified and generated reporter proteins conjugated to astrotactin 1-derived peptide (AP), a novel transdermal delivery peptide of human origin, and analyzed the intracellular delivery efficiency of these proteins in mouse and human skin cells and tissues using multiphoton confocal microscopy. We also generated a recombinant therapeutic protein, AP-recombinant protein tyrosine phosphatase (rPTP), consisting of the phosphatase domain of the T-cell protein tyrosine phosphatase conjugated to AP. The immunomodulatory function of AP-rPTP was confirmed in splenocytes on cytokine stimulation and T-cell receptor stimulation. Finally, we confirmed the in vivo efficacy of AP-rPTP transdermal delivery in patients with oxazolone-induced contact hypersensitivity, ovalbumin-induced AD-like, and imiquimod-induced psoriasis-like skin inflammation models. RESULTS AP-conjugated reporter proteins exhibited significant intracellular transduction efficacy in keratinocytes, fibroblasts, and immune cells. In addition, transcutaneous administration of AP-dTomato resulted in significant localization into the dermis and epidermis in both mouse and human skin. AP-rPTP inhibited phosphorylated signal transducer and activator of transcription (STAT) 1, STAT3, and STAT6 in splenocytes and also regulated T-cell activation and proliferation. Transcutaneous administration of AP-rPTP through the paper-patch technique significantly ameliorated skin tissue thickening, inflammation, and cytokine expression in both AD-like and psoriasis-like dermatitis models. CONCLUSION We identified a 9-amino-acid novel transdermal delivery peptide, AP, and demonstrated its feasibility for transcutaneous biologic drug development. Moreover, AP-rPTP is a novel immunomodulatory drug candidate for human dermatitis.
Collapse
Affiliation(s)
- Won-Ju Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Hyun-Jung Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Jae-Ung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Ji Yun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Sohee Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Korea
| | - Jong Hoon Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Mi Seon Oh
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea; Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Seoul, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Joo Yeon Ko
- Department of Dermatology, College of Medicine, Hanyang University, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea; Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Korea.
| |
Collapse
|
16
|
Serpell CJ, Rutte RN, Geraki K, Pach E, Martincic M, Kierkowicz M, De Munari S, Wals K, Raj R, Ballesteros B, Tobias G, Anthony DC, Davis BG. Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging. Nat Commun 2016; 7:13118. [PMID: 27782209 PMCID: PMC5095174 DOI: 10.1038/ncomms13118] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022] Open
Abstract
The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular 'blueprint'; this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as 'contrast agents' if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging.
Collapse
Affiliation(s)
- Christopher J. Serpell
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent CT2 7NH, UK
| | - Reida N. Rutte
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Elzbieta Pach
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Markus Martincic
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
| | - Magdalena Kierkowicz
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
| | - Sonia De Munari
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Kim Wals
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Ritu Raj
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Belén Ballesteros
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Gerard Tobias
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Benjamin G. Davis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
17
|
Lim S, Lee JA, Koo JH, Kang TG, Ha SJ, Choi JM. Cell Type Preference of a Novel Human Derived Cell-Permeable Peptide dNP2 and TAT in Murine Splenic Immune Cells. PLoS One 2016; 11:e0155689. [PMID: 27186978 PMCID: PMC4871486 DOI: 10.1371/journal.pone.0155689] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
Cell-permeable peptides (CPPs) have been widely studied as an attractive drug delivery system to deliver therapeutic macromolecules such as DNA, RNA, and protein into cells. However, its clinical application is still limited and controversial due to the lack of a complete understanding of delivery efficiency in target cells. Previously we identified and characterized the novel and superior CPP, named dNP2, and here we comparatively analyzed intracellular delivery efficiency of dNP2 and TAT in various immune cells of mouse spleen to demonstrate their cell type preference. dNP2- or TAT-conjugated fluorescent proteins were most efficiently taken up by phagocytic cells such as dendritic cells and macrophages while little protein uptake was seen by lymphocytes including T cells, B cells, and NK cells. Interestingly CD8+ lymphoid dendritic cells and CD62LloCD44hi memory like T cell subsets showed significantly better uptake efficiency in vitro and in vivo relative to other dendritic cells or T cells, respectively. In addition, activated macrophages, T cells, and B cells took up the proteins more efficiently relative to when in the resting state. Importantly, only dNP2, not TAT, shows significant intracellular protein delivery efficiency in vivo. Collectively, this study provides important information regarding heterogeneous intracellular delivery efficiency of CPPs such as dNP2 and TAT with cell type preference in the spleen needed for its application in phagocytic cells or activated immune cells.
Collapse
Affiliation(s)
- Sangho Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
| | - Jung-ah Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
| | - Tae Gun Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–749, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–749, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- * E-mail:
| |
Collapse
|