1
|
Wei Y, Mao H, Liu Q, Fang W, Zhang T, Xu Y, Zhang W, Chen B, Zheng Y, Hu X. Lipid metabolism and microbial regulation analyses provide insights into the energy-saving strategies of hibernating snakes. Commun Biol 2025; 8:45. [PMID: 39800781 PMCID: PMC11725596 DOI: 10.1038/s42003-025-07493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Hibernation is a necessary means for animals to maintain survival while coping with low temperatures and food shortages. While most studies have largely focused on mammalian hibernation, its reptilian equivalent has been less studied. In order to provide insights into the energy metabolism and potential microbial regulatory mechanisms in hibernating snakes, the serum, liver, gut content samples were measured by multi-omic methods. Here we show the active snakes have more vigorous lipid metabolism, whereas snakes in hibernation groups have higher sphingolipid metabolism. Furthermore, the results indicate that the potential energy supply pathway was gluconeogenesis. Microbial analysis reveals that Proteobacteria and Firmicutes showed dynamic changes with the transformation among active, pre-hibernation and hibernation periods. The correlation analysis reveals the potential role of Romboutsia, Providencia and Vagococcus in regulating above metabolism by producing certain metabolites. The results advance the understanding of the complex energy-saving strategy in hibernating poikilotherms.
Collapse
Affiliation(s)
- Yuting Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qiuhong Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenjie Fang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tianxiang Zhang
- Institute of Wildlife Conservation, Jiangxi Academy of Forestry, Nanchang, China
| | - Yongtao Xu
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, China
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Weiwei Zhang
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, China
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yunlin Zheng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
2
|
Daddy Gaoh S, Alusta P, Lee YJ, LiPuma JJ, Hussong D, Marasa B, Ahn Y. A Comparative Metagenomic Analysis of Specified Microorganisms in Groundwater for Non-Sterilized Pharmaceutical Products. Curr Microbiol 2024; 81:273. [PMID: 39017960 PMCID: PMC11255085 DOI: 10.1007/s00284-024-03791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
In pharmaceutical manufacturing, ensuring product safety involves the detection and identification of microorganisms with human pathogenic potential, including Burkholderia cepacia complex (BCC), Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus, Clostridium sporogenes, Candida albicans, and Mycoplasma spp., some of which may be missed or not identified by traditional culture-dependent methods. In this study, we employed a metagenomic approach to detect these taxa, avoiding the limitations of conventional cultivation methods. We assessed the groundwater microbiome's taxonomic and functional features from samples collected at two locations in the spring and summer. All datasets comprised 436-557 genera with Proteobacteria, Bacteroidota, Firmicutes, Actinobacteria, and Cyanobacteria accounting for > 95% of microbial DNA sequences. The aforementioned species constituted less than 18.3% of relative abundance. Escherichia and Salmonella were mainly detected in Hot Springs, relative to Jefferson, while Clostridium and Pseudomonas were mainly found in Jefferson relative to Hot Springs. Multidrug resistance efflux pumps and BlaR1 family regulatory sensor-transducer disambiguation dominated in Hot Springs and in Jefferson. These initial results provide insight into the detection of specified microorganisms and could constitute a framework for the establishment of comprehensive metagenomic analysis for the microbiological evaluation of pharmaceutical-grade water and other non-sterile pharmaceutical products, ensuring public safety.
Collapse
Affiliation(s)
- Soumana Daddy Gaoh
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079-9502, USA
| | - Pierre Alusta
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yong-Jin Lee
- Department of Natural Sciences, Albany State University, Albany, GA, 31707, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Bernard Marasa
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Youngbeom Ahn
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079-9502, USA.
| |
Collapse
|
3
|
Shang Y, Zhong H, Liu G, Wang X, Wu X, Wei Q, Shi L, Zhang H. Characteristics of Microbiota in Different Segments of the Digestive Tract of Lycodon rufozonatus. Animals (Basel) 2023; 13:ani13040731. [PMID: 36830518 PMCID: PMC9952230 DOI: 10.3390/ani13040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The gastrointestinal tract of animals contains microbiota, forming a complex microecosystem. Gut microbes and their metabolites can regulate the development of host innate and adaptive immune systems. Animal immune systems maintain intestinal symbiotic microbiota homeostasis. However, relatively few studies have been published on reptiles, particularly snakes, and even fewer studies on different parts of the digestive tracts of these animals. Herein, we used 16S rRNA gene sequencing to investigate the microbial community composition and adaptability in the stomach and small and large intestines of Lycodon rufozonatus. Proteobacteria, Bacteroidetes, and Firmicutes were most abundant in the stomach; Fusobacteria in the small intestine; and Proteobacteria, Bacteroidetes, Fusobacteria, and Firmicutes in the large intestine. No dominant genus could be identified in the stomach; however, dominant genera were evident in the small and large intestines. The microbial diversity index was significantly higher in the stomach than in the small and large intestines. Moreover, the influence of the microbial community structure on function was clarified through function prediction. Collectively, the gut microbes in the different segments of the digestive tract revealed the unique features of the L. rufozonatus gut microbiome. Our results provide insights into the co-evolutionary relationship between reptile gut microbiota and their hosts.
Collapse
Affiliation(s)
- Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Huaming Zhong
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Gang Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Lupeng Shi
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
- Correspondence:
| |
Collapse
|
4
|
Li X, McLaughlin RW, Grover NA. Characterization of Antibiotic-Resistant Stenotrophomonas Isolates from Painted Turtles Living in the Wild. Curr Microbiol 2023; 80:93. [PMID: 36729340 DOI: 10.1007/s00284-023-03193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023]
Abstract
Stenotrophomonas maltophilia is a ubiquitous multidrug-resistant opportunistic pathogen commonly associated with nosocomial infections. The purpose of this study was to isolate and characterize extended-spectrum beta-lactamase (ESBL) producing bacteria from painted turtles (Chrysemys picta) living in the wild and captured in southeastern Wisconsin. Fecal samples from ten turtles were examined for ESBL producing bacteria after incubation on HardyCHROM™ ESBL agar. Two isolates were cultivated and identified by 16S rRNA gene sequencing and whole genome sequencing (WGS) as Stenotrophomonas sp. 9A and S. maltophilia 15A. They were multidrug-resistant, as determined by antibiotic susceptibility testing. Stenotrophomonas sp. 9A was found to produce an extended spectrum beta-lactamase (ESBL) and both isolates were found to be carbapenem-resistant. EDTA-modified carbapenem inactivation method (eCIM) and the modified carbapenem inactivation method (mCIM) tests were used to examine the carbapenemase production and the test results were negative. Through WGS several antimicrobial resistance genes were identified in S. maltophilia 15A. For example a chromosomal L1 β-lactamase gene, which is known to hydrolyze carbapenems, a L2 β-lactamase gene, genes for the efflux systems smeABC and smeDEF and the aminoglycosides resistance genes aac(6')-lz and aph(3')-llc were found. An L2 β-lactamase gene in Stenotrophomonas sp. 9A was identified through WGS.
Collapse
Affiliation(s)
- Xinhui Li
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI, 54601, USA.
| | | | - Noah A Grover
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI, 54601, USA.,CSL USA Inc., 4011 Nicholson Road, Franksville, WI, 53126, USA
| |
Collapse
|
5
|
Perez-Marron J, Sanders C, Gomez E, Escopete S, Owerkowicz T, Orwin PM. Community and shotgun metagenomic analysis of Alligator mississippiensis oral cavity and GI tracts reveal complex ecosystems and potential reservoirs of antibiotic resistance. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111319. [PMID: 36115554 DOI: 10.1016/j.cbpa.2022.111319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
We report here the community structure and functional analysis of the microbiome of the Alligator mississippiensis GI tract from the oral cavity through the entirety of the digestive tract. Although many vertebrate microbiomes have been studied in recent years, the archosaur microbiome has only been given cursory attention. In the oral cavity we used amplicon-based community analysis to examine the structure of the oral microbiome during alligator development. We found a community that diversified over time and showed many of the hallmarks we would expect of a stable oral community. This is a bit surprising given the rapid turnover of alligator teeth but suggests that the stable gumline microbes are able to rapidly colonize the emerging teeth. As we move down the digestive tract, we were able to use both long and short read sequencing approaches to evaluate the community using a shotgun metagenomics approach. Long read sequencing was applied to samples from the stomach/duodenum, and the colorectal region, revealing a fairly uniform and low complexity community made up primarily of proteobacteria at the top of the gut and much more diversity in the colon. We used deep short read sequencing to further interrogate this colorectal community. The two sequencing approaches were concordant with respect to community structure but substantially more detail was available in the short read data, in spite of high levels of host DNA contamination. Using both approaches we were able to show that the colorectal community is a potential reservoir for antibiotic resistance, human pathogens such as Clostridiodes difficile and a possible source of novel antimicrobials or other useful secondary metabolites.
Collapse
Affiliation(s)
| | - Ciara Sanders
- Biology Department, California State University at San Bernardino, San Bernardino, CA, USA. https://twitter.com/cisanders
| | - Esther Gomez
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Sean Escopete
- Biology Department, California State University at San Bernardino, San Bernardino, CA, USA
| | - Tomasz Owerkowicz
- Biology Department, California State University at San Bernardino, San Bernardino, CA, USA
| | - Paul M Orwin
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA.
| |
Collapse
|
6
|
Siddiqui R, Maciver SK, Khan NA. Gut microbiome-immune system interaction in reptiles. J Appl Microbiol 2022; 132:2558-2571. [PMID: 34984778 DOI: 10.1111/jam.15438] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022]
Abstract
Reptiles are ectothermic amniotes in a world dominated by endotherms. Reptiles originated more than 300 million years ago and they often dwell in polluted environments which may expose them to pathogenic micro-organisms, radiation and/or heavy metals. Reptiles also possess greater longevity and may live much longer than similar-sized land mammals, for example, turtles, tortoises, crocodiles and tuatara are long-lived reptiles living up to 100 years or more. Many recent studies have emphasized the pivotal role of the gut microbiome on its host; thus, we postulated that reptilian gut microbiome and/or its metabolites and the interplay with their robust immune system may contribute to their longevity and overall hardiness. Herein, we discuss the composition of the reptilian gut microbiome, immune system-gut microbiome cross-talk, antimicrobial peptides, reptilian resistance to infectious diseases and cancer, ageing, as well the current knowledge of the genome and epigenome of these remarkable species. Preliminary studies have demonstrated that microbial gut flora of reptiles such as crocodiles, tortoises, water monitor lizard and python exhibit remarkable anticancer and antibacterial properties, as well as comprise novel gut bacterial metabolites and antimicrobial peptides. The underlying mechanisms between the gut microbiome and the immune system may hold clues to developing new therapies overall for health, and possible extrapolation to exploit the ancient defence systems of reptiles for Homo sapiens benefit.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Sutherland K Maciver
- Centre for Discovery Brain Science, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
7
|
Zacho CM, Bager MA, Margaryan A, Gravlund P, Galatius A, Rasmussen AR, Allentoft ME. Uncovering the genomic and metagenomic research potential in old ethanol-preserved snakes. PLoS One 2021; 16:e0256353. [PMID: 34424926 PMCID: PMC8382189 DOI: 10.1371/journal.pone.0256353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Abstract
Natural history museum collections worldwide represent a tremendous resource of information on past and present biodiversity. Fish, reptiles, amphibians and many invertebrate collections have often been preserved in ethanol for decades or centuries and our knowledge on the genomic and metagenomic research potential of such material is limited. Here, we use ancient DNA protocols, combined with shotgun sequencing to test the molecular preservation in liver, skin and bone tissue from five old (1842 to 1964) museum specimens of the common garter snake (Thamnophis sirtalis). When mapping reads to a T. sirtalis reference genome, we find that the DNA molecules are highly damaged with short average sequence lengths (38-64 bp) and high C-T deamination, ranging from 9% to 21% at the first position. Despite this, the samples displayed relatively high endogenous DNA content, ranging from 26% to 56%, revealing that genome-scale analyses are indeed possible from all specimens and tissues included here. Of the three tested types of tissue, bone shows marginally but significantly higher DNA quality in these metrics. Though at least one of the snakes had been exposed to formalin, neither the concentration nor the quality of the obtained DNA was affected. Lastly, we demonstrate that these specimens display a diverse and tissue-specific microbial genetic profile, thus offering authentic metagenomic data despite being submerged in ethanol for many years. Our results emphasize that historical museum collections continue to offer an invaluable source of information in the era of genomics.
Collapse
Affiliation(s)
- Claus M. Zacho
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Martina A. Bager
- Section for EvoGenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ashot Margaryan
- Section for EvoGenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Galatius
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Arne R. Rasmussen
- Institute of Conservation, Royal Danish Academy—Architecture, Design, Conservation, Copenhagen, Denmark
| | - Morten E. Allentoft
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| |
Collapse
|
8
|
Taxonomy, not locality, influences the cloacal microbiota of two nearctic colubrids: a preliminary analysis. Mol Biol Rep 2021; 48:6435-6442. [PMID: 34403035 DOI: 10.1007/s11033-021-06645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The gut microbiota is an emerging frontier in wildlife research and its importance to vertebrate health and physiology is becoming ever more apparent. Reptiles, in particular snakes, have not received the same attention given to other vertebrates and the composition of their wild gut microbiome remains understudied. The primary goal of this work was to describe the cloacal microbiota of two Colubrids, the Eastern Gartersnake (Thamnophis sirtalis sirtalis) and the Northern Watersnake (Nerodia sipedon sipedon), and if their cloacal microbiota differed as well as if it did between a wetland and upland population of the former species. METHODS AND RESULTS We utilized next-generation sequencing of cloacal swabs-a non-destructive proxy for the gut microbiota. The cloacal microbiome of Eastern Gartersnakes (N = 9) was like those of other snakes being comprised of Proteobacteria, Bacteroidetes, and Firmicutes, while that of Northern Watersnakes (N = 6) was dominated by Tenericutes. Seven microbial operational taxonomic units (OTUs), all members of Proteobacteria, were shared among all individuals and were indicative of a core microbiome in Eastern Gartersnakes, but these OTUs were not particularly relevant to Northern Watersnakes. The latter had greater OTU richness than did Eastern Gartersnakes, and habitat did not have any apparent effect on the microbial community composition in Eastern Gartersnakes. CONCLUSIONS Our findings suggest host taxonomy to be a determining factor in the cloacal microbiota of snakes and that Tenericutes are associated with aquatic habitats. This is the first report to examine the cloacal microbiome of these species and provides a useful foundation for future work to build upon.
Collapse
|
9
|
Smith SN, Colston TJ, Siler CD. Venomous Snakes Reveal Ecological and Phylogenetic Factors Influencing Variation in Gut and Oral Microbiomes. Front Microbiol 2021; 12:657754. [PMID: 33841384 PMCID: PMC8032887 DOI: 10.3389/fmicb.2021.657754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
The gastrointestinal tract (GIT) of vertebrates contains a series of organs beginning with the mouth and ending with the anus or cloacal opening. Each organ represents a unique environment for resident microorganisms. Due to their simple digestive anatomy, snakes are good models for studying microbiome variation along the GIT. Cloacal sampling captures the majority of the microbial diversity found in the GIT of snakes—yet little is known about the oral microbiota of snakes. Most research on the snake mouth and gut microbiota are limited to studies of a single species or captive-bred individuals. It therefore remains unclear how a host’s life history, diet, or evolutionary history correlate with differences in the microbial composition within the mouths and guts of wild snakes. We sampled the mouth and gut microbial communities from three species of Asian venomous snakes and utilized 16S rRNA microbial inventories to test if host phylogenetic and ecological differences correlate with distinct microbial compositions within the two body sites. These species occupy three disparate habitat types: marine, semi-arboreal, and arboreal, our results suggest that the diversity of snake mouth and gut microbial communities correlate with differences in both host ecology and phylogeny.
Collapse
Affiliation(s)
- Sierra N Smith
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Timothy J Colston
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Cameron D Siler
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
10
|
Qu YF, Wu YQ, Zhao YT, Lin LH, Du Y, Li P, Li H, Ji X. The invasive red-eared slider turtle is more successful than the native Chinese three-keeled pond turtle: evidence from the gut microbiota. PeerJ 2020; 8:e10271. [PMID: 33194431 PMCID: PMC7603792 DOI: 10.7717/peerj.10271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The mutualistic symbiosis between the gut microbial communities (microbiota) and their host animals has attracted much attention. Many factors potentially affect the gut microbiota, which also varies among host animals. The native Chinese three-keeled pond turtle (Chinemys reevesii) and the invasive red-eared slider turtle (Trachemys scripta elegans) are two common farm-raised species in China, with the latter generally considered a more successful species. However, supporting evidence from the gut microbiota has yet to be collected. METHODS We collected feces samples from these two turtle species raised in a farm under identical conditions, and analyzed the composition and relative abundance of the gut microbes using bacterial 16S rRNA sequencing on the Roach/454 platform. RESULTS The gut microbiota was mainly composed of Bacteroidetes and Firmicutes at the phylum level, and Porphyromonadaceae, Bacteroidaceae and Lachnospiraceae at the family level in both species. The relative abundance of the microbes and gene functions in the gut microbiota differed between the two species, whereas alpha or beta diversity did not. Microbes of the families Bacteroidaceae, Clostridiaceae and Lachnospiraceae were comparatively more abundant in C. reevesii, whereas those of the families Porphyromonadaceae and Fusobacteriaceae were comparatively more abundant in T. s. elegans. In both species the gut microbiota had functional roles in enhancing metabolism, genetic information processing and environmental information processing according to the Kyoto Encyclopedia of Genes and Genomes database. The potential to gain mass is greater in T. s. elegans than in C. reevesii, as revealed by the fact that the Firmicutes/Bacteroidetes ratio was lower in the former species. The percentage of human disease-related functional genes was lower in T. s. elegans than in C. reevesii, presumably suggesting an enhanced potential to colonize new habitats in the former species.
Collapse
Affiliation(s)
- Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yan-Qing Wu
- National Key Laboratory of Environmental Protection and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu, China
| | - Yu-Tian Zhao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yu Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, Hainan, China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Scheelings TF, Moore RJ, Van TTH, Klaassen M, Reina RD. The gut bacterial microbiota of sea turtles differs between geographically distinct populations. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The microbiota of metazoans can be influenced by a variety of factors including diet, environment and genetics. In this study we sampled multiple populations from 2 host species that do not overlap in distribution, in order to test whether their bacterial microbiotas are species-specific or more variable. Intestinal swabs were collected from loggerhead turtles originating from Florida, USA, and Queensland, Australia, as well as from flatback turtles from Crab Island, Queensland, and Port Hedland, Western Australia. We then manually extracted bacterial DNA and used 16S rRNA sequencing to explore bacterial microbial community composition and structure. Our investigation showed that the bacterial microbiota of sea turtles is heavily influenced by geography, with loggerhead turtles originating from the USA and Australia harbouring significantly different bacterial microbial populations in terms of composition. Similarly, we also found that flatback turtles from Crab Island had significantly less diverse microbiotas, with a predominance of the bacterial phylum Firmicutes, in comparison to their genetically similar counterparts from Port Hedland. Factors that may explain these observed differences between populations include host genetics, differences in foraging habitat quality and differences in migratory distance (and thus durations of inappetence) between foraging and breeding grounds. The mechanisms by which these factors may influence bacterial microbial composition of sea turtle gastrointestinal tracts warrants further investigation. The results of this study highlight the importance of interpreting microbiota data of wild animals in the context of geography.
Collapse
Affiliation(s)
- TF Scheelings
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria 3800, Australia
| | - RJ Moore
- School of Science, RMIT University, Bundoora West Campus, Plenty Rd, Bundoora, Victoria 3083, Australia
| | - TTH Van
- School of Science, RMIT University, Bundoora West Campus, Plenty Rd, Bundoora, Victoria 3083, Australia
| | - M Klaassen
- Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - RD Reina
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Scheelings TF, Moore RJ, Van TTH, Klaassen M, Reina RD. Microbial symbiosis and coevolution of an entire clade of ancient vertebrates: the gut microbiota of sea turtles and its relationship to their phylogenetic history. Anim Microbiome 2020; 2:17. [PMID: 33499954 PMCID: PMC7807503 DOI: 10.1186/s42523-020-00034-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background The microbiota plays a critical role in host homeostasis and has been shown to be a major driving force in host evolution. However, our understanding of these important relationships is hampered by a lack of data for many species, and by significant gaps in sampling of the evolutionary tree. In this investigation we improve our understanding of the host-microbiome relationship by obtaining samples from all seven extant species of sea turtle, and correlate microbial compositions with host evolutionary history. Results Our analysis shows that the predominate phyla in the microbiota of nesting sea turtles was Proteobacteria. We also demonstrate a strong relationship between the bacterial phyla SR1 and sea turtle phylogeny, and that sea turtle microbiotas have changed very slowly over time in accordance with their similarly slow phenotypic changes. Conclusions This is one of the most comprehensive microbiota studies to have been performed in a single clade of animals and further improves our knowledge of how microbial populations have influenced vertebrate evolution.
Collapse
Affiliation(s)
| | - Robert J Moore
- RMIT University School of Science, Bundoora West Campus, Plenty Rd, Bundoora, Victoria, 3083, Australia
| | - Thi Thu Hao Van
- RMIT University School of Science, Bundoora West Campus, Plenty Rd, Bundoora, Victoria, 3083, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Richard D Reina
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
| |
Collapse
|
13
|
Peng Q, Chen Y, Ding L, Zhao Z, Yan P, Storey KB, Shi H, Hong M. Early-life intestinal microbiome in Trachemys scripta elegans analyzed using 16S rRNA sequencing. PeerJ 2020; 8:e8501. [PMID: 32071814 PMCID: PMC7007735 DOI: 10.7717/peerj.8501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/01/2020] [Indexed: 12/15/2022] Open
Abstract
During the early-life period, the hatchlings of red-eared slider turtles (Trachemys scripta elegans) rely on their own post-hatching internal yolk for several days before beginning to feed. The gut microbiome is critical for the adaptation of organisms to new environments, but, to date, how the microbiome taxa are assembled during early life of the turtle is unknown. In this study, the intestinal microbiome of red-eared slider hatchlings (fed on commercial particle food) was systematically analyzed at four different growth stages (0 d, 10 d, 20 d, 30 d) by a high-throughput sequencing approach. Results showed that the dominant phyla were Firmicutes (58.23%) and Proteobacteria (41.42%) at 0-day, Firmicutes (92.94%) at 10-day, Firmicutes (67.08%) and Bacteroidetes (27.17%) at 20-day, and Firmicutes (56.46%), Bacteroidetes (22.55%) and Proteobacteria (20.66%) at 30-day post-hatching. Members of the Bacteroidaceae family were absent in 0-day and 10-day turtles, but dominated in 20-day and 30-day turtles. The abundance of Clostridium also showed the highest value in 10-day turtles. The richness of the intestinal microbiomes was lower at 0-day and 30-day than that at 10-day and 20-day, while the diversity was higher at 10-day and 30-day than that at 0-day and 20-day. The results endowed the turtles with an ability to enhance their tolerance to the environment.
Collapse
Affiliation(s)
- Qin Peng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Yahui Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Zimiao Zhao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Peiyu Yan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | | | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| |
Collapse
|
14
|
Interactive Effects of Food Supplementation and Snake Fungal Disease on Pregnant Pygmy Rattlesnakes and Their Offspring. J HERPETOL 2019. [DOI: 10.1670/18-147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Isolation and characterisation of carbapenem-resistant Xanthomonas citri pv. mangiferaeindicae-like strain gir from the faecal material of giraffes. Antonie van Leeuwenhoek 2019; 113:137-145. [PMID: 31485840 DOI: 10.1007/s10482-019-01323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to determine if giraffes (Giraffa camelopardalis) living in captivity at the Jacksonville Zoo and Gardens, Jacksonville, FL were colonised with carbapenem-resistant bacteria and, if found, to identify underlying genetic mechanisms contributing to a carbapenem-resistant phenotype. Faecal samples from seven giraffes were examined for carbapenem-resistant bacteria. Only one isolate (a Xanthomondaceae) was found to be carbapenem-resistant by antibiotic susceptibility testing. This isolate was selected for additional characterization, including whole genome sequencing (WGS). Based on average nucleotide identity, the bacterium was identified as Xanthomonas citri pv. mangiferaeindicae-like strain gir. Phenotypic carbapenemase tests and PCR for the most common carbapenemase genes produced negative results, suggesting that carbapenem resistance was mediated by another mechanism. Resistance gene profile analysis of WGS results confirmed these results. Among identified resistance genes, a chromosomal class A beta-lactamase with 71% identity to the penP beta-lactamase gene from Xanthomonas citri ssp. citri was identified, which could contribute to a carbapenem-resistant phenotype.
Collapse
|
16
|
Lin M, Zeng C, Li Z, Ma Y, Jia X. Comparative analysis of the composition and function of fecal-gut bacteria in captive juvenile Crocodylus siamensis between healthy and anorexic individuals. Microbiologyopen 2019; 8:e929. [PMID: 31482690 PMCID: PMC6925159 DOI: 10.1002/mbo3.929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023] Open
Abstract
The Siamese crocodile (Crocodylus siamensis) is a freshwater, endangered crocodile with high economic value in the farming industry. Gut microflora plays an essential role in host physiological activity, and it contributes significantly to both the health and diseased states of animals. However, thus far, no study has focused on the correlation between diseases and intestinal bacterial communities in crocodilians. Here, we first compared the composition and function of gut microbial communities in captive juvenile C. siamensis suffering from anorexia and healthy crocodile controls using deep amplicon sequencing. The gut microbial diversity of anorexic crocodiles was much lower than the healthy individuals. Obvious changes in gut microbial composition were observed between sick and healthy crocodiles, except for Cetobacterium somerae of phylum Fusobacteria. In particular, the abundance of Bacteroides luti, Clostridium disporicum, Plesiomonas shigelloides, and Odoribacter sp. in the gut flora of healthy crocodiles was distinctly higher than the diseased group. Conversely, the species Edwardsiella tarda was overrepresented in the gut of anorexic crocodiles compared to the healthy group. Furthermore, in anorexic crocodiles, the predicted microbial functions that were related to amino acid metabolism, biosynthesis of other secondary metabolites, nucleotide metabolism, replication and repair, and translation were significantly reduced, while signal transduction was significantly enriched. These findings of the present study provide a reference to enrich the field of gut microorganism studies in crocodilians and suggest that alterations in the composition and function of gut bacteria in C. siamensis juveniles may be associated with anorexia in crocodiles.
Collapse
Affiliation(s)
- Mao Lin
- Engineering-Technology Research Center for Fishery Medicine, Fisheries College, Jimei University, Xiamen, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
| | - Chenxi Zeng
- Engineering-Technology Research Center for Fishery Medicine, Fisheries College, Jimei University, Xiamen, China
| | - Zhongqin Li
- Engineering-Technology Research Center for Fishery Medicine, Fisheries College, Jimei University, Xiamen, China
| | - Ying Ma
- Engineering-Technology Research Center for Fishery Medicine, Fisheries College, Jimei University, Xiamen, China
| | - Xueqing Jia
- Engineering-Technology Research Center for Fishery Medicine, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
17
|
Arizza V, Vecchioni L, Caracappa S, Sciurba G, Berlinghieri F, Gentile A, Persichetti MF, Arculeo M, Alduina R. New insights into the gut microbiome in loggerhead sea turtles Caretta caretta stranded on the Mediterranean coast. PLoS One 2019; 14:e0220329. [PMID: 31412070 PMCID: PMC6693768 DOI: 10.1371/journal.pone.0220329] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/12/2019] [Indexed: 01/29/2023] Open
Abstract
Caretta caretta is the most common sea turtle species in the Mediterranean Sea. The species is threatened by anthropomorphic activity that causes thousands of deaths and hundreds of strandings along the Mediterranean coast. Stranded turtles are often cared for in rehabilitation centres until they recover or die. The objective of this study was to characterize the gut microbiome of nine sea turtles stranded along the Sicilian coast of the Mediterranean Sea using high-throughput sequencing analysis targeting V3–V4 regions of the bacterial 16S rRNA gene. Stool samples were collected from eight specimens hosted in the recovery centre after a few days of hospitalization (under 7) and from one hosted for many weeks (78 days). To better explore the role of bacterial communities in loggerhead sea turtles, we compared our data with published fecal microbiomes from specimens stranded along the Tuscan and Ligurian coast. Our results highlight that, despite the different origin, size and health conditions of the animals, Firmicutes, Bacteroidetes and Proteobacteria constitute the main components of the microbiota. This study widens our knowledge on the gut microbiome of sea turtles and could be helpful for the set up of rehabilitation therapies of stranded animals after recovery in specialized centres.
Collapse
Affiliation(s)
- Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Luca Vecchioni
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Santo Caracappa
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Giulia Sciurba
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Flavia Berlinghieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Antonino Gentile
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | | | - Marco Arculeo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
- * E-mail:
| |
Collapse
|
18
|
Tang W, Zhu G, Shi Q, Yang S, Ma T, Mishra SK, Wen A, Xu H, Wang Q, Jiang Y, Wu J, Xie M, Yao Y, Li D. Characterizing the microbiota in gastrointestinal tract segments of Rhabdophis subminiatus: Dynamic changes and functional predictions. Microbiologyopen 2019; 8:e00789. [PMID: 30848054 PMCID: PMC6612554 DOI: 10.1002/mbo3.789] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 01/24/2023] Open
Abstract
The gut microbiota helps the host to absorb nutrients and generate immune responses that can affect host behavior, development, reproduction, and overall health. However, in most of the previous studies, microbiota was sampled mainly using feces and intestinal contents from mammals but not from wild reptiles. Here, we described the bacterial profile from five different gastrointestinal tract (GIT) segments (esophagus, stomach, small intestine, large intestine, and cloaca) of three wild Rhabdophis subminiatus using 16S rRNA V4 hypervariable amplicon sequencing. Forty-seven bacterial phyla were found in the entire GIT, of which Proteobacteria, Firmicutes, and Bacteroidetes were predominant. The results showed a significant difference in microbial diversity between the upper GIT segments (esophagus and stomach) and lower GIT segments (large intestine and cloaca). An obvious dynamic distribution of Fusobacteria and Bacteroidetes was observed, which mainly existed in the lower GIT segments. Conversely, the distribution of Tenericutes was mainly observed in the upper GIT. We also predicted the microbial functions in the different GIT segments, which showed that microbiota in each segments played an important role in higher membrane transport and carbohydrate and amino acid metabolism. Microbes in the small intestine were also mainly involved in disease-related systems, while in the large intestine, they were associated with membrane transport and carbohydrate metabolism. This is the first study to investigate the distribution of the gut microbiota and to predict the microbial function in R. subminiatus. The composition of the gut microbiota certainly reflects the diet and the living environment of the host. Furthermore, these findings provide vital evidence for the diagnosis and treatment of gut diseases in snakes and offer a direction for a model of energy budget research.
Collapse
Affiliation(s)
- Wenjiao Tang
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Guangxiang Zhu
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Qian Shi
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Shijun Yang
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Tianyuan Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Shailendra Kumar Mishra
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Anxiang Wen
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Huailiang Xu
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Qin Wang
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Yanzhi Jiang
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Jiayun Wu
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Meng Xie
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Yongfang Yao
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| |
Collapse
|
19
|
Qin Z, Wang S, Guo D, Zhu J, Chen H, Bai L, Luo X, Yin Y. Comparative analysis of intestinal bacteria among venom secretion and non-secrection snakes. Sci Rep 2019; 9:6335. [PMID: 31004115 PMCID: PMC6474859 DOI: 10.1038/s41598-019-42787-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/04/2019] [Indexed: 01/09/2023] Open
Abstract
To further investigate the bacterial community and identify the bacterial biomarkers between venom secretion and non-venom secretion snakes, 50 intestinal samples (25 large intestine, 25 small intestine) were obtained from 29 snakes (13 gut samples from Deinagkistrodon, 26 from Naja and 11 from Ptyas mucosa). 16S rDNA high-throughput sequencing results showed that 29 bacterial phyla, 545 bacterial genera, and 1,725 OTUs (operational taxonomic units) were identified in these samples. OTU numbers and the Ace, Chao, Shannon, and Simpson indexes were very similar among the three breeds of snakes included in this study. The Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria were predominant bacterial phyla. The relative abundance at the phylum level among these samples was similar, and the difference between small and large intestinal samples was not obvious. However, at the genus level, venom secretion snakes Deinagkistrodon and Naja clustered together according to different breeds. 27, 24, and 16 genera were identified as core microbes for Deinagkistrodon, Naja, and Ptyas mucosa, respectively. Interestingly, the relative abundances of genera Hafnia_Obesumbacterium, Providencia, and Ureaplasma were found to be significantly higher in non-venom secretion snakes, and the genera Achromobacter, Cetobacterium, Clostridium innocuum group, Fusobacterium, Lachnoclostridium, Parabacteroides, and Romboutsia were only detected in venom secretion snakes. The function of these bacteria in venom secretion needs to be further studied, and these venom secretion related genera may be the promising target to improve venom production.
Collapse
Affiliation(s)
- Zuodong Qin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China.,Yongzhou City Strange Snake Science and Technology Industrial Co., Ltd., Yongzhou, Hunan, 425000, China
| | - Siqi Wang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Dezhi Guo
- Yongzhou City Strange Snake Science and Technology Industrial Co., Ltd., Yongzhou, Hunan, 425000, China
| | - Jialiang Zhu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Huahai Chen
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Le Bai
- Yongzhou City Strange Snake Science and Technology Industrial Co., Ltd., Yongzhou, Hunan, 425000, China
| | - Xiaofang Luo
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Yeshi Yin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China.
| |
Collapse
|
20
|
Zhang B, Ren J, Yang D, Liu S, Gong X. Comparative analysis and characterization of the gut microbiota of four farmed snakes from southern China. PeerJ 2019; 7:e6658. [PMID: 30956901 PMCID: PMC6442672 DOI: 10.7717/peerj.6658] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/22/2019] [Indexed: 12/26/2022] Open
Abstract
Background The gut microbiota plays an important role in host immunity and metabolic homeostasis. Although analyses of gut microbiotas have been used to assess host health and foster disease prevention and treatment, no comparative comprehensive study, assessing gut microbiotas among several species of farmed snake, is yet available. In this study, we characterized and compared the gut microbiotas of four species of farmed snakes (Naja atra, Ptyas mucosa, Elaphe carinata, and Deinagkistrodon acutus) using high-throughput sequencing of the 16S rDNA gene in southern China and tested whether there was a relationship between gut microbiotal composition and host species. Results A total of 629 operational taxonomic units across 22 samples were detected. The five most abundant phyla were Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, and Actinobacteria, while the five most abundant genera were Bacteroides, Cetobacterium, Clostridium, Plesiomonas, and Paeniclostridium. This was the first report of the dominance of Fusobacteria and Cetobacterium in the snake gut. Our phylogenetic analysis recovered a relatively close relationship between Fusobacteria and Bacteroidetes. Alpha diversity analysis indicated that species richness and diversity were highest in the gut microbiota of D. acutus and lowest in that of E. carinata. Significant differences in alpha diversity were detected among the four farmed snake species. The gut microbiotas of conspecifics were more similar to each other than to those of heterospecifics. Conclusion This study provides the first comparative study of gut microbiotas among several species of farmed snakes, and provides valuable data for the management of farmed snakes. In farmed snakes, host species affected the species composition and diversity of the gut microbiota.
Collapse
Affiliation(s)
- Bing Zhang
- Institute of Wildlife Conservation, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Jing Ren
- Institute of Wildlife Conservation, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Daode Yang
- Institute of Wildlife Conservation, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Shuoran Liu
- Institute of Wildlife Conservation, Central South University of Forestry and Technology, Changsha, Hunan, China.,Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Xinguo Gong
- Qiyang Gong Xinguo Breeding Co., Ltd, Yongzhou, Hunan, China
| |
Collapse
|
21
|
Krishnankutty SP, Muraleedharan M, Perumal RC, Michael S, Benny J, Balan B, Kumar P, Manazhi J, Kumar BD, Santhosh S, Thomas G, Gupta R, Zachariah A. Next-generation sequencing analysis reveals high bacterial diversity in wild venomous and non-venomous snakes from India. J Venom Anim Toxins Incl Trop Dis 2018; 24:41. [PMID: 30598660 PMCID: PMC6303853 DOI: 10.1186/s40409-018-0181-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/06/2018] [Indexed: 11/24/2022] Open
Abstract
Background The oral cavities of snakes are replete with various types of bacterial flora. Culture-dependent studies suggest that some of the bacterial species are responsible for secondary bacterial infection associated with snakebite. A complete profile of the ophidian oral bacterial community has been unreported until now. Therefore, in the present study, we determined the complete bacterial compositions in the oral cavity of some snakes from India. Methods Total DNA was isolated from oral swabs collected from three wild snake species (Indian Cobra, King Cobra and Indian Python). Next, the DNA was subjected to PCR amplification of microbial 16S rRNA gene using V3-region-specific primers. The amplicons were used for preparation of DNA libraries that were sequenced on an Illumina MiSeq platform. Results The cluster-based taxonomy analysis revealed that Proteobacteria and Actinobacteria were the most predominant phyla present in the oral cavities of snakes. This result indicates that snakes show more similarities to birds than mammals as to their oral bacterial communities. Furthermore, our study reports all the unique and common bacterial species (total: 147) found among the oral microbes of snakes studied, while the majority of commonly abundant species were pathogens or opportunistic pathogens to humans. A wide difference in ophidian oral bacterial flora suggests variation by individual, species and geographical region. Conclusion The present study would provide a foundation for further research on snakes to recognize the potential drugs/antibiotics for the different infectious diseases. Electronic supplementary material The online version of this article (10.1186/s40409-018-0181-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Saju Michael
- AgriGenome Labs Pvt. Ltd., SmartCity Kochi, Kakkanad, Kerala 682042 India
| | - Jubina Benny
- AgriGenome Labs Pvt. Ltd., SmartCity Kochi, Kakkanad, Kerala 682042 India
| | - Bipin Balan
- AgriGenome Labs Pvt. Ltd., SmartCity Kochi, Kakkanad, Kerala 682042 India
| | - Pramod Kumar
- AgriGenome Labs Pvt. Ltd., SmartCity Kochi, Kakkanad, Kerala 682042 India
| | - Jishnu Manazhi
- Department of Forests and Wildlife, Sulthan Batheri, Wayanad District, Kerala 673592 India
| | | | - Sam Santhosh
- AgriGenome Labs Pvt. Ltd., SmartCity Kochi, Kakkanad, Kerala 682042 India
| | - George Thomas
- SciGenom Research Foundation, Cheruthuruthy, Kerala 679531 India
| | - Ravi Gupta
- 4Medgenome Labs Pvt. Ltd., Narayana Health City, Bommasandra, Bengaluru, Karnataka 560099 India
| | - Arun Zachariah
- Department of Forests and Wildlife, Sulthan Batheri, Wayanad District, Kerala 673592 India
| |
Collapse
|
22
|
Wan XL, McLaughlin RW, Zheng JS, Hao YJ, Fan F, Tian RM, Wang D. Microbial communities in different regions of the gastrointestinal tract in East Asian finless porpoises (Neophocaena asiaeorientalis sunameri). Sci Rep 2018; 8:14142. [PMID: 30237562 PMCID: PMC6147976 DOI: 10.1038/s41598-018-32512-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 08/13/2018] [Indexed: 01/26/2023] Open
Abstract
Mammalian gastrointestinal (GI) tract microbial communities are critical for host health. However, the microbiota along the GI tract in cetaceans has not been well characterized compared to other animals. In this study, the bacteria and fungi present in the stomach, foregut, hindgut and feces, of East Asian finless porpoises (Neophocaena asiaeorientalis sunameri, EAFPs) were characterized using high-throughput sequencing analysis. The bacterial and fungal diversity and richness in the stomach, hindgut and fecal samples tended to be higher than those in the foregut. Bacterial taxonomic compositions found in the hindgut and feces were different from those seen in the stomach and foregut. A greater proportion of strict anaerobic bacteria including Clostridia, Fusobacteria, and Ruminococcaceae were found in the hindgut and fecal samples. The fungal communities present in stomach samples differed from those detected in other regions to some extent. Zygomycota and Neocallimastigomycota were more predominant in the stomach. Some potential pathogens, such as Helicobacter spp. and Vibrio spp., were commonly present along the GI tract. Our study confirms that the fecal microbiota can represent the whole GI tract to some extent because of their relatively higher microbial diversity and presence of potential pathogens. Our study provides the first comprehensive characterization of the EAFPs GI microbiota, expanding on the current knowledge about the bacterial diversity in the GI tract of cetaceans. In addition, this is the first study characterizing the fungal diversity of any species of porpoise.
Collapse
Affiliation(s)
- Xiao-Ling Wan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Richard William McLaughlin
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,General Studies, Gateway Technical College, Kenosha, WI, 53144, USA
| | - Jin-Song Zheng
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yu-Jiang Hao
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fei Fan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ren-Mao Tian
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
| | - Ding Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
23
|
Jiang HY, Ma JE, Li J, Zhang XJ, Li LM, He N, Liu HY, Luo SY, Wu ZJ, Han RC, Chen JP. Diets Alter the Gut Microbiome of Crocodile Lizards. Front Microbiol 2017; 8:2073. [PMID: 29118742 PMCID: PMC5660983 DOI: 10.3389/fmicb.2017.02073] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
The crocodile lizard is a critically endangered reptile, and serious diseases have been found in this species in recent years, especially in captive lizards. Whether these diseases are caused by changes in the gut microbiota and the effect of captivity on disease remains to be determined. Here, we examined the relationship between the gut microbiota and diet and disease by comparing the fecal microbiota of wild lizards with those of sick and healthy lizards in captivity. The gut microbiota in wild crocodile lizards was consistently dominated by Proteobacteria (∼56.4%) and Bacteroidetes (∼19.1%). However, the abundance of Firmicutes (∼2.6%) in the intestine of the wild crocodile lizards was distinctly lower than that in other vertebrates. In addition, the wild samples from Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve also had a high abundance of Deinococcus-Thermus while the wild samples from Guangxi Daguishan Crocodile Lizard National Nature Reserve had a high abundance of Tenericutes. The gut microbial community in loach-fed crocodile lizards was significantly different from the gut microbial community in the earthworm-fed and wild lizards. In addition, significant differences in specific bacteria were detected among groups. Notably, in the gut microbiota, the captive lizards fed earthworms resulted in enrichment of Fusobacterium, and the captive lizards fed loaches had higher abundances of Elizabethkingia, Halomonas, Morganella, and Salmonella, all of which are pathogens or opportunistic pathogens in human or other animals. However, there is no sufficient evidence that the gut microbiota contributes to either disease A or disease B. These results provide a reference for the conservation of endangered crocodile lizards and the first insight into the relationship between disease and the gut microbiota in lizards.
Collapse
Affiliation(s)
- Hai-Ying Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Huairou, China
| | - Jing-E Ma
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Juan Li
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Huairou, China
| | - Xiu-Juan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Lin-Miao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Nan He
- Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve, Shaoguan, China
| | - Hai-Yang Liu
- Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve, Shaoguan, China
| | - Shu-Yi Luo
- Guangxi Daguishan Crocodile Lizard National Nature Reserve, Hezhou, China
| | - Zheng-Jun Wu
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Ri-Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Jin-Ping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| |
Collapse
|
24
|
Ding J, Dai R, Yang L, He C, Xu K, Liu S, Zhao W, Xiao L, Luo L, Zhang Y, Meng H. Inheritance and Establishment of Gut Microbiota in Chickens. Front Microbiol 2017; 8:1967. [PMID: 29067020 PMCID: PMC5641346 DOI: 10.3389/fmicb.2017.01967] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023] Open
Abstract
In mammals, the microbiota can be transmitted from the placenta, uterus, and vagina of the mother to the infant. Unlike mammals, development of the avian embryo is a process isolated from the mother and thus in the avian embryo the gut microbial developmental process remains elusive. To explore the establishment and inheritance of the gut microbiome in the avian embryo, we used the chicken as the model organism to investigate the gut microbial composition in embryos, chicks, and maternal hens. We observed: (1) 28 phyla and 162 genera of microbes in embryos where the dominated genus was Halomonas (79%). (2) 65 genera were core microbiota in all stages with 42% and 62% gut microbial genera of embryo were found in maternal hen and chick, respectively. There was a moderate correlation (0.40) between the embryo and maternal, and 0.52 between the embryo and chick at the family level. (3) Gut microbes that are involved in substance metabolism, infectious disease, and environmental adaptation are enriched in embryos, chicks, and maternal hens, respectively. (4) 94% genera of gut microbial composition were similar among three different chicken breeds which were maintained under similar conditions. Our findings provide evidence to support the hypothesis that part of the microbial colonizers harbored in early embryos were inherited from maternal hens, and the gut microbial abundance and diversity were influenced by environmental factors and host genetic variation during development.
Collapse
Affiliation(s)
- Jinmei Ding
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghua Dai
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingyu Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan He
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyun Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjing Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Xiao
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxiao Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- Carilion Clinic, Roanoke, VA, United States
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Taylor-Brown A, Spang L, Borel N, Polkinghorne A. Culture-independent metagenomics supports discovery of uncultivable bacteria within the genus Chlamydia. Sci Rep 2017; 7:10661. [PMID: 28878306 PMCID: PMC5587560 DOI: 10.1038/s41598-017-10757-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/14/2017] [Indexed: 12/02/2022] Open
Abstract
Advances in culture-independent methods have meant that we can more readily detect and diagnose emerging infectious disease threats in humans and animals. Metagenomics is fast becoming a popular tool for detection and characterisation of novel bacterial pathogens in their environment, and is particularly useful for obligate intracellular bacteria such as Chlamydiae that require labour-intensive culturing. We have used this tool to investigate the microbial metagenomes of Chlamydia-positive cloaca and choana samples from snakes. The microbial complexity within these anatomical sites meant that despite previous detection of chlamydial 16S rRNA sequences by single-gene broad-range PCR, only a chlamydial plasmid could be detected in all samples, and a chlamydial chromosome in one sample. Comparative genomic analysis of the latter revealed it represented a novel taxon, Ca. Chlamydia corallus, with genetic differences in regards to purine and pyrimidine metabolism. Utilising statistical methods to relate plasmid phylogeny to the phylogeny of chromosomal sequences showed that the samples also contain additional novel strains of Ca. C. corallus and two putative novel species in the genus Chlamydia. This study highlights the value of metagenomics methods for rapid novel bacterial discovery and the insights it can provide into the biology of uncultivable intracellular bacteria such as Chlamydiae.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- Centre for Animal Health Innovation, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Labolina Spang
- Centre for Animal Health Innovation, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Nicole Borel
- Institute of Veterinary Pathology, University of Zurich, Zurich, CH-8057, Switzerland
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| |
Collapse
|
26
|
Ren T, Kahrl AF, Wu M, Cox RM. Does adaptive radiation of a host lineage promote ecological diversity of its bacterial communities? A test using gut microbiota of Anolis lizards. Mol Ecol 2016; 25:4793-804. [PMID: 27497270 DOI: 10.1111/mec.13796] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022]
Abstract
Adaptive radiations provide unique opportunities to test whether and how recent ecological and evolutionary diversification of host species structures the composition of entire bacterial communities. We used 16S rRNA gene sequencing of faecal samples to test for differences in the gut microbiota of six species of Puerto Rican Anolis lizards characterized by the evolution of distinct 'ecomorphs' related to differences in habitat use. We found substantial variation in the composition of the microbiota within each species and ecomorph (trunk-crown, trunk-ground, grass-bush), but no differences in bacterial alpha diversity among species or ecomorphs. Beta diversity analyses revealed subtle but significant differences in bacterial composition related to host phylogeny and species, but these differences were not consistently associated with Anolis ecomorph. Comparison of a trunk-ground species from this clade (A. cristatellus) with a distantly related member of the same ecomorph class (A. sagrei) where the two species have been introduced and are now sympatric in Florida revealed pronounced differences in the alpha diversity and beta diversity of their microbiota despite their ecological similarity. Comparisons of these populations with allopatric conspecifics also revealed geographic differences in bacterial alpha diversity and beta diversity within each species. Finally, we observed high intraindividual variation over time and strong effects of a simplified laboratory diet on the microbiota of A. sagrei. Collectively, our results indicate that bacterial communities are only weakly shaped by the diversification of their lizard hosts due to the strikingly high levels of bacterial diversity and variation observed within Anolis species.
Collapse
Affiliation(s)
- Tiantian Ren
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA, 22904, USA
| | - Ariel F Kahrl
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA, 22904, USA
| | - Martin Wu
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA, 22904, USA
| | - Robert M Cox
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA, 22904, USA.
| |
Collapse
|
27
|
Isolation of Bacillus cereus Group from the Fecal Material of Endangered Wood Turtles. Curr Microbiol 2015; 71:524-7. [PMID: 26175111 DOI: 10.1007/s00284-015-0875-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Members of the Bacillus cereus group are opportunistic human pathogens. They can be found in a broad range of foods. Diarrheal food poisoning and/or emetic type syndromes can result from eating contaminated food. In this study, seven B. cereus group members were isolated from the fecal material of Wood Turtles (Glyptemys insculpta). The isolates were then assessed for the presence of enterotoxin genes (nheA, entFM, hblC, and cytK) using PCR. The most prevalent is the nonhemolytic enterotoxin gene which was found in all seven isolates.
Collapse
|