1
|
Cai F, Jin X, Han L, Wang X, Shao C, Zhao Y, Mei J, Yu D, Ke L, Sun Y. The Multidrug and toxin compound extrusion gene GhTT12 promotes the accumulation of both proanthocyanidins and anthocyanins in Gossypium hirsutum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109483. [PMID: 39798438 DOI: 10.1016/j.plaphy.2025.109483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
The pigments present in the fibers of naturally colored cotton provide excellent antibacterial and environmentally friendly properties, making these colored fibers increasingly favored by the textile industry and consumers. Proanthocyanidins (PAs), the critical pigments responsible for the color of brown cotton fiber, are produced on the endoplasmic reticulum and subsequently transported to the vacuole for polymerization and/or storage. Previous studies have identified GhTT12 as a potential transmembrane transporter of PAs in Gossypium hirsutum, with GhTT12 being a homolog of Arabidopsis Transparent Testa 12 (TT12). Here, we analyzed the spatiotemporal expression pattern of GhTT12, silenced and transiently overexpressed GhTT12 in cotton to confirm its biological function. The GhTT12 protein contains two Multidrug and toxic compound extrusion (MATE) domains and 12 transmembrane helices, and the GhTT12 gene displayed predominant expressions in flowers and fibers of cotton that had higher contents of PAs, particularly in brown cotton, suggesting that GhTT12 may play a role in the transport of PAs in cotton. Silencing or transient overexpression of GhTT12 in cotton resulted in decreased or increased accumulation levels of PAs and anthocyanins (Ans), respectively, accompanied by correspondingly down- or up-regulation of genes involved in PAs synthesis (GhANR) and oxidative polymerization (GhTT10). These findings indicate that GhTT12 may also participate in the biosynthesis of PAs and Ans. Moreover, the silencing of GhTT12 led to a lightening of the color of brown cotton fibers, probably due to the reductions in both PAs content and PAs oxidation. Overall, this study, along with previous research, provides compelling evidence to support the hypothesis that GhTT12 transports PAs and Ans while also regulating their biosynthesis and oxidative polymerization, thereby promoting the accumulation of PAs and Ans in cotton and ultimately affecting the fiber coloration.
Collapse
Affiliation(s)
- Fangfang Cai
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xin Jin
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Linshan Han
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xiaoli Wang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Changsheng Shao
- Hangzhou Vocational & Technical College, Hangzhou, 310018, China.
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jun Mei
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Dongliang Yu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Yan-Jia X, Si-Si Y, Yan-Mei Z, Xin-Yue W, Xiao-Yu Z, Lan-Lan D, Han-Ren L, Yong-Sheng Z, Qiu-Hua C, Hua-An X, Jian-Fu Z. MATE transporter OsMATE2 mediates root growth, grain size and weight by interacting with Mn-SOD and PABP in rice. Biochem Biophys Res Commun 2024; 736:150821. [PMID: 39454302 DOI: 10.1016/j.bbrc.2024.150821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Multidrug and toxic compound extrusion proteins (MATE) can transport small organic molecules in and out of cells and participate in detoxification, nutrient absorption, disease resistance and plant development processes. These compounds are widely distributed in plants. However, the mechanism by which MATE affects grain development remains elusive. In this study, we studied a MATE transporter, OsMATE2, which localized on the membrane. The CRISPR-Cas9 (CR) knockout line of OsMATE2 presented obvious decreases in grain weight. In addition, root development was also affected. Two proteins that interact with OsMATE2, namely, manganese-superoxide dismutase (Mn-SOD) and poly(A)-binding protein (PABP), were identified from a screening of yeast library. The results were validated through yeast two-hybrid and bimolecular fluorescence complementation experiments. The CRISPR-Cas9 (CR) knockout lines of Mn-SOD and PABP presented increased grain size and weight. Our findings demonstrated that OsMATE2 interacts with Mn-SOD and PABP to regulate grain development in rice.
Collapse
Affiliation(s)
- Xiao Yan-Jia
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs PR China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yu Si-Si
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zheng Yan-Mei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs PR China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Wang Xin-Yue
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng Xiao-Yu
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Deng Lan-Lan
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Han-Ren
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhu Yong-Sheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs PR China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Cai Qiu-Hua
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs PR China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Xie Hua-An
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs PR China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Zhang Jian-Fu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs PR China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China.
| |
Collapse
|
3
|
Shen H, Hou Y, Wang X, Li Y, Wu J, Lou H. Genome-Wide Identification, Expression Analysis under Abiotic Stress and Co-Expression Analysis of MATE Gene Family in Torreya grandis. Int J Mol Sci 2024; 25:3859. [PMID: 38612669 PMCID: PMC11012001 DOI: 10.3390/ijms25073859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The multidrug and toxin efflux (MATE) family participates in numerous biological processes and plays important roles in abiotic stress responses. However, information about the MATE family genes in Torreya grandis remains unclear. In this study, our genome-wide investigation identified ninety MATE genes in Torreya grandis, which were divided into five evolutionary clades. TgMATE family members are located on eleven chromosomes, and a total of thirty TgMATEs exist in tandem duplication. The promoter analysis showed that most TgMATEs contain the cis-regulatory elements associated with stress and hormonal responses. In addition, we discovered that most TgMATE genes responded to abiotic stresses (aluminum, drought, high temperatures, and low temperatures). Weighted correlation network analysis showed that 147 candidate transcription factor genes regulated the expression of 14 TgMATE genes, and it was verified through a double-luciferase assay. Overall, our findings offer valuable information for the characterization of the TgMATE gene mechanism in responding to abiotic stress and exhibit promising prospects for the stress tolerance breeding of Torreya grandis.
Collapse
Affiliation(s)
| | | | | | | | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (H.S.); (Y.H.); (X.W.); (Y.L.)
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (H.S.); (Y.H.); (X.W.); (Y.L.)
| |
Collapse
|
4
|
Liu Y, Wu X, Sun C, Chen W, Zhang M, Liu N, Zhang Q, Xu L, Luo Z. Preferential transport activity of DkDTX5/MATE5 affects the formation of different astringency in persimmon. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2304-2319. [PMID: 37526209 DOI: 10.1111/jipb.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Proanthocyanidins (PAs) are specialized metabolites that influence persimmon fruit quality. Normal astringent (A)-type and non-astringent (NA)-type mutants show significant variation in PA accumulation, but the influencing mechanism remains unclear. In this study, among the six identified DTXs/MATEs proteins associated with PA accumulation, we observed that allelic variation and preferential transport by DkDTX5/MATE5 induced variation in PA accumulation for A-type and NA-type fruit. The expression pattern of DkDTX5/MATE5 was correlated with PA accumulation in NA-type fruit. Upregulation and downregulation of DkDTX5/MATE5 promoted and inhibited PA accumulation, respectively, in the NA-type fruit. Interestingly, transporter assays of Xenopus laevis oocytes indicated that DkDTX5/MATE5 preferentially transported the PA precursors catechin, epicatechin, and epicatechin gallate, resulting in their increased ratios relative to the total PAs, which was the main source of variation in PA accumulation between the A-type and NA-type. The allele lacking Ser-84 in DkDTX5/MATE5 was identified as a dominantly expressed gene in the A-type and lost its transport function. Site-directed mutagenesis revealed that DkDTX5/MATE5 binds to PA precursors via Ser-84. These findings clarify the association between the transporter function of DkDTX5/MATE5 and PA variation, and can contribute to the breeding of new cultivars with improved fruit quality.
Collapse
Affiliation(s)
- Ying Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenfeng Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenxing Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Niannian Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglin Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liqing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengrong Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Islam NS, Duwadi K, Chen L, Pajak A, McDowell T, Marsolais F, Dhaubhadel S. Global analysis of common bean multidrug and toxic compound extrusion transporters (PvMATEs): PvMATE8 and pinto bean seed coat darkening. FRONTIERS IN PLANT SCIENCE 2022; 13:1046597. [PMID: 36438155 PMCID: PMC9686396 DOI: 10.3389/fpls.2022.1046597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
In common bean (Phaseolus vulgaris L.), postharvest seed coat darkening is an undesirable trait that affects crop value. The increased accumulation of proanthocyanidins (PAs) in the seed coat results in darker seeds in many market classes of colored beans after harvest. The precursors of PAs are synthesized in the cytoplasm, and subsequently get glycosylated and then transported to the vacuoles where polymerization occurs. Thus, vacuolar transporters play an important role in the accumulation of PAs. Here, we report that common bean genome contains 59 multidrug and toxic compound extrusion genes (PvMATEs). Phylogenetic analysis of putative PvMATEs with functionally characterized MATEs from other plant species categorized them into substrate-specific clades. Our data demonstrate that a vacuolar transporter PvMATE8 is expressed at a higher level in the pinto bean cultivar CDC Pintium (regular darkening) compared to 1533-15 (slow darkening). PvMATE8 localizes in the vacuolar membrane and rescues the PA deficient (tt12) mutant phenotype in Arabidopsis thaliana. Analysis of PA monomers in transgenic seeds together with wild-type and mutants suggests a possible feedback regulation of PA biosynthesis and accumulation. Identification of PvMATE8 will help better understand the mechanism of PA accumulation in common bean.
Collapse
Affiliation(s)
- Nishat S. Islam
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Kishor Duwadi
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ling Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Aga Pajak
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Transcriptomic profiling analysis to identify genes associated with PA biosynthesis and insolubilization in the late stage of fruit development in C-PCNA persimmon. Sci Rep 2022; 12:19140. [PMID: 36352175 PMCID: PMC9646812 DOI: 10.1038/s41598-022-23742-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
PA-enhanced content causes astringency in persimmon fruit. PCNA persimmons can lose their astringency naturally and they become edible when still on the tree, which allows for conserves of physical and financial resources. C-PCNA persimmon originates in China. Its deastringency trait primarily depends on decreased PA biosynthesis and PA insolubilization at the late stage of fruit development. Although some genes and transcription factors that may be involved in the deastringency of C-PCNA persimmon have been reported, the expression patterns of these genes during the key deastringency stage are reported less. To investigate the variation in PA contents and the expression patterns of deastringency-related genes during typical C-PCNA persimmon 'Xiaoguo-tianshi' fruit development and ripening, PA content and transcriptional profiling were carried out at five late stages from 70 to 160 DAF. The combinational analysis phenotype, PA content, and DEG enrichment revealed that 120-140 DAF and 140-160 DAF were the critical phases for PA biosynthesis reduction and PA insolubilization, respectively. The expression of PA biosynthesis-associated genes indicated that the downregulation of the ANR gene at 140-160 DAF may be associated with PA biosynthesis and is decreased by inhibiting its precursor cis-flavan-3-ols. We also found that a decrease in acetaldehyde metabolism-associated ALDH genes and an increase in ADH and PDC genes might result in C-PCNA persimmon PA insolubilization. In addition, a few MYB-bHLH-WD40 (MBW) homologous transcription factors in persimmon might play important roles in persimmon PA accumulation. Furthermore, combined coexpression network analysis and phylogenetic analysis of MBW suggested that three putative transcription factors WD40 (evm.TU.contig1.155), MYB (evm.TU.contig8910.486) and bHLH (evm.TU.contig1398.203), might connect and co-regulate both PA biosynthesis and its insolubilization in C-PCNA persimmon. The present study elucidated transcriptional insights into PA biosynthesis and insolubilization during the late development stages based on the C-PCNA D. kaki genome (unpublished). Thus, we focused on PA content variation and the expression patterns of genes involved in PA biosynthesis and insolubilization. Our work has provided additional evidence on previous knowledge and a basis for further exploration of the natural deastringency of C-PCNA persimmon.
Collapse
|
7
|
Wang S, Cao X, Meng X, Aili M, Dou Q, Wang Y, Wahab AT, Chen S, Sun W, Wan H, Chen W. Characterization and expression analysis of MATEs in Cannabis sativa L. reveals genes involving in cannabinoid synthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:1021088. [PMID: 36311070 PMCID: PMC9606718 DOI: 10.3389/fpls.2022.1021088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The medicinal plant Cannabis sativa L. (C. sativa) accumulates plant cytotoxic but medicinally important cannabinoids in glandular trichomes and flowers of female plants. Although the major biosynthetic pathway of cannabinoids has been revealed, their transportation mechanism is still unknown. Multidrug and toxic compound extrusion proteins (MATEs) can transport plant metabolites, ions and phytohormones intra and inter-cellularly. MATEs could have the potential to translocate cannabinoids or their synthetic intermediates to cellular compartment, thus protecting them from unwanted modifications and cytotoxicity. In this study, we performed a genome-wide identification and expression analysis of Cannabis sativa MATEs (CsMATEs) and revealed 42 CsMATEs that were classified phylogenetically into four conserved subfamilies. Forty-two CsMATEs were unevenly distributed on 10 chromosomes, with 50% CsMATEs were physically adjacent to at least one another CsMATEs and 83% CsMATEs localized on plasma membrane. Tandem duplication is the major evolutionary driving force for CsMATEs expansion. Real-time quantitative PCR revealed CsMATE23, CsMATE28 and CsMATE34 mainly expressed in flower, whereas CsMATE17 and CsMATE27 showed strong transcription in root. Light responsive cis-acting element was most abundant in promoters of CsMATE23, CsMATE28 and CsMATE34. Finally, the contents of cannabinoids and corresponding biosynthetic intermediates as well as expressions of CsMATE28 and CsMATE34 were determined under UV-B treatment, among which strong correlation was found. Our results indicates that CsMATEs might involve in biosynthesis of cannabinoids and has the potential to be used in heterologous production of cannabinoids.
Collapse
Affiliation(s)
- Sifan Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Cao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Maimaiti Aili
- Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Qin Dou
- Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Yan Wang
- Hussain Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Atia Tul Wahab
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| |
Collapse
|
8
|
Pucker B, Selmar D. Biochemistry and Molecular Basis of Intracellular Flavonoid Transport in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:963. [PMID: 35406945 PMCID: PMC9002769 DOI: 10.3390/plants11070963] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 05/20/2023]
Abstract
Flavonoids are a biochemically diverse group of specialized metabolites in plants that are derived from phenylalanine. While the biosynthesis of the flavonoid aglycone is highly conserved across species and well characterized, numerous species-specific decoration steps and their relevance remained largely unexplored. The flavonoid biosynthesis takes place at the cytosolic side of the endoplasmatic reticulum (ER), but accumulation of various flavonoids was observed in the central vacuole. A universal explanation for the subcellular transport of flavonoids has eluded researchers for decades. Current knowledge suggests that a glutathione S-transferase-like protein (ligandin) protects anthocyanins and potentially proanthocyanidin precursors during the transport to the central vacuole. ABCC transporters and to a lower extend MATE transporters sequester anthocyanins into the vacuole. Glycosides of specific proanthocyanidin precursors are sequestered through MATE transporters. A P-ATPase in the tonoplast and potentially other proteins generate the proton gradient that is required for the MATE-mediated antiport. Vesicle-mediated transport of flavonoids from the ER to the vacuole is considered as an alternative or additional route.
Collapse
Affiliation(s)
- Boas Pucker
- Institute of Plant Biology, TU Braunschweig, 38106 Braunschweig, Germany;
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Dirk Selmar
- Institute of Plant Biology, TU Braunschweig, 38106 Braunschweig, Germany;
| |
Collapse
|
9
|
Shao D, Zhu QH, Liang Q, Wang X, Li Y, Sun Y, Zhang X, Liu F, Xue F, Sun J. Transcriptome Analysis Reveals Differences in Anthocyanin Accumulation in Cotton ( Gossypium hirsutum L.) Induced by Red and Blue Light. FRONTIERS IN PLANT SCIENCE 2022; 13:788828. [PMID: 35432402 PMCID: PMC9009209 DOI: 10.3389/fpls.2022.788828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Many factors, including illumination, affect anthocyanin biosynthesis and accumulation in plants. light quality is the key factor affecting the process of photoinduced anthocyanin biosynthesis and accumulation. We observed that the red color of the Upland cotton accession Huiyuan with the R1 mutation turned to normal green color under light-emitting diodes (LEDs), which inspired us to investigate the effect of red and blue lights on the biosynthesis and accumulation of anthocyanins. We found that both red and blue lights elevated accumulation of anthocyanins. Comparative transcriptomic analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and GSEA, revealed that genes differentially expressed under different light conditions were enriched with the pathways of circadian rhythm, phenylpropanoid biosynthesis, anthocyanin biosynthesis, and flavone and flavonol biosynthesis. Not surprisingly, all the major structural genes related to biosynthesis of anthocyanins, including the key regulatory MYB transcription factor (GhPAP1D) and anthocyanin transporter (GhGSTF12), were induced by red or blue light treatment. However, LARs and MATEs related to biosynthesis of proanthocyanidins were more significantly up-regulated by red light radiation than by blue light radiation. Vice versa, the accumulation of anthocyanins under red light was not as high as that under blue light. In addition, we demonstrated a potential role of GhHY5, a key regulator in plant circadian rhythms, in regulation of anthocyanin accumulation, which could be achieved via interaction with GhPAP1D. Together, these results indicate different effect of red and blue lights on biosynthesis and accumulation of anthocyanins and a potential module including GhHY5 and GhPAP1D in regulation of anthocyanin accumulation in cotton. These results also suggest that the substrates responsible the synthesis of anthocyanins under blue light is diverted to biosynthesis of proanthocyanidin under red light.
Collapse
Affiliation(s)
- Dongnan Shao
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Qian-hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Qian Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Xuefeng Wang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| |
Collapse
|
10
|
Nimmy MS, Kumar V, Suthanthiram B, Subbaraya U, Nagar R, Bharadwaj C, Jain PK, Krishnamurthy P. A Systematic Phylogenomic Classification of the Multidrug and Toxic Compound Extrusion Transporter Gene Family in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:774885. [PMID: 35371145 PMCID: PMC8970042 DOI: 10.3389/fpls.2022.774885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Multidrug and toxic compound extrusion (MATE) transporters comprise a multigene family that mediates multiple functions in plants through the efflux of diverse substrates including organic molecules, specialized metabolites, hormones, and xenobiotics. MATE classification based on genome-wide studies remains ambiguous, likely due to a lack of large-scale phylogenomic studies and/or reference sequence datasets. To resolve this, we established a phylogeny of the plant MATE gene family using a comprehensive kingdom-wide phylogenomic analysis of 74 diverse plant species. We identified more than 4,000 MATEs, which were classified into 14 subgroups based on a systematic bioinformatics pipeline using USEARCH, blast+ and synteny network tools. Our classification was performed using a four-step process, whereby MATEs sharing ≥ 60% protein sequence identity with a ≤ 1E-05 threshold at different sequence lengths (either full-length, ≥ 60% length, or ≥ 150 amino acids) or retaining in the similar synteny blocks were assigned to the same subgroup. In this way, we assigned subgroups to 95.8% of the identified MATEs, which we substantiated using synteny network clustering analysis. The subgroups were clustered under four major phylogenetic groups and named according to their clockwise appearance within each group. We then generated a reference sequence dataset, the usefulness of which was demonstrated in the classification of MATEs in additional species not included in the original analysis. Approximately 74% of the plant MATEs exhibited synteny relationships with angiosperm-wide or lineage-, order/family-, and species-specific conservation. Most subgroups evolved independently, and their distinct evolutionary trends were likely associated with the development of functional novelties or the maintenance of conserved functions. Together with the systematic classification and synteny network profiling analyses, we identified all the major evolutionary events experienced by the MATE gene family in plants. We believe that our findings and the reference dataset provide a valuable resource to guide future functional studies aiming to explore the key roles of MATEs in different aspects of plant physiology. Our classification framework can also be readily extendable to other (super) families.
Collapse
Affiliation(s)
| | - Vinod Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, India
| | | | - Uma Subbaraya
- Crop Improvement Division, ICAR–National Research Centre for Banana, Tiruchirappalli, India
| | - Ramawatar Nagar
- ICAR–National Institute for Plant Biotechnology, New Delhi, India
| | | | | | | |
Collapse
|
11
|
Manzoor MA, Li G, Abdullah M, Han W, Wenlong H, Yang Z, Xinya W, Yu Z, Xiaofeng F, Qing J, Shafique MS, Cai Y. Genome-wide investigation and comparative analysis of MATE gene family in Rosaceae species and their regulatory role in abiotic stress responses in Chinese pear (Pyrus bretschneideri). PHYSIOLOGIA PLANTARUM 2021; 173:1163-1178. [PMID: 34363225 DOI: 10.1111/ppl.13511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 05/12/2023]
Abstract
The Multidrug and Toxic Compound Extrusion (MATE) protein belongs to a secondary transporter gene family, which plays a primary role in transporting many kinds of substrates such as organic compounds, secondary metabolites, and phytohormones. MATE protein members exist in both prokaryotes and eukaryotes. However, evolution and comprehensive analysis of the MATE genes has not been performed in Rosaceae species. In the present study, a total of 404 MATEs genes were identified from six Rosaceae genomes (Prunus avium, Pyrus bretschneideri, Prunus persica, Fragaria vesca, Prunus mume, and Malus domestica) and classified into eight main subfamilies (I-VII) based on structural and phylogenetic analysis. Microcollinearity analysis showed that whole-genome duplication events might play a vital role in the expansion of the MATE genes family. The Ka/Ks analysis, chromosomal localization, subcellular localization, and molecular characteristics (length, weight, and pI) were performed using various bioinformatics tools. Furthermore, different subfamilies have different introns-exons structures, cis-acting elements, and conserved motifs analysis, indicating functional divergence in the MATE family. Subsequently, RNA-seq analysis and real-time qRT-PCR were conducted during Chinese pear fruit development. Moreover, PbMATE genes were significantly expressed under hormonal treatments of MeJA (methyl jasmonate), SA (salicylic acid), and ABA (abscisic acid). Overall, our results provide helpful insights into the functions, expansion complexity, and evolutions of the MATE genes in Chinese pear and five Rosaceae species.
Collapse
Affiliation(s)
| | - Guohui Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Muhammad Abdullah
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Wang Han
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Han Wenlong
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Wang Xinya
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhao Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Feng Xiaofeng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jin Qing
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | | | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Nogia P, Pati PK. Plant Secondary Metabolite Transporters: Diversity, Functionality, and Their Modulation. FRONTIERS IN PLANT SCIENCE 2021; 12:758202. [PMID: 34777438 PMCID: PMC8580416 DOI: 10.3389/fpls.2021.758202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 05/04/2023]
Abstract
Secondary metabolites (SMs) play crucial roles in the vital functioning of plants such as growth, development, defense, and survival via their transportation and accumulation at the required site. However, unlike primary metabolites, the transport mechanisms of SMs are not yet well explored. There exists a huge gap between the abundant presence of SM transporters, their identification, and functional characterization. A better understanding of plant SM transporters will surely be a step forward to fulfill the steeply increasing demand for bioactive compounds for the formulation of herbal medicines. Thus, the engineering of transporters by modulating their expression is emerging as the most viable option to achieve the long-term goal of systemic metabolic engineering for enhanced metabolite production at minimum cost. In this review article, we are updating the understanding of recent advancements in the field of plant SM transporters, particularly those discovered in the past two decades. Herein, we provide notable insights about various types of fully or partially characterized transporters from the ABC, MATE, PUP, and NPF families including their diverse functionalities, structural information, potential approaches for their identification and characterization, several regulatory parameters, and their modulation. A novel perspective to the concept of "Transporter Engineering" has also been unveiled by highlighting its potential applications particularly in plant stress (biotic and abiotic) tolerance, SM accumulation, and removal of anti-nutritional compounds, which will be of great value for the crop improvement program. The present study creates a roadmap for easy identification and a better understanding of various transporters, which can be utilized as suitable targets for transporter engineering in future research.
Collapse
Affiliation(s)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
13
|
Zhang W, Liao L, Xu J, Han Y, Li L. Genome-wide identification, characterization and expression analysis of MATE family genes in apple (Malus × domestica Borkh). BMC Genomics 2021; 22:632. [PMID: 34461821 PMCID: PMC8406601 DOI: 10.1186/s12864-021-07943-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As an important group of the multidrug efflux transporter family, the multidrug and toxic compound extrusion (MATE) family has a wide range of functions and is distributed in all kingdoms of living organisms. However, only two MATE genes in apple have been analyzed and genome-wide comprehensive analysis of MATE family is needed. RESULTS In this study, a total of 66 MATE (MdMATE) candidates encoding putative MATE transporters were identified in the apple genome. These MdMATE genes were classified into four groups by phylogenetic analysis with MATE genes in Arabidopsis. Synteny analysis reveals that whole genome duplication (WGD) and segmental duplication events played a major role in the expansion of MATE gene family in apple. MdMATE genes show diverse expression patterns in different tissues/organs and developmental stages. Analysis of cis-regulatory elements in MdMATE promoter regions indicates that the function of MdMATE genes is mainly related to stress response. Besides, the changes of gene expression levels upon different pathogen infections reveal that MdMATE genes are involved in biotic stress response. CONCLUSIONS In this work, we systematically identified MdMATE genes in apple genome using a set of bioinformatics approaches. Our comprehensive analysis provided valuable resources for improving disease resistance in apple and further functional characterization of MATE genes in other species.
Collapse
Affiliation(s)
- Weihan Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Jinsheng Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Li Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. .,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
14
|
Huang Y, He G, Tian W, Li D, Meng L, Wu D, He T. Genome-Wide Identification of MATE Gene Family in Potato ( Solanum tuberosum L.) and Expression Analysis in Heavy Metal Stress. Front Genet 2021; 12:650500. [PMID: 34127928 PMCID: PMC8196238 DOI: 10.3389/fgene.2021.650500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/08/2021] [Indexed: 01/16/2023] Open
Abstract
A genome-wide identification and expression analysis of multidrug and toxic compound extrusion (MATE) gene family in potato was carried out to explore the response of MATE proteins to heavy meta stress. In this study, we identified 64 MATE genes from potato genome, which are located on 12 chromosomes, and are divided into I–IV subfamilies based on phylogenetic analysis. According to their order of appearance on the chromosomes, they were named from StMATE1–64. Subcellular location prediction showed that 98% of them are located on the plasma membrane as transporters. Synteny analysis showed that five pairs of collinearity gene pairs belonged to members of subfamily I and subfamily II had two pairs indicating that the duplication is of great significance to the evolution of genes in subfamilies I and II. Gene exon–intron structures and motif composition are more similar in the same subfamily. Every StMATE gene contained at least one cis-acting element associated with regulation of hormone transport. The relative expression levels of eight StMATE genes were significantly upregulated under Cu2+ stress compared with the non-stress condition (0 h). After Cd2+ stress for 24 h, the expression levels of StMATE33 in leaf tissue were significantly increased, indicating its crucial role in the process of Cd2+ stress. Additionally, StMATE18/60/40/33/5 were significantly induced by Cu2+ stress, while StMATE59 (II) was significantly induced by Ni2+ stress. Our study initially explores the biological functions of StMATE genes in the regulation of heavy metal stress, further providing a theoretical basis for studying the subsequent molecular mechanisms in detail.
Collapse
Affiliation(s)
- Yun Huang
- College of Agricultural, Guizhou University, Guiyang, China
| | - Guandi He
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China.,Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Life Sciences, Guizhou University, Guiyang, China
| | - Weijun Tian
- College of Agricultural, Guizhou University, Guiyang, China
| | - Dandan Li
- College of Agricultural, Guizhou University, Guiyang, China
| | - Lulu Meng
- College of Agricultural, Guizhou University, Guiyang, China
| | - Danxia Wu
- College of Agricultural, Guizhou University, Guiyang, China
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang, China.,Institute of New Rural Development, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
You H, Liu Y, Minh TN, Lu H, Zhang P, Li W, Xiao J, Ding X, Li Q. Genome-wide identification and expression analyses of nitrate transporter family genes in wild soybean (Glycine soja). J Appl Genet 2020; 61:489-501. [PMID: 32779148 DOI: 10.1007/s13353-020-00571-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 07/20/2020] [Indexed: 02/01/2023]
Abstract
Nitrate transporters (NRTs) are important channel proteins facilitating cross-membrane movement of small molecules like NO3- which is a critical nutrient for all life. However, the classification and evolution of nitrate transporters in the legume plants are still elusive. In this study, we surveyed the wild soybean (G. soja) genomic databases and identified 120 GsNRT1 and 5 GsNRT2 encoding genes. Phylogenetic analyses show that GsNRT1 subfamily is consisted of eight clades (NPF1 to NPF8), while GsNRT2 subfamily has only one clade. Gene chromosomal location and evolutionary historic analyses indicate that GsNRT genes are unevenly distributed on 19 out of 20 G. soja chromosomes and segmental duplications may take a major part in the expansion of GsNRT family. Investigations of gene structure and protein motif compositions suggest that GsNRT family members are highly conserved in structures of both gene and protein levels. In addition, we analyzed the spatial expression patterns of representative GsNRT genes and their responses to exogenous nitrogen and carbon supplies and different abiotic stresses. The qRT-PCR data indicated that 16 selected GsNRT genes showed various expression levels in the roots, stems, leaves, and pods of young G. soja plants, and these genes were regulated by not only nitrogen and carbohydrate nutrients but also NaCl, NaHCO3, abscisic acid (ABA), and salicylic acid (SA). These results suggest that GsNRT genes may be involved in the regulation of plant growth, development, and adaptation to environmental stresses, and the study will shed light on functional dissection of plant nitrate transporter proteins in the future.
Collapse
Affiliation(s)
- Hongguang You
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Yuanming Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Thuy Nguyen Minh
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Haoran Lu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Pengmin Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Wenfeng Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
16
|
Qiao C, Yang J, Wan Y, Xiang S, Guan M, Du H, Tang Z, Lu K, Li J, Qu C. A Genome-Wide Survey of MATE Transporters in Brassicaceae and Unveiling Their Expression Profiles under Abiotic Stress in Rapeseed. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1072. [PMID: 32825473 PMCID: PMC7569899 DOI: 10.3390/plants9091072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/22/2023]
Abstract
The multidrug and toxic compound extrusion (MATE) protein family is important in the export of toxins and other substrates, but detailed information on this family in the Brassicaceae has not yet been reported compared to Arabidopsis thaliana. In this study, we identified 57, 124, 81, 85, 130, and 79 MATE genes in A. thaliana, Brassica napus, Brassica oleracea, Brassica rapa, Brassica juncea, and Brassica nigra, respectively, which were unevenly distributed on chromosomes owing to both tandem and segmental duplication events. Phylogenetic analysis showed that these genes could be classified into four subgroups, shared high similarity and conservation within each group, and have evolved mainly through purifying selection. Furthermore, numerous B. napusMATE genes showed differential expression between tissues and developmental stages and between plants treated with heavy metals or hormones and untreated control plants. This differential expression was especially pronounced for the Group 2 and 3 BnaMATE genes, indicating that they may play important roles in stress tolerance and hormone induction. Our results provide a valuable foundation for the functional dissection of the different BnaMATE homologs in B. napus and its parental lines, as well as for the breeding of more stress-tolerant B. napus genotypes.
Collapse
Affiliation(s)
- Cailin Qiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yuanyuan Wan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Sirou Xiang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Mingwei Guan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hai Du
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhanglin Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (C.Q.); (J.Y.); (Y.W.); (S.X.); (M.G.); (H.D.); (Z.T.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Julião MHM, Silva SR, Ferro JA, Varani AM. A Genomic and Transcriptomic Overview of MATE, ABC, and MFS Transporters in Citrus sinensis Interaction with Xanthomonas citri subsp. citri. PLANTS (BASEL, SWITZERLAND) 2020; 9:E794. [PMID: 32630416 PMCID: PMC7356318 DOI: 10.3390/plants9060794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
The multi-antimicrobial extrusion (MATE), ATP-binding cassette (ABC), and major facilitator superfamily (MFS) are the main plant transporters families, playing an essential role in the membrane-trafficking network and plant-defense mechanism. The citrus canker type A (CC), is a devastating disease caused by Xanthomonas citri subsp. citri (Xac), affecting all citrus species. In this work, we performed an in silico analysis of genes and transcripts from MATE, ABC, and MFS families to infer the role of membrane transporters in Citrus-Xac interaction. Using as reference, the available Citrus sinensis genome and the citrus reference transcriptome from CitrusKB database, 67 MATE, 91 MFS, and 143 ABC genes and 82 MATE, 139 MFS, and 226 ABC transcripts were identified and classified into subfamilies. Duplications, alternative-splicing, and potentially non-transcribed transporters' genes were revealed. Interestingly, MATE I and ABC G subfamilies appear differently regulated during Xac infection. Furthermore, Citrus spp. showing distinct levels of CC susceptibility exhibited different sets of transporters transcripts, supporting dissimilar molecular patterns of membrane transporters in Citrus-Xac interaction. According to our findings, 4 MATE, 10 ABC, and 3 MFS are potentially related to plant-defense mechanisms. Overall, this work provides an extensive analysis of MATE, ABC, and MFS transporters' in Citrus-Xac interaction, bringing new insights on membrane transporters in plant-pathogen interactions.
Collapse
Affiliation(s)
| | | | | | - Alessandro M. Varani
- Department of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil; (M.H.M.J.); (S.R.S.); (J.A.F.)
| |
Collapse
|
18
|
Cloning and Functional Characterization of a Flavonoid Transport-Related MATE Gene in Asiatic Hybrid Lilies ( Lilium spp.). Genes (Basel) 2020; 11:genes11040418. [PMID: 32290583 PMCID: PMC7231192 DOI: 10.3390/genes11040418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/04/2022] Open
Abstract
Previous studies have suggested that multidrug and toxic compound extrusion (MATE) proteins might be involved in flavonoid transportation. However, whether MATE proteins are involved in anthocyanin accumulation in Lilium is unclear. Here, a flavonoid transport-related MATE candidate gene, LhDTX35, was cloned from the Asiatic hybrid lily cultivar ‘Tiny Padhye’ by rapid amplification of 5’ and 3’ cDNA ends (RACE) and found to encode 507 amino acids. BLASTx results indicated that LhDTX35 showed high homology to the DTX35 genes of other species. Bioinformatics analysis predicted that the protein encoded by LhDTX35 possessed 12 typical transmembrane segments and had functional domains typical of the MATE-like superfamily. Phylogenetic analysis grouped LhDTX35 in the same clade as the DTX35 of other species. Notably, the expression pattern of LhDTX35 was positively correlated with floral anthocyanin accumulation in ‘Tiny Padhye’. A subcellular localization assay showed that the protein encoded by LhDTX35 was plasmalemma localized but not nuclear, indicating that the LhDTX35 gene may function as a carrier protein to transport anthocyanins in Lilium. Functional complementation of the ArabidopsisDTX35 gene demonstrated that LhDTX35 could restore silique-infertility and the anthocyaninless phenotype of an ArabidopsisDTX35 mutant. These results indicated that LhDTX35 might be involved in anthocyanin accumulation in Lilium.
Collapse
|