1
|
Abdulrahman MD. Crude extract of Ficus deltoidea Jack (FD) as a natural biological therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:57-88. [PMID: 36937314 PMCID: PMC10017191 DOI: 10.37349/etat.2023.00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/10/2022] [Indexed: 03/04/2023] Open
Abstract
Aim This study shows how important it is to coordinate research on Ficus deltoidea Jack (FD) so that results from different sources can be compared directly and a scientific conclusion can be made. Methods The author looked for research papers on Ficus (F.) deltoidea on Google Scholar, Science Direct, Google.com, Wiley, PubMed, Hindawi, Springer, and other related databases. This analysis excludes data that cannot be trusted, thesis papers, and review articles about F. deltoidea. Results In traditional medicine, the plant's leaves and syconia are used to cure a wide variety of ailments, including itchiness, diarrhoea, cancer, sexual dysfunction, age-related issues, malaria, cancer, anxiety, pain, constipation, fever, diabetes, tooth pain, and tooth decay. In vitro and in vivo studies showed the effectiveness of the leaves against cancer cell lines. Conclusions Based on the existing research on the health benefits of FD, it is critical to focus on its more active constituents and their identification, determination, further development, and, most importantly, standardization of the leaves for the management and treatment of cancer and its related cases. More research is needed before it can be considered a promising herbal source of novel medication candidates for treating various disorders.
Collapse
Affiliation(s)
- Mahmoud Dogara Abdulrahman
- Biology Education Department, Faculty of Education, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
- Correspondence: Mahmoud Dogara Abdulrahman. Biology Education Department, Faculty of Education, Tishk International University, Erbil 44001, Kurdistan Region, Iraq.
| |
Collapse
|
2
|
Bioactive Natural Products against Systemic Arterial Hypertension: A Past 20-Year Systematic and Prospective Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8499625. [PMID: 35769156 PMCID: PMC9236778 DOI: 10.1155/2022/8499625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
Background. Systemic arterial hypertension is one of the most common cardiovascular risks, corresponding to 45% of deaths involving CVDs. The use of natural products, such as medicinal plants, belongs to a millennial part of human therapeutics history and has been employed as an alternative anti-hypertensive treatment. Objective. The present review aims to prospect some natural products already experimentally assayed against arterial hypertension through scientific virtual libraries and patent documents over the past 20 years. Search strategy. This is a systematic review of the adoption of the PRISMA protocol and a survey of the scientific literature that synthesizes the results from published articles between 2001 and 2020 concerning the use of medicinal plants in the management of hypertension, including which parts of the plant or organism are used, as well as the mechanisms of action underlying the anti-hypertensive effect. Furthermore, a technological prospection was also carried out in patent offices from different countries in order to check technologies based on natural products claimed for the treatment or prevention of hypertension. Inclusion criteria. Scientific articles where a natural product had been experimentally assayed for anti-hypertensive activity (part of plants, plant extracts, and products derived from other organisms) were included. Data extraction and analysis. The selected abstracts of the articles and patent documents were submitted to a rigorous reading process. Those articles and patents that were not related to anti-hypertensive effects and claimed potential applications were excluded from the search. Results. Eighty specimens of biological species that showed anti-hypertensive activity were recovered, with 01 representative from the kingdom Fungi and 02 from the kingdom Protista, with emphasis on the families Asteraceae and Lamiaceae, with 6 representatives each. Leaves and aerial parts were the most used parts of the plants for the extraction of anti-hypertensive products, with maceration being the most used extraction method. Regarding phytochemical analyses, the most described classes of biomolecules in the reviewed works were alkaloids, terpenes, coumarins, flavonoids, and peptides, with the reduction of oxidative stress and the release of NO among the mechanisms of action most involved in this process. Regarding the number of patent filings, China was the country that stood out as the main one, with 813 registrations. Conclusion. The anti-hypertensive activity of natural products is still little explored in Western countries. Besides, China and India have shown more results in this area than other countries, confirming the strong influence of traditional medicine in these countries.
Collapse
|
3
|
Blood pressure and urine metabolite changes in spontaneously hypertensive rats treated with leaf extract of Ficus deltoidea var angustifolia. J Pharm Biomed Anal 2022; 210:114579. [PMID: 35016031 DOI: 10.1016/j.jpba.2021.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 11/21/2022]
Abstract
Ficus deltoidea var angustifolia (FD-A) reduces blood pressure in spontaneously hypertensive rats (SHR) but the mechanism remains unknown. Changes in urine metabolites following FD-A treatment in SHR were, therefore, examined to identify the mechanism of its antihypertensive action. Male SHR were given either FD-A (1000 mg kg-1 day-1) or losartan (10 mg kg-1 day-1) or 0.5 mL of ethanolic-water (control) daily for 4 weeks. Systolic blood pressure (SBP) was measured every week and urine spectra data acquisition, on urine collected after four weeks of treatment, were compared using multivariate data analysis. SBP in FD-A and losartan treated rats was significantly lower than that in the controls after four weeks of treatment. Urine spectra analysis revealed 24 potential biomarkers with variable importance projections (VIP) above 0.5. These included creatine, hippurate, benzoate, trimethylamine N-oxide, taurine, dimethylamine, homocysteine, allantoin, methylamine, n-phenylacetylglycine, guanidinoacetate, creatinine, lactate, glucarate, kynurenine, ethanolamine, betaine, 3-hydroxybutyrate, glycine, lysine, glutamine, 2-hydroxyphenylacetate, 3-indoxylsulfate and sarcosine. From the profile of these metabolites, it seems that FD-A affects urinary levels of metabolites like taurine, hypotaurine, glycine, serine, threonine, alanine, aspartate and glutamine. Alterations in these and the pathways involved in their metabolism might underlie the molecular mechanism of its antihypertensive action.
Collapse
|
4
|
Association between rs20456 and rs6930913 of Kinesin-Like Family 6 and Hypertension in a Chinese Cohort. Int J Hypertens 2021; 2021:1061800. [PMID: 34961832 PMCID: PMC8710155 DOI: 10.1155/2021/1061800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the relationship between kinesin-like family 6 (KIF6) polymorphisms and hypertension in a northeast Chinese cohort. In this study, two single nucleotide polymorphisms of KIF6 (rs20456 and rs6930913) and their haplotype were analyzed in 382 hypertension patients and 378 controls with SHEsis analysis platform, and the gene-environmental interactions were evaluated with logistic regression analysis. After adjusting for confounding factors, significantly lower risk of hypertension was observed in participants with genotype TC (0.416 (CI 0.299–0.578), p < 0.001) and CC (0.577 (0.389–0.857), p=0.007) of rs20456 compared with TT. For rs6930913, allele T (0.522 (0.386–0.704), p < 0.001), genotype TT (0.325 (0.205–0.515), p < 0.001), and genotype CT (0.513 (0.379–0.693), p < 0.001) were significantly associated with lower risk of hypertension than allele C and CC genotype, respectively. Gene-environment analyses confirmed the significant influence on hypertension by the interactions between genotypes distribution in rs20456 (CT: p=0.036, TT: p=0.022) and smoking status. No interactions were found between smoking and rs6930913, except those with dominant or recessive genetic models (both Ps=0.006). There were no interactions between KIF6 and overweight (all Ps > 0.05). Haplotype analyses showed that CC (p=0.005) and TC (p=0.001) of rs20456 and rs6930913 were significantly associated with a statistically increased risk of hypertension. The false-positive report probability (FPRP) analysis was used to verify significant findings. In conclusions, KIF6 might affect the susceptibility of hypertension. The allele C (rs20456) and allele T (rs690913) were inclined to protect individuals from hypertension both in genotype and haplotype analyses.
Collapse
|
5
|
Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther 2021; 221:107750. [PMID: 33275999 PMCID: PMC7854082 DOI: 10.1016/j.pharmthera.2020.107750] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a global pandemic has prompted scientists to address an urgent need for defining mechanisms of disease pathology and treatment. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, employs angiotensin converting enzyme 2 (ACE2) as its primary target for cell surface attachment and likely entry into the host cell. Thus, understanding factors that may regulate the expression and function of ACE2 in the healthy and diseased body is critical for clinical intervention. Over 66% of all adults in the United States are currently using a prescription drug and while earlier findings have focused on possible upregulation of ACE2 expression through the use of renin angiotensin system (RAS) inhibitors, mounting evidence suggests that various other widely administered drugs used in the treatment of hypertension, heart failure, diabetes mellitus, hyperlipidemias, coagulation disorders, and pulmonary disease may also present a varied risk for COVID-19. Specifically, we summarize mechanisms on how heparin, statins, steroids and phytochemicals, besides their established therapeutic effects, may also interfere with SARS-CoV-2 viral entry into cells. We also describe evidence on the effect of several vitamins, phytochemicals, and naturally occurring compounds on ACE2 expression and activity in various tissues and disease models. This comprehensive review aims to provide a timely compendium on the potential impact of commonly prescribed drugs and pharmacologically active compounds on COVID-19 pathology and risk through regulation of ACE2 and RAS signaling.
Collapse
Key Words
- adam17, a disintegrin and metalloprotease 17
- ace, angiotensin i converting enzyme
- ace-inh., angiotensin i converting enzyme inhibitor
- ampk, amp-activated protein kinase
- ang-ii, angiotensin ii
- arb, angiotensin ii type 1-receptor blocker
- ards, acute respiratory distress syndrome
- at1-r, angiotensin ii type 1-receptor
- βarb, β-adrenergic receptor blockers
- bk, bradykinin
- ccb, calcium channel blockers
- ch25h, cholesterol-25-hydroxylase
- copd, chronic obstructive lung disease
- cox, cyclooxygenase
- covid-19, coronavirus disease-2019
- dabk, [des-arg9]-bradykinin
- erk, extracellular signal-regulated kinase
- 25hc, 25-hydroxycholesterol
- hs, heparan sulfate
- hspg, heparan sulfate proteoglycan
- ibd, inflammatory bowel disease
- map, mitogen-activated protein
- mers, middle east respiratory syndrome
- mrb, mineralocorticoid receptor blocker
- nos, nitric oxide synthase
- nsaid, non-steroid anti-inflammatory drug
- ras, renin-angiotensin system
- sars-cov, severe acute respiratory syndrome coronavirus
- sh, spontaneously hypertensive
- s protein, spike protein
- sirt1, sirtuin 1
- t2dm, type 2 diabetes mellitus
- tcm, traditional chinese medicine
- tmprss2, transmembrane protease, serine 2
- tnf, tumor necrosis factor
- ufh, unfractionated heparin
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
6
|
Zhou DD, Luo M, Shang A, Mao QQ, Li BY, Gan RY, Li HB. Antioxidant Food Components for the Prevention and Treatment of Cardiovascular Diseases: Effects, Mechanisms, and Clinical Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6627355. [PMID: 33574978 PMCID: PMC7864729 DOI: 10.1155/2021/6627355] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs) have gained increasing attention because of their high prevalence and mortality worldwide. Epidemiological studies revealed that intake of fruits, vegetables, nuts, and cereals could reduce the risk of CVDs, and their antioxidants are considered as the main contributors. Moreover, experimental studies showed that some antioxidant natural products and their bioactive compounds exerted beneficial effects on the cardiovascular system, such as polyphenols, polysaccharides, anthocyanins, epigallocatechin gallate, quercetin, rutin, and puerarin. The mechanisms of action mainly included reducing blood pressure, improving lipid profile, ameliorating oxidative stress, mitigating inflammation, and regulating gut microbiota. Furthermore, clinical trials confirmed the cardiovascular-protective effect of some antioxidant natural products, such as soursop, beetroot, garlic, almond, and green tea. In this review, we summarized the effects of some antioxidant natural products and their bioactive compounds on CVDs based on the epidemiological, experimental, and clinical studies, with special attention paid to the relevant mechanisms and clinical trials.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
7
|
Dambha-Miller H, Albasri A, Hodgson S, Wilcox CR, Khan S, Islam N, Little P, Griffin SJ. Currently prescribed drugs in the UK that could upregulate or downregulate ACE2 in COVID-19 disease: a systematic review. BMJ Open 2020; 10:e040644. [PMID: 32928868 PMCID: PMC7490921 DOI: 10.1136/bmjopen-2020-040644] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To review evidence on routinely prescribed drugs in the UK that could upregulate or downregulate ACE2 and potentially affect COVID-19 disease. DESIGN Systematic review. DATA SOURCE MEDLINE, EMBASE, CINAHL, the Cochrane Library and Web of Science. STUDY SELECTION Any design with animal or human models examining a currently prescribed UK drug compared with a control, placebo or sham group, and reporting an effect on ACE2 level, activity or gene expression. DATA EXTRACTION AND SYNTHESIS MEDLINE, EMBASE, CINAHL, the Cochrane Library, Web of Science and OpenGrey from inception to 1 April 2020. Methodological quality was assessed using the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) risk-of-bias tool for animal studies and Cochrane risk-of-bias tool for human studies. RESULTS We screened 3360 titles and included 112 studies with 21 different drug classes identified as influencing ACE2 activity. Ten studies were in humans and one hundred and two were in animal models None examined ACE2 in human lungs. The most frequently examined drugs were angiotensin receptor blockers (ARBs) (n=55) and ACE inhibitors (ACE-I) (n=22). More studies reported upregulation than downregulation with ACE-I (n=22), ARBs (n=55), insulin (n=8), thiazolidinedione (n=7) aldosterone agonists (n=3), statins (n=5), oestrogens (n=5) calcium channel blockers (n=3) glucagon-like peptide 1 (GLP-1) agonists (n=2) and Non-steroidal anti-inflammatory drugs (NSAIDs) (n=2). CONCLUSIONS There is an abundance of the academic literature and media reports on the potential of drugs that could attenuate or exacerbate COVID-19 disease. This is leading to trials of repurposed drugs and uncertainty among patients and clinicians concerning continuation or cessation of prescribed medications. Our review indicates that the impact of currently prescribed drugs on ACE2 has been poorly studied in vivo, particularly in human lungs where the SARS-CoV-2 virus appears to enact its pathogenic effects. We found no convincing evidence to justify starting or stopping currently prescribed drugs to influence outcomes of COVID-19 disease.
Collapse
Affiliation(s)
- Hajira Dambha-Miller
- Department of Primary Care, University of Southampton, Southampton, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Ali Albasri
- Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Sam Hodgson
- Department of Primary Care, University of Southampton, Southampton, UK
| | | | - Shareen Khan
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - Nazrul Islam
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Department of Population Health, University of Oxford, Oxford, UK
| | - Paul Little
- Department of Primary Care, University of Southampton, Southampton, UK
| | - Simon J Griffin
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|