1
|
Beigi S, Salehzadeh A, Habibollahi H, Shandiz SAS, Safa F. The Effect of ZnO Nanoparticles Functionalized with Glutamine and Conjugated with Thiosemicarbazide on Triggering of Apoptosis in the Adenocarcinoma Gastric Cell Line. Adv Biomed Res 2024; 13:72. [PMID: 39434942 PMCID: PMC11493220 DOI: 10.4103/abr.abr_412_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 10/23/2024] Open
Abstract
Background Gastric carcinoma is the fourth most common malignancy worldwide. Conjugation of metal nanoparticles with thiosemicarbazones has shown considerable anti-cancer potential. Materials and Methods Zinc oxide nanoparticles (ZnO NPs) were synthesized, functionalized by glutamine, and conjugated with thiosemicarbazide (ZnO@Gln-TSC). Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy imaging, energy-dispersive X-ray, DLS, and zeta potential were used to characterize the NPs. The toxicity of ZnO NPs, TSC, ZnO@Gln-TSC NPs, and oxaliplatin in AGS cells and ZnO NPs and ZnO@Gln-TSC NPs in HEK293 cells was investigated by MTT assay. Cell apoptosis was evaluated by flow cytometry, caspase-3 activity, and Hoechst staining assays. The intra-cellular reactive oxygen species level and expression level of the CASP3 gene in AGS cells treated with ZnO@Gln-TSC NPs were evaluated. Results The NPs were in the size range of 20 to 70 nm. The DLS and zeta potential were 374 nm and -31.7 mV, respectively. In MTT, the IC50 of ZnO, TSC, oxaliplatin, and ZnO@Gln-TSC NPs for AGS cells were 130, 80.5, 67.7, and 9.8 μg/mL, respectively, and the IC50 of ZnO and ZnO@Gln-TSC NPs for HEK293 cells were 215 and 150.5 μg/mL, respectively. Flow cytometry showed higher apoptosis in the cell treated with the NPs and TSC. Apoptotic features, including cell shrinkage, were recognized. A significant increase of 5.9 folds in the level of ROS was noticed. The activity of caspase-3 and the expression level of the CASP3 gene were increased by1.83 and 1.6 folds after exposure to ZnO@Gln-TSC NPs, respectively. Conclusions This study revealed the anti-cancer potential of ZnO@Gln-TSC NPs to be used for gastric cancer treatment after further in vitro and in vivo assays.
Collapse
Affiliation(s)
- Sadaf Beigi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Hadi Habibollahi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Fariba Safa
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
2
|
Govindasamy C, El Newehy AS, Hussein-Al-Ali SH, Arulselvan P, Bharathi M, Parthasarathy S. Investigation of antiproliferative efficacy and apoptosis induction in leukemia cancer cells using irinotecan-loaded liposome-embedded nanofibers constructed from chitosan. Int J Biol Macromol 2024; 270:132284. [PMID: 38734353 DOI: 10.1016/j.ijbiomac.2024.132284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Liposomes and nanofibers have been implemented as efficacious vehicles for delivering anticancer drugs. With this view, this study explores the antiproliferative efficacy and apoptosis induction in leukemia cancer cells utilizing irinotecan-loaded liposome-embedded nanofibers fabricated from chitosan, a biological source. Specifically, we investigate the effectiveness of poly(ε-caprolactone) (PCL)/chitosan (CS) (core)/irinotecan (CPT)nanofibers (termed PCL-CS10 CPT), PCL/chitosan/irinotecan (core)/PCL/chitosan (shell) nanofibers (termed CS/CPT/PCL/CS), and irinotecan-coloaded liposome-incorporated PCL/chitosan-chitosan nanofibers (termed CPT@Lipo/CS/PCL/CS) in releasing irinotecan in a controlled manner and treating leukemia cancer. The fabricated formulations were characterized utilizing Fourier transform infrared analysis, transmission electron microscopy, scanning electron microscopy, dynamic light scattering, zeta potential, and polydispersity index. Irinotecan was released in a controlled manner from nanofibers filled with liposomes over 30 days. The cell viability of the fabricated nanofibrous materials toward Human umbilical vein endothelial cells (HUVECs) non-cancerous cells after 168 h was >98 % ± 1 %. The CPT@Lipo/CS/PCL/CS nanofibers achieved maximal cytotoxicity of 85 % ± 2.5 % against K562 leukemia cancer cells. The CPT@Lipo/CS/PCL/CS NFs exhibit a three-stage drug release pattern and demonstrate significant in vitro cytotoxicity. These findings indicate the potential of these liposome-incorporated core-shell nanofibers for future cancer therapy.
Collapse
Affiliation(s)
- Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Ahmed S El Newehy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602 105, India
| | - Muruganantham Bharathi
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Surya Parthasarathy
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
3
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering (Basel) 2024; 11:492. [PMID: 38790359 PMCID: PMC11117625 DOI: 10.3390/bioengineering11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
4
|
Sabzevari AG, Sabahi H, Nikbakht M, Azizi M, Dianat-Moghadam H, Amoozgar Z. Exploring the Potential of Montmorillonite as an Antiproliferative Nanoagent against MDA-MB-231 and MCF-7 Human Breast Cancer Cells. Cells 2024; 13:200. [PMID: 38275825 PMCID: PMC10814472 DOI: 10.3390/cells13020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Unlike MCF-7 cells, MDA-MB-231 cells are unresponsive to hormone therapy and often show resistance to chemotherapy and radiotherapy. Here, the antiproliferative effect of biocompatible montmorillonite (Mt) nanosheets on MDA-MB-231 and MCF-7 human breast cancer cells was evaluated by MTT assay, flow cytometry, and qRT-PCR. The results showed that the Mt IC50 for MDA-MB-231 and MCF-7 cells in a fetal bovine serum (FBS)-free medium was ~50 and ~200 µg/mL, and in 10% FBS medium ~400 and ~2000 µg/mL, respectively. Mt caused apoptosis in both cells by regulating related genes including Cas-3, P53, and P62 in MDA-MB-231 cells and Bcl-2, Cas-8, Cas-9, P53, and P62 in MCF-7 cells. Also, Mt arrested MCF-7 cells in the G0/G1 phase by altering Cyclin-D1 and P21 expression, and caused sub-G1 arrest and necrosis in both cells, possibly through damaging the mitochondria. However, fewer gene expression changes and more sub-G1 arrest and necrosis were observed in MDA-MB-231 cells, confirming the higher vulnerability of MDA-MB-231 cells to Mt. Furthermore, MDA-MB-231 cells appeared to be much more vulnerable to Mt compared to other cell types, including normal lung fibroblast (MRC-5), colon cancer (HT-29), and liver cancer (HepG2) cells. The higher vulnerability of MDA-MB-231 cells to Mt was inferred to be due to their higher proliferation rate. Notably, Mt cytotoxicity was highly dependent on both the Mt concentration and serum level, which favors Mt for the local treatment of MDA-MB-231 cells. Based on these results, Mt can be considered as an antiproliferative nanoagent against MDA-MB-231 cells and may be useful in the development of local nanoparticle-based therapies.
Collapse
Affiliation(s)
- Alireza Ghannad Sabzevari
- Department of Tissue Engineering and Biomaterials, Faculty of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran; (A.G.S.); (M.A.)
| | - Hossein Sabahi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran;
| | - Mohsen Nikbakht
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, Faculty of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran; (A.G.S.); (M.A.)
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
5
|
Singh KR, Natarajan A, Pandey SS. Bioinspired Multifunctional Silver Nanoparticles for Optical Sensing Applications: A Sustainable Approach. ACS APPLIED BIO MATERIALS 2023; 6:4549-4571. [PMID: 37852204 DOI: 10.1021/acsabm.3c00669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Silver nanoparticles developed via biosynthesis are the most fascinating nanosized particles and encompassed with excellent physicochemical properties. The bioinspired nanoparticles with different shapes and sizes have attracted huge attention due to their stability, low cost, environmental friendliness, and use of less hazardous chemicals. This is an ideal method for synthesizing a range of nanosized metal particles from plants and biomolecules. Optical biosensors are progressively being fabricated for the attainment of sustainability by using opportunities offered by nanotechnology. This review focuses mainly on tuning the optical properties of the metal nanoparticles for optical sensing to explore the importance and applications of bioinspired silver nanoparticles. Further, this review deliberates the role of bioinspired silver nanoparticles (Ag NPs) in biomedical, agricultural, environmental, and energy applications. Profound insight into the antimicrobial properties of these nanoparticles is also appreciated. Tailor-made bioinspired nanoparticles with effectuating characteristics can unsurprisingly target tumor cells and distribute enwrapped payloads intensively. Existing challenges and prospects of bioinspired Ag NPs are also summarized. This review is expected to deliver perceptions about the progress of the next generation of bioinspired Ag NPs and their outstanding performances in various fields by promoting sustainable practices for fabricating optical sensing devices.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Arunadevi Natarajan
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu 641004, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
6
|
Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MHJN, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int 2023; 23:280. [PMID: 37981671 PMCID: PMC10657605 DOI: 10.1186/s12935-023-03115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023] Open
Abstract
Gastrointestinal (GI) cancer is a major health problem worldwide, and current diagnostic and therapeutic approaches are often inadequate. Various metallic nanoparticles (MNPs) have been widely studied for several biomedical applications, including cancer. They may potentially overcome the challenges associated with conventional chemotherapy and significantly impact the overall survival of GI cancer patients. Functionalized MNPs with targeted ligands provide more efficient localization of tumor energy deposition, better solubility and stability, and specific targeting properties. In addition to enhanced therapeutic efficacy, MNPs are also a diagnostic tool for molecular imaging of malignant lesions, enabling non-invasive imaging or detection of tumor-specific or tumor-associated antigens. MNP-based therapeutic systems enable simultaneous stability and solubility of encapsulated drugs and regulate the delivery of therapeutic agents directly to tumor cells, which improves therapeutic efficacy and minimizes drug toxicity and leakage into normal cells. However, metal nanoparticles have been shown to have a cytotoxic effect on cells in vitro. This can be a concern when using metal nanoparticles for cancer treatment, as they may also kill healthy cells in addition to cancer cells. In this review, we provide an overview of the current state of the field, including preparation methods of MNPs, clinical applications, and advances in their use in targeted GI cancer therapy, as well as the advantages and limitations of using metal nanoparticles for the diagnosis and treatment of gastrointestinal cancer such as potential toxicity. We also discuss potential future directions and areas for further research, including the development of novel MNP-based approaches and the optimization of existing approaches.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arya Rezaian-Isfahni
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hassan Jafari Najaf Abadi
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Wang F, Zheng Y, Ning J. Biogenic preparation of copper oxide nanoparticles using table olive: Catalytic reduction, cytotoxicity, and burn wound healing activities. ENVIRONMENTAL RESEARCH 2023; 237:116995. [PMID: 37633630 DOI: 10.1016/j.envres.2023.116995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Green strategy for the preparation of copper oxide nanoparticles (CuO NPs) using table olive has been researched in the present work. Some characterization assays viz., transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) was used for evaluation of the crystal structure, size and morphology of the manufactured NPs. As a catalyst, the prepared material demonstrated remarkable catalytic capability (>99% in 4 min) for the reduction of rhodamine B using sodium borohydride. In addition, the treated cells with the CuO NPs were examined by regarding the cytotoxicity properties on normal (HUVEC) cell line. The results showed that the prepared CuO NPs did not have any cytotoxicity effects on HUVEC (up to 500 μg/mL). Furthermore, in vivo experiments on burn wounds in rats show that the synthesized CuO NPs ointment significantly diminished (p ≤ 0.01) the wound area. On the other hand, the wound contracture factor was increased in comparison with the control groups. Collectively, the CuO NPs prepared by biological method have potential applications in organic pollutants reduction and wound care applications. In this viewpoint, CuO NPs may be considered as an effective for treatment of different wounds including burn wounds or injuries from surgeries such as plastic surgery.
Collapse
Affiliation(s)
- Fuyong Wang
- Burn and Plastic Surgery, Kaifeng Central Hospital, No. 153 Wufu Road, Kaifeng City, Henan Province, 475000, China
| | - Yuhong Zheng
- Burn and Plastic Surgery, Kaifeng Central Hospital, No. 153 Wufu Road, Kaifeng City, Henan Province, 475000, China
| | - Jing Ning
- Department of Medical Cosmetic, Burn and Plastic Surgery,Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Department of Medical Cosmetic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Han EJ, Choi EY, Jeon SJ, Lee SW, Moon JM, Jung SH, Kim B, Cho SD, Nam JS, Choi C, Che JH, Jung JY. Piperlongumine induces apoptosis and autophagy via the PI3K/Akt/mTOR pathway in KB human cervical cancer cells. Food Chem Toxicol 2023; 180:114051. [PMID: 37734464 DOI: 10.1016/j.fct.2023.114051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Natural products are continuously being researched to develop safe and effective treatment options for cervical cancer, the fourth most common cancer in women. Piperlongumine (PL), an amide alkaloid mainly present in long pepper, exhibits neuroprotective and anti-cancer properties. However, the specific effect of PL in cervical cancer and the relationship between the anti-cancer pathway and autophagy remain unclear. Therefore, we aimed to investigate PL-induced apoptosis in KB human cervical cancer cells and the relationship between apoptosis and autophagy therein. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and wound-healing assays showed that PL treatment suppressed KB cell viability and proliferation. Apoptosis was identified through 4',6-diamidino-2-phenylindole and annexin V-propidium iodide staining, increased cleaved-poly (ADP-ribose) polymerase and Bcl-2 associated X levels, and decreased B cell lymphoma 2 levels. Acridine orange staining and increased microtubule-associated protein 1A/1B-light chain 3-II and Beclin-1 levels confirmed autophagy. We determined that KB cell-related autophagy exerted cytoprotective effects using the autophagy inhibitors 3-methyladenine and hydroxychloroquine. PL treatment promoted apoptosis by inhibiting the phosphatidylinositol-3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin pathway in KB cells; inhibiting the pathway using PI3K inhibitors increased autophagy. We suggest that PL is a potential natural anticancer agent for cervical cancer treatment.
Collapse
Affiliation(s)
- Eun-Ji Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Eun-Young Choi
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Su-Ji Jeon
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Sang-Woo Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Jun-Mo Moon
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Soo-Hyun Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Changsun Choi
- School of Food Science and Technology, Chung-ang University, Ansung, 17546, Republic of Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource Development, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea; Research Institute for Natural Products, Kongju National University, Yesan, 32439, Republic of Korea.
| |
Collapse
|
9
|
Mickymaray S, Al Aboody MS, Eraqi MM, Alhoqail WA, Alothaim AS, Suresh K, Arulselvan P. Chitosan-encapsulated nickel oxide, tin dioxide, and farnesol nanoparticles: Antimicrobial and anticancer properties in breast cancer cells. Int J Biol Macromol 2023; 248:125799. [PMID: 37451381 DOI: 10.1016/j.ijbiomac.2023.125799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Breast cancer is the most frequent cancer in women; however, it is curable in most cases (up to 80 %) when detected and treated at an early non-metastatic stage. Nanotechnology has led to the development of potential chemotherapeutic techniques, particularly for tumor treatment. Nanotechnology has therapeutic and pharmaceutical applications. Chitosan, a natural polymer derived from chitin, has been extensively studied for its potential applications in a wide range of fields. This includes medicine for its anticancer properties. In the present study, Chitosan-encapsulated-NiO-TiO2-Farnesol hybrid nanomaterials (CNTF HNMs) were synthesized and characterized using several techniques, including electron microscopy (TEM, FE-SEM), spectroscopy (UV-visible [UV-Vis], Fourier Transform Infrared [FT-IR] spectroscopy, and photoluminescence [PL]), energy-dispersive X-ray spectroscopy (EDX) composition analysis, X-ray diffraction, and dynamic light scattering (DLS) analyses. With an estimated average crystallite size of 34.8 nm, the face-cantered cubic crystalline structure of the CNTF HNMs is identified. Cell viability assay by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), DAPI (4',6-diamidino-2-phenylindole) staining, dual AO/EtBr (Acridine Orange/ Ethidium bromide), JC-1 (5,5,6,6'-tetrachloro-1,1',3,3' tetraethylbenzimi-dazoylcarbocyanine iodide), DCFH-DA (Dichloro-dihydro-fluorescein diacetate), Annexin V-FITC (Fluorescein isothiocyanate) /PI (Propidium Iodide), and cell cycle study was used to assess the ability of nanoparticles (NPs) to kill MDA-MB-231 cells. The CNTF HNMs had high antibacterial effectiveness against multi-drug resistant extended-spectrum beta-lactamases (ESBL)-producing gram-negative bacterial pathogens and reference strains. The findings suggest that NPs increased the number of reactive oxygen species (ROS), changed the Δψm, and initiated apoptosis. There is enormous potential for CNTF HNMs as both antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Suresh Mickymaray
- Department of Biology, College of Science- Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia; Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Mohammed Saleh Al Aboody
- Department of Biology, College of Science- Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia.
| | - Mostafa M Eraqi
- Department of Biology, College of Science- Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia; Microbiology and Immunology Department, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Wardha A Alhoqail
- Department of Biology, College of Education, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia.
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science- Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia.
| | - Kaviya Suresh
- Department of Pharmaceutics, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 600 116, India
| | - Palanisamy Arulselvan
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamil Nadu 637408, India; Scigen Research and Innovation Pvt. Ltd., Periyar Technology Business Incubator, Thanjavur, Tamil Nadu, India
| |
Collapse
|
10
|
Kah G, Chandran R, Abrahamse H. Biogenic Silver Nanoparticles for Targeted Cancer Therapy and Enhancing Photodynamic Therapy. Cells 2023; 12:2012. [PMID: 37566091 PMCID: PMC10417642 DOI: 10.3390/cells12152012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023] Open
Abstract
Different conventional therapeutic procedures are utilized globally to manage cancer cases, yet the mortality rate in patients with cancer remains considerably high. Developments in the field of nanotechnology have included novel therapeutic strategies to deal with cancer. Biogenic (green) metallic silver nanoparticles (AgNPs) obtained using plant-mediated protocols are attractive to researchers exploring cancer treatment. Biogenic AgNPs present advantages, since they are cost-effective, easy to obtain, energy efficient, and less toxic compared to chemically and physically obtained AgNPs. Also, they present excellent anticancer abilities thanks to their unique sizes, shapes, and optical properties. This review provides recent advancements in exploring biogenic AgNPs as a drug or agent for cancer treatment. Thus, great attention was paid to the anticancer efficacy of biogenic AgNPs, their anticancer mechanisms, their efficacy in cancer photodynamic therapy (PDT), their efficacy in targeted cancer therapy, and their toxicity.
Collapse
Affiliation(s)
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa; (G.K.); (H.A.)
| | | |
Collapse
|
11
|
Hani U, Osmani RAM, Yasmin S, Gowda BHJ, Ather H, Ansari MY, Siddiqua A, Ghazwani M, Fatease AA, Alamri AH, Rahamathulla M, Begum MY, Wahab S. Novel Drug Delivery Systems as an Emerging Platform for Stomach Cancer Therapy. Pharmaceutics 2022; 14:1576. [PMID: 36015202 PMCID: PMC9416534 DOI: 10.3390/pharmaceutics14081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer has long been regarded as one of the world's most fatal diseases, claiming the lives of countless individuals each year. Stomach cancer is a prevalent cancer that has recently reached a high number of fatalities. It continues to be one of the most fatal cancer forms, requiring immediate attention due to its low overall survival rate. Early detection and appropriate therapy are, perhaps, of the most difficult challenges in the fight against stomach cancer. We focused on positive tactics for stomach cancer therapy in this paper, and we went over the most current advancements and progressions of nanotechnology-based systems in modern drug delivery and therapies in great detail. Recent therapeutic tactics used in nanotechnology-based delivery of drugs aim to improve cellular absorption, pharmacokinetics, and anticancer drug efficacy, allowing for more precise targeting of specific agents for effective stomach cancer treatment. The current review also provides information on ongoing research aimed at improving the curative effectiveness of existing anti-stomach cancer medicines. All these crucial matters discussed under one overarching title will be extremely useful to readers who are working on developing multi-functional nano-constructs for improved diagnosis and treatment of stomach cancer.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India;
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (S.Y.); (H.A.)
| | - B. H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to Be University), Mangalore 575018, Karnataka, India;
| | - Hissana Ather
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (S.Y.); (H.A.)
| | - Mohammad Yousuf Ansari
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University ), Mullana, Ambala 133203, Haryana, India;
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
- Cancer Research Unit, King Khalid University, Abha 62529, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Ali H. Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia;
| |
Collapse
|
12
|
Rahim NA, Mail MH, Muhamad M, Sapuan S, SMN Mydin RB, Seeni A. Investigation of antiproliferative mechanisms of Alstonia angustiloba-silver nanoparticles in skin squamous cell carcinoma (A431 cell line). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Aslam M, Fozia F, Gul A, Ahmad I, Ullah R, Bari A, Mothana RA, Hussain H. Phyto-Extract-Mediated Synthesis of Silver Nanoparticles Using Aqueous Extract of Sanvitalia procumbens, and Characterization, Optimization and Photocatalytic Degradation of Azo Dyes Orange G and Direct Blue-15. Molecules 2021; 26:6144. [PMID: 34684724 PMCID: PMC8540290 DOI: 10.3390/molecules26206144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/01/2022] Open
Abstract
Green synthesis of silver nanoparticles (AgNPs) employing an aqueous plant extract has emerged as a viable eco-friendly method. The aim of the study was to synthesize AgNPs by using plant extract of Sanvitalia procumbens (creeping zinnia) in which the phytochemicals present in plant extract act as a stabilizing and reducing agent. For the stability of the synthesized AgNPs, different parameters like AgNO3 concentration, volume ratios of AgNO3, temperature, pH, and contact time were studied. Further, AgNPs were characterized by UV-visible spectroscopy, FT-IR (Fourier Transform Infrared Spectroscopy), XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), and EDX (Energy Dispersive X-ray Spectrometer) analysis. FT-IR analysis showed that the plant extract contained essential functional groups like O-H stretching of carboxylic acid, N-H stretching of secondary amides, and C-N stretching of aromatic amines, and C-O indicates the vibration of alcohol, ester, and carboxylic acid that facilitated in the green synthesis of AgNPs. The crystalline nature of synthesized AgNPs was confirmed by XRD, while the elemental composition of AgNPs was detected by energy dispersive X-ray analysis (EDX). SEM studies showed the mean particle diameter of silver nanoparticles. The synthesized AgNPs were used for photocatalytic degradation of Orange G and Direct blue-15 (OG and DB-15), which were analyzed by UV-visible spectroscopy. Maximum degradation percentage of OG and DB-15 azo dyes was observed, without any significant silver leaching, thereby signifying notable photocatalytic properties of AgNPs.
Collapse
Affiliation(s)
- Madeeha Aslam
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Pakistan;
| | - Fozia Fozia
- Biochemistry Department, KMU Institute of Medical Sciences, Kohat 26000, Pakistan;
| | - Anadil Gul
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China;
| | - Ijaz Ahmad
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Pakistan;
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany;
| |
Collapse
|
14
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
15
|
Molecular targeted treatment and drug delivery system for gastric cancer. J Cancer Res Clin Oncol 2021; 147:973-986. [PMID: 33550445 DOI: 10.1007/s00432-021-03520-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer is still a major cancer worldwide. The early diagnosis rate of gastric cancer in most high incidence countries is low. At present, the overall treatment effect of gastric cancer is poor, and the median overall survival remains low. Most of the patients with gastric cancer are in an advanced stage when diagnosed, and drug treatment has become the main means. Thus, new targeted drugs and therapeutic strategies are the hope of improving the therapeutic effect of gastric cancer. In this review, we summarize the new methods and advances of targeted therapy for gastric cancer, including novel molecular targeted therapeutic agents and drug delivery systems, with a major focus on the development of drug delivery systems (drug carriers and targeting peptides). Elaborating these new methods and advances will contribute to the management of gastric cancer.
Collapse
|
16
|
Characterization of biogenically synthesized silver nanoparticles for therapeutic applications and enzyme nanocomplex generation. 3 Biotech 2020; 10:462. [PMID: 33088659 DOI: 10.1007/s13205-020-02450-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
The present study describes green synthesis of silver nanoparticles (AgNPs) and inulin hydrolyzing enzyme nanocomplexes (ENC) using Azadirachta indica (Ai) and Punica granatum (Pg) leaf extracts. Surface topology and physico-chemical characteristics of AgNPs were studied using surface plasmon resonance (SPR), FTIR, SEM, AFM and EDX analyses. Particle size analysis using dynamic light scattering and AFM studies revealed that Ai-AgNPs (76.4 nm) were spherical in shape having central bigger nano-regime with smaller surroundings while Pg-AgNPs (72.1 nm) and ENCs (Inulinase-Pg-AgNPs ~ 145 nm) were spherical particles having smooth surfaces. Pg-AgNPs exhibited significant photocatalysis of a thiazine dye, methylene blue. Both Ai- and Pg-AgNPs showed selective antibacterial action by inhibiting pathogenic Bacillus cereus, while the probiotic Lactobacillus strains remained unaffected. Ai-AgNPs showed potential anti-biofilm effect (30% viability) on B. cereus biofilms. Pg-AgNPs showed anti-cancer effect against human colon cancer cell lines (Caco-2) resulting in 40% cell death in 48 h. Enzymes (inulinase, L-asparaginase and glucose oxidase) were successfully immobilized onto nanoparticles together with the biogenic synthesis of AgNPs and recyclability of the Inulinase-Pg-AgNPs complex was demonstrated. The study elaborates characteristics of green synthesized nanoparticles and their potential applications as anti-cancer, antibacterial and antioxidant nano drugs that could be used in food and nutraceutical industries. Enzyme immobilization on AgNPs without any toxic cross-linker opens up newer possibilites in enzyme-nanocomplex research.
Collapse
|
17
|
Fierascu I, Fierascu IC, Brazdis RI, Baroi AM, Fistos T, Fierascu RC. Phytosynthesized Metallic Nanoparticles-between Nanomedicine and Toxicology. A Brief Review of 2019's Findings. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E574. [PMID: 31991830 PMCID: PMC7040630 DOI: 10.3390/ma13030574] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Phytosynthesized nanoparticles represent a continuously increasing field of research, with numerous studies published each year. However, with the emerging interest in this area, the quality of the published works is also continuously increasing, switching from routine antioxidant or antimicrobial studies on trivial microbial lines to antibiotic-resistant strains or antitumoral studies. However, this increasing interest has not been not reflected in the studies regarding the toxicological effects of nanoparticles (NPs); this should be a subject of greatest interest, as the increasing administration of NPs in general (and phytosynthesized NPs in particular) could lead to their accumulation in the environment (soil, water and living organisms). The present review aims to present the most recent findings in the application of phytosynthesized NPs as antimicrobial and antitumoral agents, as well as the results regarding their toxicological potential.
Collapse
Affiliation(s)
- Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| | - Ioana Catalina Fierascu
- University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Zentiva Romania S.A., 50 Theodor Pallady Blvd., 032266 Bucharest, Romania
| | - Roxana Ioana Brazdis
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| | - Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| | - Toma Fistos
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| |
Collapse
|