1
|
Buiatte ABG, Souza SSR, Costa LRM, Peres PABM, de Melo RT, Sommerfeld S, Fonseca BB, Zac Soligno NI, Ikhimiukor OO, Armendaris PM, Andam CP, Rossi DA. Five centuries of genome evolution and multi-host adaptation of Campylobacter jejuni in Brazil. Microb Genom 2024; 10:001274. [PMID: 39028633 PMCID: PMC11316555 DOI: 10.1099/mgen.0.001274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024] Open
Abstract
Consumption of raw, undercooked or contaminated animal food products is a frequent cause of Campylobacter jejuni infection. Brazil is the world's third largest producer and a major exporter of chicken meat, yet population-level genomic investigations of C. jejuni in the country remain scarce. Analysis of 221 C. jejuni genomes from Brazil shows that the overall core and accessory genomic features of C. jejuni are influenced by the identity of the human or animal source. Of the 60 sequence types detected, ST353 is the most prevalent and consists of samples from chicken and human sources. Notably, we identified the presence of diverse bla genes from the OXA-61 and OXA-184 families that confer beta-lactam resistance as well as the operon cmeABCR related to multidrug efflux pump, which contributes to resistance against tetracyclines, macrolides and quinolones. Based on limited data, we estimated the most recent common ancestor of ST353 to the late 1500s, coinciding with the time the Portuguese first arrived in Brazil and introduced domesticated chickens into the country. We identified at least two instances of ancestral chicken-to-human infections in ST353. The evolution of C. jejuni in Brazil was driven by the confluence of clinically relevant genetic elements, multi-host adaptation and clonal population growth that coincided with major socio-economic changes in poultry farming.
Collapse
Affiliation(s)
- Ana Beatriz Garcez Buiatte
- Molecular Epidemiology Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Stephanie S. R. Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | | | | | - Roberta Torres de Melo
- Molecular Epidemiology Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Simone Sommerfeld
- Infectious Disease Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Nicole I. Zac Soligno
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Odion O. Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Paulo Marcel Armendaris
- Federal Agriculture Defense Laboratory/RS - LFDA/RS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Daise Aparecida Rossi
- Molecular Epidemiology Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
2
|
Gomes CN, Frazão MR, Seribelli AA, Barker DOR, Che EV, Nogueira MCL, Taboada EN, Falcão JP. Insights on the genomic diversity, virulence and resistance profile of a Campylobacter jejuni strain isolated from a hospitalized patient in Brazil. Braz J Microbiol 2024; 55:1381-1391. [PMID: 38546951 PMCID: PMC11153483 DOI: 10.1007/s42770-024-01314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2023] [Accepted: 03/21/2024] [Indexed: 06/07/2024] Open
Abstract
Campylobacteriosis is currently recognized as one of the major causes of foodborne bacterial diseases worldwide. In Brazil, there is insufficient data to estimate the impact of Campylobacter in public health. The aim of this present study was to characterize a C. jejuni CJ-HBSJRP strain isolated from a hospitalized patient in Brazil by its ability to invade human Caco-2 epithelial cells, to survive in U937 human macrophages, and to assess its phenotypic antimicrobial resistance profile. In addition, prophages, virulence and antimicrobial resistance genes were search using whole-genome sequencing data. The genetic relatedness was evaluated by MLST and cgMLST analysis by comparison with 29 other C. jejuni genomes isolated from several countries. The CJ-HBSJRP strain showed an invasion percentage of 50% in Caco-2 polarized cells, 37.5% of survivability in U937 cells and was phenotypically resistant to ampicillin, ciprofloxacin and nalidixic acid. A total of 94 virulence genes related to adherence, biofilm, chemotaxis, immune modulation, invasion process, metabolism, motility and toxin were detected. The resistance genes blaOXA-605 (blaOXA-61), cmeB and mutations in the QRDR region of gyrA were also found and none prophages were detected. The MLST analysis showed 23 different STs among the strains studied. Regarding cgMLST analysis, the CJ-HBSJRP strain was genetically distinct and did not group closely to any other isolate. The results obtained reinforce the pathogenic potential of the CJHBSJRP strain and highlighted the need for more careful attention to Campylobacter spp. infections in Brazil since this pathogen has been the most commonly reported zoonosis in several countries worldwide.
Collapse
Affiliation(s)
- Carolina Nogueira Gomes
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto- Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Miliane Rodrigues Frazão
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto- Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Amanda Aparecida Seribelli
- Laboratório de Patogenicidade Microbiana E Imunidade Inata, Faculdade de Medicina de Ribeirão Preto- Universidade de São Paulo, São Paulo, Brazil
| | | | - Emily Victoria Che
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Mara Corrêa Lelles Nogueira
- Centro de Investigação de Microrganismos, Departamento de Doenças Dermatológicas, Infecciosas E Parasitárias- Faculdade de Medicina de São José Do Rio Preto, São José Do Rio Preto, São Paulo, Brazil
| | | | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto- Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
3
|
Woyda R, Oladeinde A, Endale D, Strickland T, Plumblee Lawrence J, Abdo Z. Virulence factors and antimicrobial resistance profiles of Campylobacter isolates recovered from consecutively reused broiler litter. Microbiol Spectr 2023; 11:e0323623. [PMID: 37882583 PMCID: PMC10871742 DOI: 10.1128/spectrum.03236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Campylobacter is a leading cause of foodborne illness in the United States due to consumption of contaminated or mishandled food products, often associated with chicken meat. Campylobacter is common in the microbiota of avian and mammalian gut; however, acquisition of antimicrobial resistance genes (ARGs) and virulence factors (VFs) may result in strains that pose significant threat to public health. Although there are studies investigating the genetic diversity of Campylobacter strains isolated from post-harvest chicken samples, there are limited data on the genome characteristics of isolates recovered from preharvest broiler production. Here, we show that Campylobacter jejuni and Campylobacter coli differ in their carriage of antimicrobial resistance and virulence factors may also differ in their ability to persist in litter during consecutive grow-out of broiler flocks. We found that presence/absence of virulence factors needed for evasion of host defense mechanisms and gut colonization played an integral role in differentiating Campylobacter strains.
Collapse
Affiliation(s)
- Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Dinku Endale
- Southeast Watershed Research Laboratory, USDA, Tifton, Georgia, USA
| | | | | | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Yan R, M'ikanatha NM, Nachamkin I, Hudson LK, Denes TG, Kovac J. Prevalence of ciprofloxacin resistance and associated genetic determinants differed among Campylobacter isolated from human and poultry meat sources in Pennsylvania. Food Microbiol 2023; 116:104349. [PMID: 37689423 DOI: 10.1016/j.fm.2023.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2022] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 09/11/2023]
Abstract
Poultry is the primary source of Campylobacter infections and severe campylobacteriosis cases are treated with macrolides and fluoroquinolones. However, these drugs are less effective against antimicrobial-resistant strains. Here, we investigated the prevalence of phenotypic antimicrobial resistance and associated resistance genetic determinants in Campylobacter isolates collected from human clinical (N = 123) and meat (N = 80) sources in Pennsylvania in 2017 and 2018. Our goal was to assess potential differences in the prevalence of antimicrobial resistance in Campylobacter isolated from human and poultry meat sources in Pennsylvania and to assess the accuracy of predicting antimicrobial resistance phenotypes based on resistance genotypes. We whole genome sequenced isolates and identified genetic resistance determinants using the National Antimicrobial Resistance Monitoring System Campylobacter AMR workflow v2.0 in GalaxyTrakr. Phenotypic antimicrobial susceptibility testing was carried out using the E-Test and Sensititre CAMPYCMV methods for human clinical and poultry meat isolates, respectively, and the results were interpreted using the EUCAST epidemiological cutoff values. The 193 isolates were represented by 85 MLST sequence types and 23 clonal complexes, suggesting high genetic diversity. Resistance to erythromycin was confirmed in 6% human and 4% meat isolates. Prevalence of ciprofloxacin resistance was significantly higher in human isolates as compared to meat isolates. A good concordance was observed between phenotypic resistance and the presence of the corresponding known resistance genetic determinants.
Collapse
Affiliation(s)
- Runan Yan
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Irving Nachamkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren K Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
5
|
Portes AB, Panzenhagen P, Pereira dos Santos AM, Junior CAC. Antibiotic Resistance in Campylobacter: A Systematic Review of South American Isolates. Antibiotics (Basel) 2023; 12:antibiotics12030548. [PMID: 36978415 PMCID: PMC10044704 DOI: 10.3390/antibiotics12030548] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
In recent years, Campylobacter has become increasingly resistant to antibiotics, especially those first-choice drugs used to treat campylobacteriosis. Studies in South America have reported cases of antibiotic-resistant Campylobacter in several countries, mainly in Brazil. To understand the current frequency of antibiotic-resistant Campylobacter in humans, farm animals, and food of animal origin in South America, we systematically searched for different studies that have reported Campylobacter resistance. The most commonly reported species were C. jejuni and C. coli. Resistance to ciprofloxacin was found to be ubiquitous in the isolates. Nalidixic acid and tetracycline showed a significantly expressed resistance. Erythromycin, the antibiotic of first choice for the treatment of campylobacteriosis, showed a low rate of resistance in isolates but was detected in almost all countries. The main sources of antibiotic-resistant Campylobacter isolates were food of animal origin and farm animals. The results demonstrate that resistant Campylobacter isolates are disseminated from multiple sources linked to animal production in South America. The level of resistance that was identified may compromise the treatment of campylobacteriosis in human and animal populations. In this way, we are here showing all South American communities the need for the constant surveillance of Campylobacter resistance and the need for the strategic use of antibiotics in animal production. These actions are likely to decrease future difficulties in the treatment of human campylobacteriosis.
Collapse
Affiliation(s)
- Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Correspondence:
| | - Anamaria Mota Pereira dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
6
|
Woyda R, Oladeinde A, Endale D, Strickland T, Lawrence JP, Abdo Z. Broiler house environment and litter management practices impose selective pressures on antimicrobial resistance genes and virulence factors of Campylobacter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526821. [PMID: 36778422 PMCID: PMC9915665 DOI: 10.1101/2023.02.02.526821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 02/09/2023]
Abstract
Campylobacter infections are a leading cause of bacterial diarrhea in humans globally. Infections are due to consumption of contaminated food products and are highly associated with chicken meat, with chickens being an important reservoir for Campylobacter. Here, we characterized the genetic diversity of Campylobacter species detected in broiler chicken litter over three consecutive flocks and determined their antimicrobial resistance and virulence factor profiles. Antimicrobial susceptibility testing and whole genome sequencing were performed on Campylobacter jejuni (n = 39) and Campylobacter coli (n = 5) isolates. All C. jejuni isolates were susceptible to all antibiotics tested while C. coli (n =4) were resistant to only tetracycline and harbored the tetracycline-resistant ribosomal protection protein (TetO). Virulence factors differed within and across grow houses but were explained by the isolates' flock cohort, species and multilocus sequence type. Virulence factors involved in the ability to invade and colonize host tissues and evade host defenses were absent from flock cohort 3 C. jejuni isolates as compared to flock 1 and 2 isolates. Our results show that virulence factors and antimicrobial resistance genes differed by the isolates' multilocus sequence type and by the flock cohort they were present in. These data suggest that the house environment and litter management practices performed imposed selective pressures on antimicrobial resistance genes and virulence factors. In particular, the absence of key virulence factors within the final flock cohort 3 isolates suggests litter reuse selected for Campylobacter strains that are less likely to colonize the chicken host.
Collapse
Affiliation(s)
- Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Dinku Endale
- Southeast Watershed Research Laboratory, USDA, Tifton, GA, 31793
| | | | | | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
7
|
Deblais L, Jang H, Kauffman M, Gangiredla J, Sawyer M, Basa S, Poelstra JW, Babu US, Harrison LM, Hiett KL, Balan KV, Rajashekara G. Whole genome characterization of thermophilic Campylobacter species isolated from dairy manure in small specialty crop farms of Northeast Ohio. Front Microbiol 2023; 14:1074548. [PMID: 37025625 PMCID: PMC10071015 DOI: 10.3389/fmicb.2023.1074548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2022] [Accepted: 01/30/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction With more public interest in consuming locally grown produce, small specialty crop farms (SSCF) are a viable and growing segment of the food production chain in the United States. Methods The goal of this study was to investigate the genomic diversity of Campylobacter isolated from dairy manure (n = 69) collected from 10 SSCF in Northeast Ohio between 2018 and 2020. Results A total of 56 C. jejuni and 13 C. coli isolates were sequenced. Multi-locus sequence typing (MLST) identified 22 sequence types (STs), with ST-922 (18%) and ST-61 (13%) predominant in C. jejuni and ST-829 (62%) and ST-1068 (38%) predominant in C. coli. Interestingly, isolates with similar genomic and gene contents were detected within and between SSCF over time, suggesting that Campylobacter could be transmitted between farms and may persist in a given SSCF over time. Virulence-associated genes (n = 35) involved in the uptake and utilization of potassium and organic compounds (succinate, gluconate, oxoglutarate, and malate) were detected only in the C. jejuni isolates, while 45 genes associated with increased resistance to environmental stresses (capsule production, cell envelope integrity, and iron uptake) were detected only in the C. coli isolates. Campylobacter coli isolates were also sub-divided into two distinct clusters based on the presence of unique prophages (n = 21) or IncQ conjugative plasmid/type-IV secretion system genes (n = 15). Campylobacter coli isolates harbored genes associated with resistance to streptomycin (aadE-Cc; 54%) and quinolone (gyrA-T86I; 77%), while C. jejuni had resistance genes for kanamycin (aph3'-IIIa; 20%). Both species harbored resistance genes associated with β-lactam (especially, blaOXA-193; up to 100%) and tetracycline (tetO; up to 59%). Discussion/Conclusion Our study demonstrated that Campylobacter genome plasticity associated with conjugative transfer might provide resistance to certain antimicrobials and viral infections via the acquisition of protein-encoding genes involved in mechanisms such as ribosomal protection and capsule modification.
Collapse
Affiliation(s)
- Loic Deblais
- Department of Animal Sciences, Center for Food Animal Health, The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Hyein Jang
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Mike Kauffman
- Department of Animal Sciences, Center for Food Animal Health, The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Jayanthi Gangiredla
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Marianne Sawyer
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Saritha Basa
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Jelmer W. Poelstra
- Molecular and Cellular Imaging Center, The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Uma S. Babu
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Lisa M. Harrison
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Kelli L. Hiett
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Kannan V. Balan
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Gireesh Rajashekara
- Department of Animal Sciences, Center for Food Animal Health, The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
- *Correspondence: Gireesh Rajashekara,
| |
Collapse
|
8
|
Panzenhagen P, Portes AB, dos Santos AMP, Duque SDS, Conte Junior CA. The Distribution of Campylobacter jejuni Virulence Genes in Genomes Worldwide Derived from the NCBI Pathogen Detection Database. Genes (Basel) 2021; 12:1538. [PMID: 34680933 PMCID: PMC8535712 DOI: 10.3390/genes12101538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) is responsible for 80% of human campylobacteriosis and is the leading cause of gastroenteritis globally. The relevant public health risks of C. jejuni are caused by particular virulence genes encompassing its virulome. We analyzed 40,371 publicly available genomes of C. jejuni deposited in the NCBI Pathogen Detection Database, combining their epidemiologic metadata with an in silico bioinformatics analysis to increase our current comprehension of their virulome from a global perspective. The collection presented a virulome composed of 126 identified virulence factors that were grouped in three clusters representing the accessory, the softcore, and the essential core genes according to their prevalence within the genomes. The multilocus sequence type distribution in the genomes was also investigated. An unexpected low prevalence of the full-length flagellin flaA and flaB locus of C. jejuni genomes was revealed, and an essential core virulence gene repertoire prevalent in more than 99.99% of genomes was identified. Altogether, this is a pioneer study regarding Campylobacter jejuni that has compiled a significant amount of data about the Multilocus Sequence Type and virulence factors concerning their global prevalence and distribution over this database.
Collapse
Affiliation(s)
- Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Anamaria M. P. dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Sheila da Silva Duque
- Collection of Campylobacter, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
9
|
Würfel SDFR, Prates DDF, Kleinubing NR, Vecchia JD, Vaniel C, Haubert L, Dellagostin OA, Silva WPD. Comprehensive characterization reveals antimicrobial-resistant and potentially virulent Campylobacter isolates from poultry meat products in Southern Brazil. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
|
10
|
Adiguzel MC, Goulart DB, Wu Z, Pang J, Cengiz S, Zhang Q, Sahin O. Distribution of CRISPR Types in Fluoroquinolone-Resistant Campylobacter jejuni Isolates. Pathogens 2021; 10:345. [PMID: 33809410 PMCID: PMC8000906 DOI: 10.3390/pathogens10030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/20/2022] Open
Abstract
To aid development of phage therapy against Campylobacter, we investigated the distribution of the clustered regularly interspaced short palindromic repeats (CRISPR) systems in fluoroquinolone (FQ)-resistant Campylobacter jejuni. A total of 100 FQ-resistant C. jejuni strains from different sources were analyzed by PCR and DNA sequencing to determine resistance-conferring mutation in the gyrA gene and the presence of various CRISPR systems. All but one isolate harbored 1-5 point mutations in gyrA, and the most common mutation was the Thr86Ile change. Ninety-five isolates were positive with the CRISPR PCR, and spacer sequences were found in 86 of them. Among the 292 spacer sequences identified in this study, 204 shared 93-100% nucleotide homology to Campylobacter phage D10, 44 showed 100% homology to Campylobacter phage CP39, and 3 had 100% homology with Campylobacter phage CJIE4-5. The remaining 41 spacer sequences did not match with any phages in the database. Based on the results, it was inferred that the FQ-resistant C. jejuni isolates analyzed in this study were potentially resistant to Campylobacter phages D10, CP39, and CJIE4-5 as well as some unidentified phages. These phages should be excluded from cocktails of phages that may be utilized to treat FQ-resistant Campylobacter.
Collapse
Affiliation(s)
- Mehmet Cemal Adiguzel
- Department of Microbiology, College of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey; (M.C.A.); (S.C.)
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Debora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Jinji Pang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Seyda Cengiz
- Department of Microbiology, College of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey; (M.C.A.); (S.C.)
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
11
|
Hull DM, Harrell E, van Vliet AHM, Correa M, Thakur S. Antimicrobial resistance and interspecies gene transfer in Campylobacter coli and Campylobacter jejuni isolated from food animals, poultry processing, and retail meat in North Carolina, 2018-2019. PLoS One 2021; 16:e0246571. [PMID: 33571292 PMCID: PMC7877606 DOI: 10.1371/journal.pone.0246571] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
The Center for Disease Control and Prevention identifies antimicrobial resistant (AMR) Campylobacter as a serious threat to U.S. public health due to high community burden, increased transmissibility, and limited treatability. The National Antimicrobial Resistance Monitoring System (NARMS) plays an important role in surveillance of AMR bacterial pathogens in humans, food animals and retail meats. This study investigated C. coli and C. jejuni from live food animals, poultry carcasses at production, and retail meat in North Carolina between January 2018-December 2019. Whole genome sequencing and bioinformatics were used for phenotypic and genotypic characterization to compare AMR profiles, virulence factors associated with Guillain-Barré Syndrome (GBS) (neuABC and cst-II or cst-III), and phylogenic linkage between 541 Campylobacter isolates (C. coli n = 343, C. jejuni n = 198). Overall, 90.4% (489/541) Campylobacter isolates tested positive for AMR genes, while 43% (233/541) carried resistance genes for three or more antibiotic classes and were classified molecularly multidrug resistant. AMR gene frequencies were highest against tetracyclines (64.3%), beta-lactams (63.6%), aminoglycosides (38.6%), macrolides (34.8%), quinolones (24.4%), lincosamides (13.5%), and streptothricins (5%). A total of 57.6% (114/198) C. jejuni carried GBS virulence factors, while three C. coli carried the C. jejuni-like lipooligosaccharide locus, neuABC and cst-II. Further evidence of C. coli and C. jejuni interspecies genomic exchange was observed in identical multilocus sequence typing, shared sequence type (ST) 7818 clonal complex 828, and identical species-indicator genes mapA, ceuE, and hipO. There was a significant increase in novel STs from 2018 to 2019 (2 in 2018 and 21 in 2019, p<0.002), illustrating variable Campylobacter genomes within food animal production. Introgression between C. coli and C. jejuni may aid pathogen adaption, lead to higher AMR and increase Campylobacter persistence in food processing. Future studies should further characterize interspecies gene transfer and evolutionary trends in food animal production to track evolving risks to public health.
Collapse
Affiliation(s)
- Dawn M Hull
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Erin Harrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Arnoud H M van Vliet
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Maria Correa
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
12
|
Evangelista AG, Corrêa JAF, Pinto ACSM, Luciano FB. The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistance - a review. Crit Rev Food Sci Nutr 2021; 62:5267-5283. [PMID: 33554635 DOI: 10.1080/10408398.2021.1883548] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
Population growth directly affects the global food supply, demanding a higher production efficiency without farmland expansion - in view of limited land resources and biodiversity loss worldwide. In such scenario, intensive agriculture practices have been widely used. A commonly applied method to maximize yield in animal production is the use of subtherapeutic doses of antibiotics as growth promoters. Because of the strong antibiotic selection pressure generated, the intense use of antibiotic growth promoters (AGP) has been associated to the rise of antimicrobial resistance (AMR). Also, cross-resistance can occur, leading to the emergence of multidrug-resistant pathogens and limiting treatment options in both human and animal health. Thereon, alternatives have been studied to replace AGP in animal production. Among such alternatives, essential oils and essential oil components (EOC) stand out positively from others due to, besides antimicrobial effectiveness, improving zootechnical indexes and modulating genes involved in resistance mechanisms. This review summarizes recent studies in essential oils and EOC for zoonotic bacteria control, providing detailed information about the molecular-level effects of their use in regard to AMR, and identifying important gaps to be filled within the animal production area.
Collapse
Affiliation(s)
- Alberto Gonçalves Evangelista
- Graduate Program in Animal Science, Pontifical Catholic University of Paraná, Prado Velho - Curitiba, Paraná, Brazil
| | - Jessica Audrey Feijó Corrêa
- Graduate Program in Animal Science, Pontifical Catholic University of Paraná, Prado Velho - Curitiba, Paraná, Brazil
| | | | - Fernando Bittencourt Luciano
- Graduate Program in Animal Science, Pontifical Catholic University of Paraná, Prado Velho - Curitiba, Paraná, Brazil
| |
Collapse
|