1
|
Cooper AJL, Denton TT. ω-Amidase and Its Substrate α-Ketoglutaramate (the α-Keto Acid Analogue of Glutamine) as Biomarkers in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1660-1680. [PMID: 39523108 DOI: 10.1134/s000629792410002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 11/16/2024]
Abstract
A large literature exists on the biochemistry, chemistry, metabolism, and clinical importance of the α-keto acid analogues of many amino acids. However, although glutamine is the most abundant amino acid in human tissues, and transamination of glutamine to its α-keto acid analogue (α-ketoglutaramate; KGM) was described more than seventy years ago, little information is available on the biological importance of KGM. Herein, we summarize the metabolic importance of KGM as an intermediate in the glutamine transaminase - ω-amidase (GTωA) pathway for the conversion of glutamine to anaplerotic α-ketoglutarate. We describe some properties of KGM, notably its occurrence as a lactam (2-hydroxy-5-oxoproline; 99.7% at pH 7.2), and its presence in normal tissues and body fluids. We note that the concentration of KGM is elevated in the cerebrospinal fluid of liver disease patients and that the urinary KGM/creatinine ratio is elevated in patients with an inborn error of the urea cycle and in patients with citrin deficiency. Recently, of the 607 urinary metabolites measured in a kidney disease study, KGM was noted to be one of five metabolites that was most significantly associated with uromodulin (a potential biomarker for tubular functional mass). Finally, we note that KGM is an intermediate in the breakdown of nicotine in certain organisms and is an important factor in nitrogen homeostasis in some microorganisms and plants. In conclusion, we suggest that biochemists and clinicians should consider KGM as (i) a key intermediate in nitrogen metabolism in all branches of life, and (ii) a biomarker, along with ω-amidase, in several diseases.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Travis T Denton
- LiT Biosciences, Spokane, WA, 99202-5029, USA. ARRAY(0x5d17383a0090)
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA, USA
| |
Collapse
|
2
|
Xu H, Wu Y, Chen Q, Yu Y, Meng Q, Qin N, Zhang W, Tao X, Li S, Tian T, Zhang L, Ma H, Cui J, Chu M. Integrating apaQTL and eQTL analysis identifies a potential causal variant associated with lung adenocarcinoma risk in the Chinese population. Commun Biol 2024; 7:860. [PMID: 39003419 PMCID: PMC11246497 DOI: 10.1038/s42003-024-06502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
Alternative polyadenylation (APA) plays a crucial role in cancer biology. Here, we used data from the 3'aQTL-atlas, GTEx, and the China Nanjing Lung Cancer GWAS database to explore the association between apaQTL/eQTL-SNPs and the risk of lung adenocarcinoma (LUAD). The variant T allele of rs277646 in NIT2 is associated with an increased risk of LUAD (OR = 1.12, P = 0.015), lower PDUI values, and higher NIT2 expression. The 3'RACE experiment showed multiple poly (A) sites in NIT2, with the rs277646-T allele causing preferential use of the proximal poly (A) site, resulting in a shorter 3'UTR transcript. This leads to the loss of the hsa-miR-650 binding site, thereby affecting LUAD malignant phenotypes by regulating the expression level of NIT2. Our findings may provide new insights into understanding and exploring APA events in LUAD carcinogenesis.
Collapse
Affiliation(s)
- Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yutong Wu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Qiong Chen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yuhui Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianyao Meng
- Department of Global Health and Population, School of Public Health, Harvard University, Boston, MA, USA
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wendi Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Siqi Li
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiahua Cui
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
3
|
Cooper AJL, Dorai T, Pinto JT, Denton TT. Metabolic Heterogeneity, Plasticity, and Adaptation to "Glutamine Addiction" in Cancer Cells: The Role of Glutaminase and the GTωA [Glutamine Transaminase-ω-Amidase (Glutaminase II)] Pathway. BIOLOGY 2023; 12:1131. [PMID: 37627015 PMCID: PMC10452834 DOI: 10.3390/biology12081131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Many cancers utilize l-glutamine as a major energy source. Often cited in the literature as "l-glutamine addiction", this well-characterized pathway involves hydrolysis of l-glutamine by a glutaminase to l-glutamate, followed by oxidative deamination, or transamination, to α-ketoglutarate, which enters the tricarboxylic acid cycle. However, mammalian tissues/cancers possess a rarely mentioned, alternative pathway (the glutaminase II pathway): l-glutamine is transaminated to α-ketoglutaramate (KGM), followed by ω-amidase (ωA)-catalyzed hydrolysis of KGM to α-ketoglutarate. The name glutaminase II may be confused with the glutaminase 2 (GLS2) isozyme. Thus, we recently renamed the glutaminase II pathway the "glutamine transaminase-ω-amidase (GTωA)" pathway. Herein, we summarize the metabolic importance of the GTωA pathway, including its role in closing the methionine salvage pathway, and as a source of anaplerotic α-ketoglutarate. An advantage of the GTωA pathway is that there is no net change in redox status, permitting α-ketoglutarate production during hypoxia, diminishing cellular energy demands. We suggest that the ability to coordinate control of both pathways bestows a metabolic advantage to cancer cells. Finally, we discuss possible benefits of GTωA pathway inhibitors, not only as aids to studying the normal biological roles of the pathway but also as possible useful anticancer agents.
Collapse
Affiliation(s)
- Arthur J. L. Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Thambi Dorai
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA
| | - John T. Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Travis T. Denton
- Department Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA 99202, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
| |
Collapse
|
4
|
Chen YB, Feng YQ, Chen S. HSP90B1 overexpression is associated with poor prognosis in tongue squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e833-e838. [PMID: 35580785 DOI: 10.1016/j.jormas.2022.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/04/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Y B Chen
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University.
| | - Y Q Feng
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University.
| | - S Chen
- Departments of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China.
| |
Collapse
|
5
|
Epova EY, Shevelev AB, Shurubor YI, Cooper AJL, Biryukova YK, Bogdanova ES, Tyno YY, Lebedeva AA, Krasnikov BF. A novel efficient producer of human ω-amidase (Nit2) in Escherichia coli. Anal Biochem 2021; 632:114332. [PMID: 34391728 DOI: 10.1016/j.ab.2021.114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2021] [Revised: 07/09/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022]
Abstract
Nit2/ω-amidase catalyzes the hydrolysis of α-ketoglutaramate (KGM, the α-keto acid analogue of glutamine) to α-ketoglutarate and ammonia. The enzyme also catalyzes the amide hydrolysis of monoamides of 4- and 5-C-dicarboxylates, including α-ketosuccinamate (KSM, the α-keto acid analogue of asparagine) and succinamate (SM). Here we describe an inexpensive procedure for high-yield expression of human Nit2 (hNit2) in Escherichia coli and purification of the expressed protein. This work includes: 1) the design of a genetic construct (pQE-Nit22) obtained from the previously described construct (pQE-Nit2) by replacing rare codons within an 81 bp-long DNA fragment "preferred" by E. coli near the translation initiation site; 2) methods for producing and maintaining the pQE-Nit22 construct; 3) purification of recombinant hNit2; and 4) activity measurements of the purified enzyme with KGM and SM. Important features of the hNit2 gene within the pQE-Nit22 construct are: 1) optimized codon composition, 2) the presence of an N-terminus His6 tag immediately after the initiating codon ATG (Met) that permits efficient purification of the end-product on a Ni-NTA-agarose column. We anticipate that the availability of high yield hNit2/ω-amidase will be helpful in elucidating the normal and pathological roles of this enzyme and in the design of specific inhibitors.
Collapse
Affiliation(s)
- Ekaterina Yu Epova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei B Shevelev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Yulia K Biryukova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elena S Bogdanova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia; Plekhanov Russian University of Economics, Moscow, Russia
| | - Yaroslav Ya Tyno
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anna A Lebedeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Boris F Krasnikov
- Centre for Strategic Planning of FMBA of the Russian Federation, Moscow, Russia; Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|