1
|
Feng L, Lin Y, Cai Y, Wei W, Yang J, Zhan R, Ma D. Terpenoid VOC profiles and functional characterization of terpene synthases in diploid and tetraploid cytotypes of Chrysanthemum indicum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107766. [PMID: 37220674 DOI: 10.1016/j.plaphy.2023.107766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/27/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023]
Abstract
Chrysanthemum indicum L. is a valuable medicinal plant with diploid and tetraploid forms that are widely distributed in central and southern China, and it contains abundant volatile organic compounds (VOCs). Despite the discovery of some terpene synthase (TPS) in C. indicum (i.e., CiTPS) in previous studies, many TPSs and their corresponding terpene biosynthesis pathways have yet to be discovered. In the present study, terpenoid VOCs in different tissues from two cytotypes of C. indicum were analyzed. We identified 52 types of terpenoid VOCs and systematically investigated the content and distribution of these compounds in various tissues. The two cytotypes of C. indicum exhibited different volatile terpenoid profiles. The content of monoterpenes and sesquiterpenes in the two cytotypes showed an opposite trend. In addition, four full-length candidate TPSs (named CiTPS5-8) were cloned from Ci-GD4x, and their homologous TPS genes were screened based on the genome data of Ci-HB2x. These eight TPSs displayed various tissue expression patterns and were discovered to produce 22 terpenoids, 5 of which are monoterpenes and 17 are sesquiterpenes. We further proposed corresponding terpene synthesis pathways, which can enable the establishment of an understanding of the volatile terpenoid profiles of C. indicum with different cytotypes. This knowledge may provide a further understanding of germplasm in C. indicum and may be useful for biotechnology applications of Chrysanthemum plants.
Collapse
Affiliation(s)
- Lingfang Feng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ying Lin
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanjiao Cai
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wuke Wei
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinfen Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Dongming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Yu JH, Zhang R, Liu QL, Wang FG, Yu XL, Dai XL, Liu YB, Yan YH. Ceratopteris chunii and Ceratopteris chingii (Pteridaceae), two new diploid species from China, based on morphological, cytological, and molecular data. PLANT DIVERSITY 2022; 44:300-307. [PMID: 35769586 PMCID: PMC9209876 DOI: 10.1016/j.pld.2021.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 06/15/2023]
Abstract
Understanding how natural hybridization and polyploidizations originate in plants requires identifying potential diploid ancestors. However, cryptic plant species are widespread, particularly in Ceratopteris (Pteridaceae). Identifying Ceratopteris cryptic species with different polyploidy levels is a challenge because Ceratopteris spp. exhibit high degrees of phenotypic plasticity. Here, two new cryptic species of Ceratopteris, Ceratopteris chunii and Ceratopteris chingii, are described and illustrated. Phylogenetic analyses reveal that each of the new species form a well-supported clade. C. chunii and C. chingii are similar to Ceratopteris gaudichaudii var. vulgaris and C. pteridoides, respectively, but distinct from their relatives in the stipe, basal pinna of the sterile leaf or subelliptic shape of the fertile leaf, as well as the spore surface. In addition, chromosome studies indicate that C. chunii and C. chingii are both diploid. These findings will help us further understand the origin of Ceratopteris polyploids in Asia.
Collapse
Affiliation(s)
- Jun-Hao Yu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Life Science, Shanghai Normal University, Shanghai, 200234, China
| | - Rui Zhang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Qiao-Ling Liu
- College of Life Science, Shanghai Normal University, Shanghai, 200234, China
| | - Fa-Guo Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xun-Lin Yu
- College of Forestry, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China
| | - Xi-Ling Dai
- College of Life Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yong-Bo Liu
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yue-Hong Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| |
Collapse
|
3
|
Akinduti P, Obafemi YD, Isibor PO, Ishola R, Ahuekwe FE, Ayodele OA, Oduleye OS, Oziegbe O, Onagbesan OM. Antibacterial kinetics and phylogenetic analysis of Aloe vera plants. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Uncontrolled use of antibiotics has resulted in the emergence of resistant bacteria. It has necessitated the evaluation of antibacterial activities and phylo-diversity of Aloe vera (also called Aloe barbadensis) plants as antimicrobial agent in Nigeria. Biotyped enteric bacilli of 251 strains obtained from fecal samples of patients with various gastro-intestinal complications are profiled for antibiogram. Resistant biotypes were assayed for susceptibility to Aloe vera latex and further evaluated for time-kill kinetics and phylo-diversity. More than 30% of enteric bacilli, including Citrobacter freundii, Escherichia coli and Proteus mirabilis were resistant to cotrimoxazole, ciprofloxacin, and tetracycline respectively at MIC >16 µg/ml (p=0.004). Aloe vera latex significantly inhibited 39.5% resistant enteric biotypes with a significant average reduction of the viable count at 1xMIC and 2xMIC to less than 3.0 Log10CFU/mL after 24 hours. Flavonoids, alkaloids, terpenoids and anthraquinine in anti-enteric sap significantly correlated and regressed with antibacterial activity (p<0.05), while two of the antimicrobial Aloe vera plants showed phylogenetic relatedness with other homologous. Anti-bacteria efficacy of some Nigerian Aloe vera latex could provide alternative therapy, while its phylo-diversity and genomic profiling would offer a promising avenue for identification and development of antimicrobial agents as drug candidates for natural antibiotics.
Collapse
|