1
|
Abbasi SK, Hosseini SJF, Samari D. A comprehensive model for the implementation of agricultural land levelling and consolidation plan in the Abu Fazel region of Ahvaz. BRAZ J BIOL 2024; 84:e266923. [DOI: 10.1590/1519-6984.266923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
Abstract It has been shown that land fragmentation can negatively impact the efficiency of farming. Therefore, experts recommend land consolidation process, as a logical and workable solution to solve the problems and complications caused by land fragmentation. Land levelling and consolidation is a process of land reform that changes the construction of agricultural lands which leads to rural development through reforming farm management. However, a single plan cannot be applied to different regions, even though they might be in the same country. Hence, it is vital to investigate multiple factors in a certain region to devise the perfect consolidation plan. The present study, which is a survey-exploratory research, is conducted to provide a comprehensive model to implement the plan for levelling and consolidation of agricultural lands in the Abu Fazel region of Ahvaz, Iran. This research is an applied field research which uses both library and field methods to collect the required data. The study population is in Abu Fazel in the northeast of Ahvaz in Zargan region. The results of the study show that cultural, social, economic, policy-making, educational, agricultural and managerial factors have an effect on the participation of farmers in the levelling and consolidation of agricultural lands in the study area (p≥0.01). Also, there is a strong positive relationship between these factors and the farmers' participation in levelling and consolidation of agricultural lands (p≥0.01). Among these factors, it is observed that policy is main factor. Policymakers can play an effective role in land consolidation and macro development on the one hand and agricultural and rural development. On the other, by accurately assessing the interactive effect of land consolidation and related factors, along with the effects of this process on the evolution of agronomic systems.
Collapse
|
2
|
de Barros NR, Darabi MA, Ma X, Diltemiz SE, Ermis M, Hassani Najafabasi A, Nadine S, Banton EA, Mandal K, Abbasgholizadeh R, Falcone N, Mano JF, Nasiri R, Herculano RD, Zhu Y, Ostrovidov S, Lee J, Kim HJ, Hosseini V, Dokmeci MR, Ahadian S, Khademhosseini A. Enhanced Maturation of 3D Bioprinted Skeletal Muscle Tissue Constructs Encapsulating Soluble Factor-Releasing Microparticles. Macromol Biosci 2023; 23:e2300276. [PMID: 37534566 PMCID: PMC10837326 DOI: 10.1002/mabi.202300276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Several microfabrication technologies have been used to engineer native-like skeletal muscle tissues. However, the successful development of muscle remains a significant challenge in the tissue engineering field. Muscle tissue engineering aims to combine muscle precursor cells aligned within a highly organized 3D structure and biological factors crucial to support cell differentiation and maturation into functional myotubes and myofibers. In this study, the use of 3D bioprinting is proposed for the fabrication of muscle tissues using gelatin methacryloyl (GelMA) incorporating sustained insulin-like growth factor-1 (IGF-1)-releasing microparticles and myoblast cells. This study hypothesizes that functional and mature myotubes will be obtained more efficiently using a bioink that can release IGF-1 sustainably for in vitro muscle engineering. Synthesized microfluidic-assisted polymeric microparticles demonstrate successful adsorption of IGF-1 and sustained release of IGF-1 at physiological pH for at least 21 days. Incorporating the IGF-1-releasing microparticles in the GelMA bioink assisted in promoting the alignment of myoblasts and differentiation into myotubes. Furthermore, the myotubes show spontaneous contraction in the muscle constructs bioprinted with IGF-1-releasing bioink. The proposed bioprinting strategy aims to improve the development of new therapies applied to the regeneration and maturation of muscle tissues.
Collapse
Affiliation(s)
| | - Mohammad Ali Darabi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Xin Ma
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Sibel Emir Diltemiz
- Department of Chemistry, Eskisehir Technical University, Eskisehir, 26470, Turkey
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | | | - Sara Nadine
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ethan A. Banton
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | | | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - João F. Mano
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | | | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Serge Ostrovidov
- Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Mehmet R. Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Samad Ahadian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
3
|
Sabouri M, Taghibeikzadehbadr P, Shabkhiz F, Izanloo Z, Shaghaghi FA. Effect of eccentric and concentric contraction mode on myogenic regulatory factors expression in human vastus lateralis muscle. J Muscle Res Cell Motil 2022; 43:9-20. [PMID: 35018575 DOI: 10.1007/s10974-021-09613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
Skeletal muscle contractions are caused to release myokines by muscle fiber. This study investigated the myogenic regulatory factors, as MHC I, IIA, IIX, Myo-D, MRF4, Murf, Atrogin-1, Decorin, Myonection, and IL-15 mRNA expression in the response of eccentric vs concentric contraction. Eighteen healthy men were randomly divided into two eccentric and concentric groups, each of 9 persons. Isokinetic contraction protocols included maximal single-leg eccentric or concentric knee extension tasks at 60°/s with the dominant leg. Contractions consisted of a maximum of 12 sets of 10 reps, and the rest time between each set was 30 s. The baseline biopsy was performed 4 weeks before the study, and post-test biopsies were taken immediately after exercise protocols from the vastus lateralis muscle. The gene expression levels were evaluated using Real-Time PCR methods. The eccentric group showed a significantly lower RPE score than the concentric group (P ≤ 0.05). A significant difference in MyoD, MRF4, Myonection, and Decorin mRNA, were observed following eccentric or concentric contractions (P ≤ 0.05). The MHC I, MHC IIA, IL-15 mRNA has been changed significantly compared to the pre-exercise in the concentric group (P ≤ 0.05). While only MHC IIX and Atrogin-1 mRNA changed significantly in the eccentric group (P ≤ 0.05). Additionally, the results showed a significant difference in MyoD, MRF4, IL-15, and Decorin at the follow-up values between eccentric or concentric groups (P ≤ 0.05). Our findings highlight the growing importance of elucidating the different responses of muscle growth factors associated with a myogenic activity such as MHC IIA, Decorin, IL-15, Myonectin, Decorin, MuRF1, and MHC IIX mRNA in following various types of exercise.
Collapse
Affiliation(s)
- Mostafa Sabouri
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran.
| | | | - Fatemeh Shabkhiz
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran
| | - Zahra Izanloo
- Department of Sport Science, Faculty of Human Science, University of Bojnord, Bojnord, Iran
| | | |
Collapse
|
4
|
Bordoni B, Escher AR, Tobbi F, Pranzitelli A, Pianese L. Fascial Nomenclature: Update 2021, Part 1. Cureus 2021; 13:e13339. [PMID: 33643754 PMCID: PMC7885767 DOI: 10.7759/cureus.13339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
The fascial continuum is a topic for which all clinicians and other healthcare professionals come into contact on a daily basis, both consciously and without having the idea that the tissues they deal with can fall within the concept of fascia. The Foundation of Osteopathic Research and Clinical Endorsement (FORCE) organization includes many clinicians and health professionals, as well as researchers in different scientific disciplines. The goal is to dissect some concepts related to daily practice, such as fascial tissue, from a scientific point of view and impartially. Proof of the impartiality of FORCE is the fact that it does not sell any fascial products, no tools, and, above all, all the fascial terminology used has no copyright: research and knowledge are the right of anyone who wishes improvement for the good of the patient. The article aims to review the themes that could add new elements for a broader view of the meaning and nomenclature of the fascial system.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Anesthesiology and Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Filippo Tobbi
- Osteopathy, Poliambulatorio Medico e Odontoiatrico, Varese, ITA
| | | | - Luigi Pianese
- Physical Medicine and Rehabilitation, 3C+A Health and Rehabilitation, Roma, ITA
| |
Collapse
|