1
|
Dalirsani Z, Davaji M, Salari Sedigh H, Hosseinian S, Ranjbar E, Yaqoubi A, Moghaddam KM, Shafieian R. Comparative Investigation of Photobiomodulation in Diabetes-Impaired Alveolar Bone Healing: A Histomorphometrical and Molecular Study. Photobiomodul Photomed Laser Surg 2024; 42:577-584. [PMID: 39320973 DOI: 10.1089/photob.2023.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Objective: Diabetes mellitus is increasing worldwide. Photobiomodulation (PBM) is proposed as a therapeutic method in various medical concerns. This study aimed to compare the effects of PBM at the wavelengths of 660, 808, or 660 + 808 nm on alveolar bone healing in diabetic rats. Methods: Bilateral maxillary first molars were extracted from diabetic Wistar rats (n = 36). Right-sided sockets were treated by an In-Ga-Al-P laser at 660 nm (7.2 J/cm2, 24 s; DM660), Ga-Al-As laser at 808 nm (7 J/cm2, 14 s; DM808), or a combination of these two sets (DM-dual) (n = 12). Left sides served as controls. On days 7 or 14, specimens were assigned for histomorphometric or real-time PCR analysis of runt-related transcription factor 2, osteocalcin, collagen I, and vascular endothelial growth factor expression. Results: Irradiated sockets of groups DM-808 and DM-dual showed a significant increase in bone tissue and blood vessel establishment as compared to DM-660. Further, group DM-dual exhibited the least amount of fibrotic tissue as compared to the other groups. Conclusions: Within our study limits, the present experiment suggested PBM at 808 nm, alone or combined with 660 nm irradiation, could promote alveolar bone healing, along with minimal fibrosis induction, in diabetic rats.
Collapse
Affiliation(s)
- Zohreh Dalirsani
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Davaji
- Department of Endodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Salari Sedigh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University Mashhad, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmail Ranjbar
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afshin Yaqoubi
- Faculty of Density, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Stem Cells and Regenerative Medicine Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
3
|
Atchou K, Lawson-Evi P, Eklu-Gadegbeku K. Improvement of microvascular complications in STZ-diabetic rats treated with Pterocarpus erinaceus Poir. extract. Biochem Biophys Rep 2023; 35:101541. [PMID: 37674975 PMCID: PMC10477066 DOI: 10.1016/j.bbrep.2023.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Pterocarpus erinaceus Poir. from Fabaceae family is a medicinal plant traditionally used in decoction or infusion to treat diabetes mellitus. Although this plant is used in treating diabetes, studies on the effectiveness of its stem bark on the complications induced by chronic hyperglycemia have not been thoroughly addressed. Thus, this study was conducted to prove the efficacy of hydroethanolic extract of stem bark of P. erinaceus on type 2 diabetes and its complications, such as renal fibrosis and retinopathy in rats. STZ diabetics. The dry extract of P. erinaceus stem bark was obtained following the hydroethanolic extraction (v/v). Diabetes was induced with streptozocin in SD rats pretreated with fructose-lard for 20 days. Then, the serum and urinary biochemical parameters were evaluated at the start and the end of the treatment. Rats with blood glucose ≥350 mg/dL and significant proteinuria were selected and treated with P. erinaceus stem bark extract and glibenclamide for 3 weeks. A complete blood count and a histopathological examination of the retina and kidneys were performed at the end of the 41st day of treatment. The results showed that P. erinaceus extract at a dose of 500 mg/kg bw and glibenclamide at a dose of 0.6 mg/kg bw caused a significant decrease (p < 0.0001) in basal blood glucose in STZ diabetic rats during treatment and improved oral glucose intolerance. At the end of the experiment, the treated rats showed a normalization in body weight, food and water consumption. Evaluating of biochemical parameters showed a significant (p < 0.001) decrease in total cholesterol, LDL-C, triglycerides, TG/HDL-C ratio, CPK and oxidative stress in treated rats. No retinal and kidney abnormalities were observed on histological sections in rats treated with plant extract and glibenclamide. In contrast, macular edema and renal fibrosis were observed in the diabetic control group. The findings showed that extract at a dose of 500 mg/kg bw improves oral glucose intolerance, and inhibits lipid deposition and retinal and renal fibrosis. Therefore, the plant extract could be exploited in the production of herbal medicines to manage diabetes and its complications.
Collapse
Affiliation(s)
- Kokou Atchou
- Pathophysiology, Bioactive Substances and Safety Research Unit, Faculty of Sciences, University of Lome, Postbox 1515, Togo
| | - Povi Lawson-Evi
- Pathophysiology, Bioactive Substances and Safety Research Unit, Faculty of Sciences, University of Lome, Postbox 1515, Togo
| | - Kwashie Eklu-Gadegbeku
- Pathophysiology, Bioactive Substances and Safety Research Unit, Faculty of Sciences, University of Lome, Postbox 1515, Togo
| |
Collapse
|
4
|
Kabach I, Bouchmaa N, Zouaoui Z, Ennoury A, El Asri S, Laabar A, Oumeslakht L, Cacciola F, El Majdoub YO, Mondello L, Zyad A, Nhiri N, Nhiri M, Ben Mrid R. Phytochemical profile and antioxidant capacity, α-amylase and α-glucosidase inhibitory activities of Oxalis pes-caprae extracts in alloxan-induced diabetic mice. Biomed Pharmacother 2023; 160:114393. [PMID: 36774725 DOI: 10.1016/j.biopha.2023.114393] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetes and its complications are closely correlated with chronic hyperglycemia, causing severe oxidative stress and leading to glycation reaction with formation of advanced glycation end products. However, medicinal plants are still a source of inspiration for the discovery of new treatments of several diseases, including diabetes. The present study was aimed to evaluate the antioxidant and antidiabetic properties of Oxalis pes-caprae flowers extract in alloxan-induced diabetic mice. The phytochemical and antioxidant activities of both aqueous and methanolic extracts were assessed by in-vitro testing such as free radical scavenging assays (DPPH and ABTS+), ferrous ions (Fe2+) chelating activity and reducing power assay. Additionally, the detection of Amadori products and advanced glycation end products was used to determine the antiglycation potential. α-glucosidase and α-amylase inhibitory assessment was employed to determine the antidiabetic effect, while alloxan-induced diabetic mice were used to measure the in-vivo activities of antioxidants and carbohydrates enzymes. The effect of the methanolic extract on body weight and blood glucose level of extract-treated diabetic mice were also investigated. Among the tested extract, the methanolic extract was the richest in phenolic compounds which is directly related with their remarkable antioxidant, enzyme inhibitory and antiglycation activity. The oral administration of the two doses of Oxalis pes-caprae flowers (150 mg/kg and 250 mg/kg) daily for 3 weeks resulted in hypoglycemic effect compared to the reference drug, glibenclamide (10 mg/kg). Furthermore, the extract was shown to significantly increase the activities of antioxidants and glycolysis enzymes in the liver, kidney and spleen of diabetic mice, compared to diabetic control group. Therefore, Oxalis pes-caprae extract effectively exhibited hypoglycemic and antidiabetic effects as indicated by in-vitro and in-vivo studies, confirming the protective effects on hyperglycemia and oxidative damage.
Collapse
Affiliation(s)
- Imad Kabach
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB-P), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco; Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-pharmacology, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Sara El Asri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Abdelmounaim Laabar
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Morocco
| | - Loubna Oumeslakht
- Institute of Biological Sciences (ISSB-P), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy.
| | - Yassine Oulad El Majdoub
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Luigi Mondello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Abdelmajid Zyad
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-pharmacology, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Naima Nhiri
- Institute for the Chemistry of Natural Substances, CNRS, Paris Saclay University, 91190 Gif-Sur-Yvette, France
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Reda Ben Mrid
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco; Institute of Biological Sciences (ISSB-P), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco.
| |
Collapse
|
5
|
Imig JD. Frontiers in metabolic physiology grand challenges. Front Physiol 2022; 13:879617. [PMID: 36035475 PMCID: PMC9399398 DOI: 10.3389/fphys.2022.879617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
|
6
|
Behl T, Gupta A, Sehgal A, Singh S, Sharma N, Garg M, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. Exploring the multifaceted role of TGF-β signaling in diabetic complications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35643-35656. [PMID: 35247177 DOI: 10.1007/s11356-022-19499-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Diabetes is one of the most comprehensive metabolic disorders and is spread across the globe. The data from IDF Diabetes Atlas and National Diabetes Statistics mentions that the number of patients with diabetes is increasing at an exponential rate which is challenging the current therapeutics used for the management of diabetes. However, current therapies used for the treatment may provide symptomatic relief but lack in preventing the progression of the disease and thereby limiting the treatment of diabetes-associated complications. A thorough review and analysis were conducted using various databases including EMBASE, MEDLINE, and Google Scholar to extract the available information on challenges faced by current therapies which have triggered the development of novel molecules or drugs. From the analysis, it was analyzed that transforming growth factor βs (TGF-βs) have been shown to exhibit pleiotropic activity and are responsible for maintaining homeostasis and its overexpression is convoluted in the pathogenesis of various disorders. Therefore, developing drugs that block TGF-β signaling may provide therapeutic benefits. This extensive review concluded that drugs targeting TGF-β signaling pathway and its subsequent blockade have shown promising results and hold the potential to become drugs of choice in the management of diabetes and associated complications.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Madhukar Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Adjunct Professor, Amity Institute of Pharmacy, Amity University, Haryana, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Bourgogne Franche-Comté, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|