1
|
Tumenbayar BI, Pham K, Biber JC, Tutino VM, Brazzo JA, Yao P, Bae Y. FAK and p130Cas Modulate Stiffness-Mediated Early Transcription and Cellular Metabolism. Cytoskeleton (Hoboken) 2024. [PMID: 39651636 DOI: 10.1002/cm.21971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
Cellular metabolism is influenced by the stiffness of the extracellular matrix. Focal adhesion kinase (FAK) and its binding partner, p130Cas, transmit biomechanical signals, such as substrate stiffness, to the cell to regulate a variety of cellular responses, but their roles in early transcriptional and metabolic responses remain largely unexplored. We cultured mouse embryonic fibroblasts with or without siRNA-mediated FAK or p130Cas knockdown and assessed the early transcriptional responses of these cells to placement on soft and stiff substrates by RNA sequencing and bioinformatics analyses. Exposure to the stiff substrate altered the expression of genes important for metabolic and biosynthetic processes, and these responses were influenced by knockdown of FAK and p130Cas. Our findings reveal that FAK-p130Cas signaling mechanotransduces substrate stiffness to early transcriptional changes that alter cellular metabolism and biosynthesis.
Collapse
Affiliation(s)
- Bat-Ider Tumenbayar
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Khanh Pham
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - John C Biber
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Vincent M Tutino
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Joseph A Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
2
|
Fu J, Liu W, Liu S, Zhao R, Hayashi T, Zhao H, Xiang Y, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Inhibition of YAP/TAZ pathway contributes to the cytotoxicity of silibinin in MCF-7 and MDA-MB-231 human breast cancer cells. Cell Signal 2024; 119:111186. [PMID: 38643945 DOI: 10.1016/j.cellsig.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Breast cancer is one of the most common cancers threatening women's health. Our previous study found that silibinin induced the death of MCF-7 and MDA-MB-231 human breast cancer cells. We noticed that silibinin-induced cell damage was accompanied by morphological changes, including the increased cell aspect ratio (cell length/width) and decreased cell area. Besides, the cytoskeleton is also destroyed in cells treated with silibinin. YAP/TAZ, a mechanical signal sensor interacted with extracellular pressure, cell adhesion area and cytoskeleton, is also closely associated with cell survival, proliferation and migration. Thus, the involvement of YAP/TAZ in the cytotoxicity of silibinin in breast cancer cells has attracted our interests. Excitingly, we find that silibinin inhibits the nuclear translocation of YAP/TAZ in MCF-7 and MDA-MB-231 cells, and reduces the mRNA expressions of YAP/TAZ target genes, ACVR1, MnSOD and ANKRD. More importantly, expression of YAP1 gene is negatively correlated with the survival of the patients with breast cancers. Molecular docking analysis reveals high probabilities for binding of silibinin to the proteins in the YAP pathways. DARTS and CETSA results confirm the binding abilities of silibinin to YAP and LATS. Inhibiting YAP pathway either by addition of verteporfin, an inhibitor of YAP/TAZ-TEAD, or by transfection of si-RNAs targeting YAP or TAZ further enhances silibinin-induced cell damage. While enhancing YAP activity by silencing LATS1/2 or overexpressing YAPS127/397A, an active form of YAP, attenuates silibinin-induced cell damage. These findings demonstrate that inhibition of the YAP/TAZ pathway contributes to cytotoxicity of silibinin in breast cancers, shedding lights on YAP/TAZ-targeted cancer therapies.
Collapse
Affiliation(s)
- Jianing Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Siyu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ruxiao Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Haina Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yinlanqi Xiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, China.
| |
Collapse
|
3
|
Pampanella L, Petrocelli G, Abruzzo PM, Zucchini C, Canaider S, Ventura C, Facchin F. Cytochalasins as Modulators of Stem Cell Differentiation. Cells 2024; 13:400. [PMID: 38474364 PMCID: PMC10931372 DOI: 10.3390/cells13050400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Regenerative medicine aims to identify new research strategies for the repair and restoration of tissues damaged by pathological or accidental events. Mesenchymal stem cells (MSCs) play a key role in regenerative medicine approaches due to their specific properties, such as the high rate of proliferation, the ability to differentiate into several cell lineages, the immunomodulatory potential, and their easy isolation with minimal ethical issues. One of the main goals of regenerative medicine is to modulate, both in vitro and in vivo, the differentiation potential of MSCs to improve their use in the repair of damaged tissues. Over the years, much evidence has been collected about the ability of cytochalasins, a large family of 60 metabolites isolated mainly from fungi, to modulate multiple properties of stem cells (SCs), such as proliferation, migration, and differentiation, by altering the organization of the cyto- and the nucleo-skeleton. In this review, we discussed the ability of two different cytochalasins, cytochalasins D and B, to influence specific SC differentiation programs modulated by several agents (chemical or physical) or intra- and extra-cellular factors, with particular attention to human MSCs (hMSCs).
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Cinzia Zucchini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Silvia Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Carlo Ventura
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| |
Collapse
|
4
|
Ky A, McCoy AJ, Flesher CG, Friend NE, Li J, Akinleye K, Patsalis C, Lumeng CN, Putnam AJ, O’Rourke RW. Matrix density regulates adipocyte phenotype. Adipocyte 2023; 12:2268261. [PMID: 37815174 PMCID: PMC10566443 DOI: 10.1080/21623945.2023.2268261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Abstract
Alterations of the extracellular matrix contribute to adipose tissue dysfunction in metabolic disease. We studied the role of matrix density in regulating human adipocyte phenotype in a tunable hydrogel culture system. Lipid accumulation was maximal in intermediate hydrogel density of 5 weight %, relative to 3% and 10%. Adipogenesis and lipid and oxidative metabolic gene pathways were enriched in adipocytes in 5% relative to 3% hydrogels, while fibrotic gene pathways were enriched in 3% hydrogels. These data demonstrate that the intermediate density matrix promotes a more adipogenic, less fibrotic adipocyte phenotype geared towards increased lipid and aerobic metabolism. These observations contribute to a growing literature describing the role of matrix density in regulating adipose tissue function.
Collapse
Affiliation(s)
- Alexander Ky
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Atticus J. McCoy
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Carmen G. Flesher
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole E. Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jie Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kore Akinleye
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Patsalis
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Carey N. Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Robert W. O’Rourke
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Li X, Liu S, Han S, Sun Q, Yang J, Zhang Y, Jiang Y, Wang X, Li Q, Wang J. Dynamic Stiffening Hydrogel with Instructive Stiffening Timing Modulates Stem Cell Fate In Vitro and Enhances Bone Remodeling In Vivo. Adv Healthc Mater 2023; 12:e2300326. [PMID: 37643370 DOI: 10.1002/adhm.202300326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Biomechanical stimuli derived from the extracellular matrix (ECM) extremely tune stem cell fate through 3D and spatiotemporal changes in vivo. The matrix stiffness is a crucial factor during bone tissue development. However, most in vitro models to study the osteogenesis of mesenchymal stem cells (MSCs) are static or stiffening in a 2D environment. Here, a dynamic and controllable stiffening 3D biomimetic model is created to regulate the osteogenic differentiation of MSCs with a dual-functional gelatin macromer that can generate a double-network hydrogel by sequential enzymatic and light-triggered crosslinking reactions. The findings show that these dynamic hydrogels allowed cells to spread and expand prior to the secondary crosslinking and to sense high stiffness after stiffening. The MSCs in the dynamic hydrogels, especially the hydrogel stiffened at the late period, present significantly elevated osteogenic ECM secretion, gene expression, and nuclear localization of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). In vivo evaluation of animal experiments further indicates that the enhancement of dynamic stiffening on osteogenesis of MSCs substantially promotes bone remodeling. Consequently, this work reveals that the 3D dynamic stiffening microenvironment as a critical biophysical cue not only mediates the stem cell fate in vitro, but also augments bone restoration in vivo.
Collapse
Affiliation(s)
- Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuaibing Liu
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shanshan Han
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yuhang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongchao Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianglin Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|