1
|
Lu P, Yin Z, Fang M, Yao L, Zhang N, Zhang S, Guo G, He P, Qin Y. Acupressure bladder meridian alleviates anxiety disorder in rats by regulating MAPK and BDNF signal pathway. Physiol Behav 2024; 283:114534. [PMID: 38583548 DOI: 10.1016/j.physbeh.2024.114534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 01/16/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
The aim of this study was to investigate the effects of acupressure bladder meridian (ABM) on anxiety in rats. Chronic stress was induced rats to establish rat anxiety model. Shuttle experiment and open field experiments of were used to measure behaviors. The levels of cytokines in serum and hippocampus of rats were detected. Brain neurotransmitters (dopamine, 5- hydroxy tryptamine, norepinephrine) were detected by Enzyme linked immunosorbent assay (ELISA) kits. Immunohistochemistry and western blotting were used to detect MAPK and BDNF signal pathway in hippocampus of rats. ABM significantly improve behaviors, decreased cytokine levels in serum and hippocampus. ABM restored the changes of neurotransmitters and significantly decreased protein expressions of MAPK signal pathway and increased protein expressions of BDNF signal pathway in hippocampus of rats. The results shown that ABM significantly improved anxiety via inhibition of MAPK signal pathway and increased BDNF signal pathway.
Collapse
Affiliation(s)
- Ping Lu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, PR China; Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai, PR China; School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Zhiyang Yin
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, PR China
| | - Min Fang
- Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai, PR China; School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | - Lei Yao
- Department of Tuina, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Nan Zhang
- Department of Tuina, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Shuaipan Zhang
- Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai, PR China; School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Guangxin Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, PR China; School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Pei He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, PR China
| | - Yuan Qin
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, PR China; School of design, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
2
|
Jiang L, Huang M, Ge J, Zhang X, Liu Y, Liu H, Liu X, Jiang L. Circular RNA hsa_circ_0005519 contributes to acute kidney injury via sponging microRNA-98-5p. BMC Nephrol 2024; 25:107. [PMID: 38504194 PMCID: PMC10949765 DOI: 10.1186/s12882-024-03544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND This study intends to explore the role and molecular mechanism of hsa_circ_0005519 in acute kidney injury (AKI). METHODS We conducted reverse transcription-qPCR for human serum to determine levels of hsa_circ_0005519 in AKI patients and healthy controls. Hsa_circ_0005519 was inhibited for expression in HK-2 cells using specific siRNAs. A number of techniques, MTT and ELISA assays, were used to analyze the potential role of hsa_circ_0005519 in cell viability, oxidative stress, and inflammation of LPS-induced HK-2 cells. RESULTS The serum of patients with AKI exhibited a significant increase in hsa_circ_0005519 expression, compared with healthy controls. Hsa_circ_0005519 was knockdown by siRNA, and its knockdown led to cell viability increase in LPS-induced HK-2 cells. Inhibition of hsa_circ_0005519 can reverse the TNF-α, IL-6 and IL-1β increase in LPS-induced HK-2 cells. Inhibiting hsa_circ_0005519 led to downregulation of MPO and MDA levels. MiR-98-5p was a downstream miRNA for hsa_circ_0005519. MiR-98-5p can offset the effects of hsa_circ_0005519 on LPS-induced HK-2 cells. IFG1R was a target gene for miR-98-5p. CONCLUSIONS These findings indicate that the highly expressed hsa_circ_0005519 plays a promoting role in AKI.
Collapse
Affiliation(s)
- Linsen Jiang
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Manxin Huang
- School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Jun Ge
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Street, Muping District, Yantai, 264100, China
| | - Xuefeng Zhang
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Ye Liu
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Street, Muping District, Yantai, 264100, China
| | - Hang Liu
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Street, Muping District, Yantai, 264100, China
| | - Xiaoming Liu
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Street, Muping District, Yantai, 264100, China.
| | - Lili Jiang
- Department of Nephrology, Youyang Tujia and Miao Autonomous County People's Hospital, No.102, Middle Road, Taohuayuan Avenue, Taohuayuan Street, Youyang County, Chongqing, 409800, China.
| |
Collapse
|
3
|
Mao W, Zhang L, Wang Y, Sun S, Wu J, Sun J, Zou X, Chen M, Zhang G. Cisplatin induces acute kidney injury by downregulating miR-30e-5p that targets Galnt3 to activate the AMPK signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:1567-1580. [PMID: 38010663 DOI: 10.1002/tox.24054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Cisplatin nephrotoxicity is an etiological factor for acute kidney injury (AKI). MicroRNA (miRNA) expression is dysregulated in cisplatin-induced AKI (cAKI) although the underlying mechanisms are unclear. A cAKI model was established by intraperitoneally injecting cisplatin, and key miRNAs were screened using high-throughput miRNA sequencing. The functions of key miRNAs were determined using the cell viability, live/dead, reactive oxygen species (ROS), and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays. Additionally, the macrophage membrane was wrapped around a metal-organic framework (MOF) loaded with miRNA agomir to develop a novel composite material, macrophage/MOF/miRNA agomir nanoparticles (MMA NPs). High-throughput miRNA sequencing revealed that miR-30e-5p is a key miRNA that is downregulated in cAKI. The results of in vitro experiments demonstrated that miR-30e-5p overexpression partially suppressed the cisplatin-induced or lipopolysaccharide (LPS)-induced downregulation of cell viability, proliferation, upregulation of ROS production, and cell death. Meanwhile, the results of in vivo and in vitro experiments demonstrated that MMA NPs alleviated cAKI by exerting anti-inflammatory effects. Mechanistically, cisplatin downregulates the expression of miR-30e-5p, and the downregulated miR-30e-5p can target Galnt3 to activate the adenosine 5'-monophosphate activated protein kinase (AMPK) signaling pathway, which promotes the progression of AKI. Our study found that miR-30e-5p is a key downregulated miRNA in cAKI. The downregulated miR-30e-5p promotes AKI progression by targeting Galnt3 to activate the AMPK signaling pathway. The newly developed MMA NPs were found to have protective effects on cAKI, suggesting a potential novel strategy for preventing cAKI.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Lei Zhang
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China
| | - Yiduo Wang
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China
| | - Si Sun
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China
| | - Jianping Wu
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jie Sun
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Zou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China
| |
Collapse
|
4
|
Rinaldi L, Chiuso F, Senatore E, Borzacchiello D, Lignitto L, Iannucci R, Donne RD, Fuggi M, Reale C, Russo F, Russo NA, Giurato G, Rizzo F, Sellitto A, Santangelo M, De Biase D, Paciello O, D'Ambrosio C, Amente S, Garbi C, Dalla E, Scaloni A, Weisz A, Ambrosino C, Insabato L, Feliciello A. Downregulation of praja2 restrains endocytosis and boosts tyrosine kinase receptors in kidney cancer. Commun Biol 2024; 7:208. [PMID: 38379085 PMCID: PMC10879500 DOI: 10.1038/s42003-024-05823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer in the adult population. Late diagnosis, resistance to therapeutics and recurrence of metastatic lesions account for the highest mortality rate among kidney cancer patients. Identifying novel biomarkers for early cancer detection and elucidating the mechanisms underlying ccRCC will provide clues to treat this aggressive malignant tumor. Here, we report that the ubiquitin ligase praja2 forms a complex with-and ubiquitylates the AP2 adapter complex, contributing to receptor endocytosis and clearance. In human RCC tissues and cells, downregulation of praja2 by oncogenic miRNAs (oncomiRs) and the proteasome markedly impairs endocytosis and clearance of the epidermal growth factor receptor (EGFR), and amplifies downstream mitogenic and proliferative signaling. Restoring praja2 levels in RCC cells downregulates EGFR, rewires cancer cell metabolism and ultimately inhibits tumor cell growth and metastasis. Accordingly, genetic ablation of praja2 in mice upregulates RTKs (i.e. EGFR and VEGFR) and induces epithelial and vascular alterations in the kidney tissue.In summary, our findings identify a regulatory loop between oncomiRs and the ubiquitin proteasome system that finely controls RTKs endocytosis and clearance, positively impacting mitogenic signaling and kidney cancer growth.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Domenica Borzacchiello
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Luca Lignitto
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Rosa Iannucci
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Mariano Fuggi
- Department of Advanced Biomedical Sciences, University Hospital Federico II, Naples, Italy
| | - Carla Reale
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| | - Filomena Russo
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| | | | - Giorgio Giurato
- Genome Research Center for Health, Baronissi (SA), Italy
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, Baronissi (SA), Italy
| | - Francesca Rizzo
- Genome Research Center for Health, Baronissi (SA), Italy
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, Baronissi (SA), Italy
| | - Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, Baronissi (SA), Italy
| | - Michele Santangelo
- Department of Advanced Biomedical Sciences, University Hospital Federico II, Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, Pathology Unit, University Federico II, Naples, Italy
| | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici (Naples), Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Emiliano Dalla
- Department of Medicine, University of Udine, Udine, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici (Naples), Italy
| | - Alessandro Weisz
- Genome Research Center for Health, Baronissi (SA), Italy
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, Baronissi (SA), Italy
| | - Concetta Ambrosino
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
- Department of Science and Technology University of Sannio, Sannio, Italy
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University Hospital Federico II, Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.
| |
Collapse
|
5
|
Bravo-Vázquez LA, Paul S, Colín-Jurado MG, Márquez-Gallardo LD, Castañón-Cortés LG, Banerjee A, Pathak S, Duttaroy AK. Exploring the Therapeutic Significance of microRNAs and lncRNAs in Kidney Diseases. Genes (Basel) 2024; 15:123. [PMID: 38275604 PMCID: PMC10815231 DOI: 10.3390/genes15010123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two crucial classes of transcripts that belong to the major group of non-coding RNAs (ncRNAs). These RNA molecules have significant influence over diverse molecular processes due to their crucial role as regulators of gene expression. However, the dysregulated expression of these ncRNAs constitutes a fundamental factor in the etiology and progression of a wide variety of multifaceted human diseases, including kidney diseases. In this context, over the past years, compelling evidence has shown that miRNAs and lncRNAs could be prospective targets for the development of next-generation drugs against kidney diseases as they participate in a number of disease-associated processes, such as podocyte and nephron death, renal fibrosis, inflammation, transition from acute kidney injury to chronic kidney disease, renal vascular changes, sepsis, pyroptosis, and apoptosis. Hence, in this current review, we critically analyze the recent findings concerning the therapeutic inferences of miRNAs and lncRNAs in the pathophysiological context of kidney diseases. Additionally, with the aim of driving advances in the formulation of ncRNA-based drugs tailored for the management of kidney diseases, we discuss some of the key challenges and future prospects that should be addressed in forthcoming investigations.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Miriam Guadalupe Colín-Jurado
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Luis David Márquez-Gallardo
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Luis Germán Castañón-Cortés
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai 603103, India
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai 603103, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway
| |
Collapse
|
6
|
Cheng AS, Li X. The Potential Biotherapeutic Targets of Contrast-Induced Acute Kidney Injury. Int J Mol Sci 2023; 24:8254. [PMID: 37175958 PMCID: PMC10178966 DOI: 10.3390/ijms24098254] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Contrast-induced acute kidney injury (CI-AKI) is manifested by an abrupt decline in kidney function as a consequence of intravascular exposure to contrast media. With the increased applicability of medical imaging and interventional procedures that utilize contrast media for clinical diagnosis, CI-AKI is becoming the leading cause of renal dysfunction. The pathophysiological mechanism associated with CI-AKI involves renal medullary hypoxia, the direct toxicity of contrast agents, oxidative stress, apoptosis, inflammation, and epigenetic regulation. To date, there is no effective therapy for CI-AKI, except for the development of strategies that could reduce the toxicity profiles of contrast media. While most of these strategies have failed, evidence has shown that the proper use of personalized hydration, contrast medium, and high-dose statins may reduce the occurrence of CI-AKI. However, adequate risk predication and attempts to develop preventive strategies can be considered as the key determinants that can help eliminate CI-AKI. Additionally, a deeper understanding of the pathophysiological mechanism of CI-AKI is crucial to uncover molecular targets for the prevention of CI-AKI. This review has taken a step further to solidify the current known molecular mechanisms of CI-AKI and elaborate the biomarkers that are used to detect early-stage CI-AKI. On this foundation, this review will analyze the molecular targets relating to apoptosis, inflammation, oxidative stress, and epigenetics, and, thus, provide a strong rationale for therapeutic intervention in the prevention of CI-AKI.
Collapse
Affiliation(s)
- Alice Shasha Cheng
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Amini J, Beyer C, Zendedel A, Sanadgol N. MAPK Is a Mutual Pathway Targeted by Anxiety-Related miRNAs, and E2F5 Is a Putative Target for Anxiolytic miRNAs. Biomolecules 2023; 13:biom13030544. [PMID: 36979479 PMCID: PMC10046777 DOI: 10.3390/biom13030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Anxiety-related disorders (ARDs) are chronic neuropsychological diseases and the sixth leading cause of disability in the world. As dysregulation of microRNAs (miRs) are observed in the pathological course of neuropsychiatric disorders, the present study aimed to introduce miRs that underlie anxiety processing in the brain. First, we collected the experimentally confirmed anxiety-related miRNAs (ARmiRs), predicted their target transcripts, and introduced critical cellular pathways with key commune hub genes. As a result, we have found nine anxiolytic and ten anxiogenic ARmiRs. The anxiolytic miRs frequently target the mRNA of Acyl-CoA synthetase long-chain family member 4 (Acsl4), AFF4-AF4/FMR2 family member 4 (Aff4), and Krüppel like transcription factor 4 (Klf4) genes, where miR-34b-5p and miR-34c-5p interact with all of them. Moreover, the anxiogenic miRs frequently target the mRNA of nine genes; among them, only two miR (miR-142-5p and miR-218-5p) have no interaction with the mRNA of trinucleotide repeat-containing adaptor 6B (Tnrc6b), and miR-124-3p interacts with all of them where MAPK is the main signaling pathway affected by both anxiolytic and anxiogenic miR. In addition, the anxiolytic miR commonly target E2F transcription factor 5 (E2F5) in the TGF-β signaling pathway, and the anxiogenic miR commonly target Ataxin 1 (Atxn1), WASP-like actin nucleation promoting factor (Wasl), and Solute Carrier Family 17 Member 6 (Slc17a6) genes in the notch signaling, adherence junction, and synaptic vesicle cycle pathways, respectively. Taken together, we conclude that the most important anxiolytic (miR-34c, Let-7d, and miR-17) and anxiogenic (miR-19b, miR-92a, and 218) miR, as hub epigenetic modulators, potentially influence the pathophysiology of anxiety, primarily via interaction with the MAPK signaling pathway. Moreover, the role of E2F5 as a novel putative target for anxiolytic miRNAs in ARDs disorders deserves further exploration.
Collapse
Affiliation(s)
- Javad Amini
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
8
|
Zmyslowska A, Smyczynska U, Stanczak M, Jeziorny K, Szadkowska A, Fendler W, Borowiec M. Association of circulating miRNAS in patients with Alstrőm and Bardet-Biedl syndromes with clinical course parameters. Front Endocrinol (Lausanne) 2022; 13:1057056. [PMID: 36506055 PMCID: PMC9732093 DOI: 10.3389/fendo.2022.1057056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Patients with the rare syndromic forms of monogenic diabetes: Alström syndrome (ALMS) and Bardet-Biedl syndrome (BBS) have multiple metabolic abnormalities, including early-onset obesity, insulin resistance, lipid disorders and type 2 diabetes mellitus. The aim of this study was to determine if the expression of circulating miRNAs in patients with ALMS and BBS differs from that in healthy and obese individuals and determine if miRNA levels correlate with metabolic tests, BMI-SDS and patient age. METHODS We quantified miRNA expression (Qiagen, Germany) in four groups of patients: with ALMS (n=13), with BBS (n=7), patients with obesity (n=19) and controls (n=23). Clinical parameters including lipids profile, serum creatinine, cystatin C, fasting glucose, insulin and C-peptide levels, HbA1c values and insulin resistance (HOMA-IR) were assessed in patients with ALMS and BBS. RESULTS We observed multiple up- or downregulated miRNAs in both ALMS and BBS patients compared to obese patients and controls, but only 1 miRNA (miR-301a-3p) differed significantly and in the same direction in ALMS and BBS relative to the other groups. Similarly, 1 miRNA (miR-92b-3p) was dysregulated in the opposite directions in ALMS and BBS patients, but diverged from 2 other groups. We found eight miRNAs (miR-30a-5p, miR-92b-3p, miR-99a-5p, miR-122-5p, miR-192-5p, miR-193a-5p, miR-199a-3p and miR-205-5p) that significantly correlated with at least of the analyzed clinical variables representing an association with the course of the diseases. CONCLUSIONS Our results show for the first time that serum miRNAs can be used as available indicators of disease course in patients with ALMS and BBS syndromes.
Collapse
Affiliation(s)
- Agnieszka Zmyslowska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
- *Correspondence: Agnieszka Zmyslowska,
| | - Urszula Smyczynska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Stanczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Krzysztof Jeziorny
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Szadkowska
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|