1
|
Nie L, Huang L, Zhu Q, Yao Q, Wu Y, Zhao L, Yu L, Fu F. HIF-1α Activates Hypoxia-Induced MXRA5 Expression in the Progression of Ovarian Cancer. J Environ Pathol Toxicol Oncol 2025; 44:47-55. [PMID: 39462449 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
The hypoxic microenvironment of tumor cells is closely related to the progression of ovarian cancer (OV). Hypoxia (HY)-related matrix-remodeling associated 5 (MXRA5) was expressed at elevated levels in many tumors, but research on the impact of MXRA5 in OV remains limited. This study aims to explore the role of MXRA5 in regulating cellular HY in OV. The MXRA5 expression and its clinical significance in OV were evaluated using GEPIA2, Kaplan-Meier plotter databases, and immunohistochemistry assay. OV cells were treated with normoxia and HY conditions. The siRNAs were designed to knock down the MXRA5 expression in hypoxic cells. The cellular capacities were detected by CCK-8 assay, EdU assay, Transwel assay, and TUNEL assay, each method targeting a different aspect of cellular behavior. The MXRA5 level was increased in OV and associated with the progression free survival and overall survival of OV patients. The proliferation and invasion abilities of OV cells were promoted, while apoptosis capacities were inhibited in hypoxic cells. After the knockdown of MXRA5 in hypoxic cells, the proliferative capacities and invasive abilities of the cells were reduced, and the apoptosis capacities were enhanced. Moreover, mechanistically, HIF-1α is a key transcription factor in response to HY that binds to the MXRA5 promoter. MXRA5 expression was induced by HY and had prognostic performance in OV. Knockdown of MXRA5 can inhibit proliferation and invasion in OV cells caused by HIF-1α, revealing that MXRA5 is one potential targets for tumor HY regulation in OV.
Collapse
Affiliation(s)
- Liju Nie
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Linfeng Huang
- Department of Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Qizhou Zhu
- Oncology Department, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Qinglan Yao
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Yiguo Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Lu Zhao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Lamei Yu
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Fen Fu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University
| |
Collapse
|
2
|
Limonta P, Marchesi S, Giannitti G, Casati L, Fontana F. The biological function of extracellular vesicles in prostate cancer and their clinical application as diagnostic and prognostic biomarkers. Cancer Metastasis Rev 2024; 43:1611-1627. [PMID: 39316264 PMCID: PMC11554767 DOI: 10.1007/s10555-024-10210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and main causes of cancer-related deaths worldwide. It is characterized by high heterogeneity, ranging from slow-growing tumor to metastatic disease. Since both therapy selection and outcome strongly rely on appropriate patient stratification, it is crucial to differentiate benign from more aggressive conditions using new and improved diagnostic and prognostic biomarkers. Extracellular vesicles (EVs) are membrane-coated particles carrying a specific biological cargo composed of nucleic acids, proteins, and metabolites. Here, we provide an overview of the role of EVs in PCa, focusing on both their biological function and clinical value. Specifically, we summarize the oncogenic role of EVs in mediating the interactions with PCa microenvironment as well as the horizontal transfer of metastatic traits and drug resistance between PCa cells. Furthermore, we discuss the potential usage of EVs as innovative tools for PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Sara Marchesi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Gaia Giannitti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Lavinia Casati
- Department of Health Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
3
|
Glowa C, Bendinger AL, Euler-Lange R, Peschke P, Brons S, Debus J, Karger CP. Irradiation with Carbon Ions Effectively Counteracts Hypoxia-related Radioresistance in a Rat Prostate Carcinoma. Int J Radiat Oncol Biol Phys 2024; 120:875-883. [PMID: 38750905 DOI: 10.1016/j.ijrobp.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Hypoxia in tumors is associated with increased malignancy and resistance to conventional photon radiation therapy. This study investigated the potential of particle therapy to counteract radioresistance in syngeneic rat prostate carcinoma. METHODS AND MATERIALS Subcutaneously transplanted R3327-HI tumors were irradiated with photons or carbon ions under acute hypoxic conditions, induced by clamping the tumor-supplying artery 10 min before and during irradiation. Dose-response curves were determined for the endpoint "local tumor control within 300 days" and compared with previously published data acquired under oxic conditions. Doses at 50% tumor control probability (TCD50) were used to quantify hypoxia-induced radioresistance relative to that under oxic conditions and also to quantify the increased effectiveness of carbon ions under oxic and hypoxic conditions relative to photons. RESULTS Compared with those under oxic conditions, TCD50 values under hypoxic conditions increased by a factor of 1.53 ± 0.08 for photons and by a factor of 1.28 ± 0.06 for carbon ions (oxygen enhancement ratio). Compared with those for photons, TCD50 values for carbon ions decreased by a factor of 2.08 ± 0.13 under oxic conditions and by a factor of 2.49 ± 0.08 under hypoxic conditions (relative biological effectiveness). While the slope of the photon dose-response curves increased when changing from oxic to hypoxic conditions, the slopes were steeper and remained unchanged for carbon ions. CONCLUSIONS The reduced oxygen enhancement ratio of carbon ions indicated that the required dose increase in hypoxic tumors was 17% lower for carbon ions than for photons. Additionally, carbon ions reduced the effect of intertumor heterogeneity on the radiation response. Therefore, carbon ions may confer a significant advantage for the treatment of hypoxic tumors that are highly resistant to conventional photon radiation therapy.
Collapse
Affiliation(s)
- Christin Glowa
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Alina L Bendinger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; University of Heidelberg, Faculty of Biosciences, Heidelberg, Germany
| | - Rosemarie Euler-Lange
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Department of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Clinical Cooperation Unit Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
| |
Collapse
|
4
|
Wolf I, Storz J, Schultze-Seemann S, Esser PR, Martin SF, Lauw S, Fischer P, Peschers M, Melchinger W, Zeiser R, Gorka O, Groß O, Gratzke C, Brückner R, Wolf P. A new silicon phthalocyanine dye induces pyroptosis in prostate cancer cells during photoimmunotherapy. Bioact Mater 2024; 41:537-552. [PMID: 39246837 PMCID: PMC11378935 DOI: 10.1016/j.bioactmat.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/30/2024] [Accepted: 07/17/2024] [Indexed: 09/10/2024] Open
Abstract
Photoimmunotherapy (PIT) combines the specificity of antibodies with the cytotoxicity of light activatable photosensitizers (PS) and is a promising new cancer therapy. We designed and synthesized, in a highly convergent manner, the silicon phthalocyanine dye WB692-CB2, which is novel for being the first light-activatable PS that can be directly conjugated via a maleimide linker to cysteines. In the present study we conjugated WB692-CB2 to a humanized antibody with engineered cysteines in the heavy chains that specifically targets the prostate-specific membrane antigen (PSMA). The resulting antibody dye conjugate revealed high affinity and specificity towards PSMA-expressing prostate cancer cells and induced cell death after irradiation with red light. Treated cells exhibited morphological characteristics associated with pyroptosis. Mechanistic studies revealed the generation of reactive oxygen species, triggering a cascade of intracellular events involving lipid peroxidation, caspase-1 activation, gasdermin D cleavage and membrane rupture followed by release of pro-inflammatory cellular contents. In first in vivo experiments, PIT with our antibody dye conjugate led to a significant reduction of tumor growth and enhanced overall survival in mice bearing subcutaneous prostate tumor xenografts. Our study highlights the future potential of the new phthalocyanine dye WB692-CB2 as PS for the fluorescence-based detection and PIT of cancer, including local prostate tumor lesions, and systemic activation of anti-tumor immune responses by the induction of pyroptosis.
Collapse
Affiliation(s)
- Isis Wolf
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Jonas Storz
- Institute for Organic Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Susanne Schultze-Seemann
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Philipp R Esser
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, 79104, Freiburg, Germany
| | - Stefan F Martin
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, 79104, Freiburg, Germany
| | - Susan Lauw
- Core Facility Signalling Factory & Robotics, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Peer Fischer
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, 69120, Heidelberg, Germany
| | - Marie Peschers
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Wolfgang Melchinger
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Internal Medicine I, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Robert Zeiser
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Internal Medicine I, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Oliver Gorka
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Institute of Neuropathology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Olaf Groß
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Institute of Neuropathology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Reinhard Brückner
- Institute for Organic Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| |
Collapse
|
5
|
Wang Q, Suo Y, Shi R, Wang Y. Studies related to the enhanced the effect of 5-aminolevulinic acid-based photodynamic therapy combined with tirapazamine. Photodiagnosis Photodyn Ther 2024; 49:104287. [PMID: 39059759 DOI: 10.1016/j.pdpdt.2024.104287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE 5-aminolevulinic acid (5-ALA) is a precursor of the photosensitizer Protoporphyrin IX (PpIX) and photodynamic therapy (PDT) with 5-ALA has been used in clinical practice. However, tumor cellular hypoxia severely affects the efficiency of photodynamic therapy. In this study, photodynamic therapy was combined with tirapazamine to investigate the effects of the combined intervention and the related mechanisms it may involve. METHODS Colony formation assays were used to demonstrate cell proliferation. Transwell assays were performed to observe the effect on cell invasion and metastasis after the corresponding intervention. DCFH-DA probe was used to detect the reactive oxygen species content. Flow cytometry was used to detect the effects of the interventions on apoptosis and cell cycle. The relevant pathways that may be involved are explored by examining the expression levels of the relevant proteins and genes. RESULTS Colony formation assays indicated that the combined intervention inhibited cell proliferation. Transwell assays demonstrated that PDT combined with TPZ effectively inhibited tumor cell invasion and metastasis. In addition, fluorescence intensity generated by DCFH-DA oxidation was detected indicating that the combined intervention increased the formation of reactive oxygen species. Flow cytometry clearly showed that the combination of PDT and TPZ further increased apoptosis and cell cycle arrest. The results of western blotting and qRT-PCR experiments confirmed that the combination therapy inhibited HIF-1α/VEGF axis and the PI3K/Akt/mTOR pathway activation. CONCLUSION 5-ALA-PDT combined with TPZ can inhibit cell proliferation, increase apoptosis, and inhibit the PI3K/Akt/mTOR pathway, thus inhibiting tumor growth and metastasis and improving anti-cancer effects.
Collapse
Affiliation(s)
- Qian Wang
- Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi, China
| | - Yuping Suo
- Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi, China; Department of Gynaecology and Obstetrics, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China.
| | - Rui Shi
- Department of Gynaecology and Obstetrics, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| | - Yulan Wang
- Department of Gynaecology and Obstetrics, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| |
Collapse
|
6
|
Scimeca M, Giacobbi E, Servadei F, Palumbo V, Palumbo C, Finazzi-Agrò E, Albisinni S, Mauriello A, Albonici L. Prognostic Value of PlGF Upregulation in Prostate Cancer. Biomedicines 2024; 12:2194. [PMID: 39457506 PMCID: PMC11505493 DOI: 10.3390/biomedicines12102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second most commonly diagnosed cancer in men worldwide, with metastasis, particularly to bone, being the primary cause of mortality. Currently, prognostic markers like PSA levels and Gleason classification are limited in predicting metastasis, emphasizing the need for novel clinical biomarkers. New molecules predicting tumor progression have been identified over time. Some, such as the immune checkpoint inhibitors (ICIs) PD-1/PD-L1, have become valid markers as theranostic tools essential for prognosis and drug target therapy. However, despite the success of ICIs as an anti-cancer therapy for solid tumors, their efficacy in treating bone metastases has mainly proven ineffective, suggesting intrinsic resistance to this therapy in the bone microenvironment. This study explores the potential of immunological intratumoral biomarkers, focusing on placental growth factor (PlGF), Vascular Endothelial Growth Factor Receptor 1 (VEGFR1), and Programmed Cell Death Protein 1 (PD-1), in predicting bone metastasis formation. METHODS we analyzed PCa samples from patients with and without metastasis by immunohistochemical analysis. RESULTS Results revealed that PlGF expression is significantly higher in primary tumors of patients that developed metastasis within five years from the histological diagnosis. Additionally, PlGF expression correlates with increased VEGFR1 and PD-1 levels, as well as the presence of intratumoral M2 macrophages. CONCLUSIONS These findings suggest that PlGF contributes to an immunosuppressive environment, thus favoring tumor progression and metastatic process. Results here highlight the potential of integrating these molecular markers with existing prognostic tools to enhance the accuracy of metastasis prediction in PCa. By identifying patients at risk for metastasis, clinicians can tailor treatment strategies more effectively, potentially improving survival outcomes and quality of life. This study underscores the importance of further research into the role of intratumoral biomarkers in PCa management.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Enrico Finazzi-Agrò
- Unit of Urology, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (E.F.-A.); (S.A.)
| | - Simone Albisinni
- Unit of Urology, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (E.F.-A.); (S.A.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Department of Biomedical Sciences, “Our Lady of Good Counsel” University, Rruga Dritan Hoxha, 1000 Tirana, Albania
| |
Collapse
|
7
|
Poyrazlı F, Okuyan D, Köçkar F, Türkoğlu SA. Hypoxic Regulation of the KLK4 Gene in two Different Prostate Cancer Cells Treated with TGF- β. Cell Biochem Biophys 2024; 82:2797-2812. [PMID: 39026058 DOI: 10.1007/s12013-024-01396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/20/2024]
Abstract
The human kallikrein-related peptidase (KLK) family which consists of 15 members is associated with prostate cancer and other cancers. It has been reported that overexpression of KLK4 in prostate cancer correlates with bone metastasis or advanced stage. Hypoxia occurs in the early stages of prostate cancer due to the accumulation of acidic metabolites or reactive oxygen species (ROS). In our study, KLK4 gene expression in hypoxic conditions in PC-3 and LNCaP cells which are treated with TGF-β was evaluated with mRNA, protein, and promoter activity levels. A chemical hypoxia model was created and confirmed at mRNA and protein level. No statistically significant cytotoxic effect of CoCl2 and TGF-β was observed in PC-3 and LNCaP cells with the MTT test. Four different truncated KLK4 gene promoter constructs were cloned in pmetLuc expression vector and basal activities of all promoter fragments were analyzed. The activities of P1 (-447/ + 657), P2 (-103/ + 657), and P3 (-267/ + 657) promoter fragments increased in hypoxic conditions except P4 (+555/ + 657), which does not contain the SMAD and HRE region. KLK4 mRNA levels in both PC-3 and LNCaP cells increased in the hypoxia and hypoxia/TGF groups compared to the non-treated groups. The stimulating effect of TGF-β is correlated with the increase in SMAD2/3 mRNA levels. KLK4 expression is up-regulated by TGF-β, especially under hypoxic conditions, and its interaction with the SMAD pathway is determined with different inhibitor experiments. HIF-1α and SMAD transcription factors bind to the KLK4 promoter showing the direct interaction of HIF-1α (-80/-52) and SMAD (+163/+194) regions with EMSA.
Collapse
Affiliation(s)
- Fatma Poyrazlı
- University of Balikesir, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balikesir, Turkey
| | - Derya Okuyan
- University of Bandırma, Susurluk Vocational Training Schools, Laboratory and Veterinary Health Program, Balikesir, Turkey
| | - Feray Köçkar
- University of Balikesir, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balikesir, Turkey
| | - Sümeyye Aydoğan Türkoğlu
- University of Balikesir, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balikesir, Turkey.
| |
Collapse
|
8
|
Salloom RJ, Ahmad IM, Sahtout DZ, Baine MJ, Abdalla MY. Heme Oxygenase-1 and Prostate Cancer: Function, Regulation, and Implication in Cancer Therapy. Int J Mol Sci 2024; 25:9195. [PMID: 39273143 PMCID: PMC11394971 DOI: 10.3390/ijms25179195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.
Collapse
Affiliation(s)
- Ramia J. Salloom
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dania Z. Sahtout
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Michael J. Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maher Y. Abdalla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| |
Collapse
|
9
|
Cortez N, Villegas C, Burgos V, Cabrera-Pardo JR, Ortiz L, González-Chavarría I, Nchiozem-Ngnitedem VA, Paz C. Adjuvant Properties of Caffeic Acid in Cancer Treatment. Int J Mol Sci 2024; 25:7631. [PMID: 39062873 PMCID: PMC11276737 DOI: 10.3390/ijms25147631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Caffeic acid (CA) is a polyphenol belonging to the phenylpropanoid family, commonly found in plants and vegetables. It was first identified by Hlasiwetz in 1867 as a breakdown product of caffetannic acid. CA is biosynthesized from the amino acids tyrosine or phenylalanine through specific enzyme-catalyzed reactions. Extensive research since its discovery has revealed various health benefits associated with CA, including its antioxidant, anti-inflammatory, and anticancer properties. These effects are attributed to its ability to modulate several pathways, such as inhibiting NFkB, STAT3, and ERK1/2, thereby reducing inflammatory responses, and activating the Nrf2/ARE pathway to enhance antioxidant cell defenses. The consumption of CA has been linked to a reduced risk of certain cancers, mitigation of chemotherapy and radiotherapy-induced toxicity, and reversal of resistance to first-line chemotherapeutic agents. This suggests that CA could serve as a useful adjunct in cancer treatment. Studies have shown CA to be generally safe, with few adverse effects (such as back pain and headaches) reported. This review collates the latest information from Google Scholar, PubMed, the Phenol-Explorer database, and ClinicalTrials.gov, incorporating a total of 154 articles, to underscore the potential of CA in cancer prevention and overcoming chemoresistance.
Collapse
Affiliation(s)
- Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile;
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción 4030000, Chile;
| | | | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| |
Collapse
|
10
|
Alva R, Wiebe JE, Stuart JA. The effect of baseline O 2 conditions on the response of prostate cancer cells to hypoxia. Am J Physiol Cell Physiol 2024; 327:C97-C112. [PMID: 38646786 DOI: 10.1152/ajpcell.00155.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The transcriptional response to hypoxia is largely regulated by the hypoxia-inducible factors (HIFs), which induce the expression of genes involved in glycolysis, angiogenesis, proliferation, and migration. Virtually all cell culture-based hypoxia experiments have used near-atmospheric (18% O2) oxygen levels as the baseline for comparison with hypoxia. However, this is hyperoxic compared with mammalian tissue microenvironments, where oxygen levels range from 2% to 9% O2 (physioxia). Thus, these experiments actually compare hyperoxia to hypoxia. To determine how the baseline O2 level affects the subsequent response to hypoxia, we cultured PC-3 prostate cancer cells in either 18% or 5% O2 for 2 wk before exposing them to hypoxia (∼1.1% pericellular O2) for 12-48 h. RNA-seq revealed that the transcriptional response to hypoxia was dependent on the baseline O2 level. Cells grown in 18% O2 before hypoxia exposure showed an enhanced induction of HIF targets, particularly genes involved in glucose metabolism, compared with cells grown in physioxia before hypoxia. Consistent with this, hypoxia significantly increased glucose consumption and metabolic activity only in cells previously cultured in 18% O2, but not in cells preadapted to 5% O2. Transcriptomic analyses also indicated effects on cell proliferation and motility, which were followed up by functional assays. Although unaffected by hypoxia, both proliferation and migration rates were greater in cells cultured in 5% O2 versus 18% O2. We conclude that an inappropriately hyperoxic starting condition affects the transcriptional and metabolic responses of PC-3 cells to hypoxia, which may compromise experiments on cancer metabolism in vitro.NEW & NOTEWORTHY Although human cell culture models have been instrumental to our understanding of the mechanisms involved in the cellular response to hypoxia, in virtually all experiments, cells are routinely cultured in near-atmospheric (∼18% O2) oxygen levels, which are hyperoxic relative to physiological conditions in vivo. Here, we show for the first time that cells cultured in physiological O2 levels (5% O2) respond differently to subsequent hypoxia than cells grown at 18%.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological SciencesBrock University, St. Catharines, Ontario, Canada
| | - Jacob E Wiebe
- Department of Biological SciencesBrock University, St. Catharines, Ontario, Canada
| | - Jeffrey A Stuart
- Department of Biological SciencesBrock University, St. Catharines, Ontario, Canada
| |
Collapse
|
11
|
Deng J, Yuan S, Pan W, Li Q, Chen Z. Nanotherapy to Reshape the Tumor Microenvironment: A New Strategy for Prostate Cancer Treatment. ACS OMEGA 2024; 9:26878-26899. [PMID: 38947792 PMCID: PMC11209918 DOI: 10.1021/acsomega.4c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer in males worldwide. Androgen deprivation therapy (ADT) is the primary treatment method used for PCa. Although more effective androgen synthesis and antiandrogen inhibitors have been developed for clinical practice, hormone resistance increases the incidence of ADT-insensitive prostate cancer and poor prognoses. The tumor microenvironment (TME) has become a research hotspot with efforts to identify treatment targets based on the characteristics of the TME to improve prognosis. Herein, we introduce the basic characteristics of the PCa TME and the side effects of traditional prostate cancer treatments. We further highlight the emergence of novel nanotherapy strategies, their therapeutic mechanisms, and their effects on the PCa microenvironment. With further research, clinical applications of nanotherapy for PCa are expected in the near future. Collectively, this Review provides a valuable resource regarding the various nanotherapy types, demonstrating their broad clinical prospects to improve the quality of life in patients with PCa.
Collapse
Affiliation(s)
- Juan Deng
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
- The
First Clinical College of Guangdong Medical University, Zhanjiang, 524023, China
| | - Shaofei Yuan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Wenjie Pan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Qimeng Li
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Zhonglin Chen
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| |
Collapse
|
12
|
Garofoli M, Maiorano BA, Bruno G, Giordano G, Di Tullio P, Maselli FM, Landriscina M, Conteduca V. Androgen receptor, PARP signaling, and tumor microenvironment: the 'perfect triad' in prostate cancer? Ther Adv Med Oncol 2024; 16:17588359241258443. [PMID: 38887656 PMCID: PMC11181896 DOI: 10.1177/17588359241258443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aberrations in the homologous recombination repair (HRR) pathway in prostate cancer (PCa) provide a unique opportunity to develop therapeutic strategies that take advantage of the reduced tumor ability to repair DNA damage. Poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have been shown to prolong the survival of PCa patients with HRR defects, particularly in those with Breast Cancer type 1 susceptibility protein/Breast Cancer type 2 susceptibility protein alterations. To expand the benefit of PARPi to patients without detectable HRR alterations, multiple preclinical and clinical studies are addressing potential synergies between PARPi and androgen receptor signaling inhibitors, and these strategies are also being evaluated in combination with other drugs such as immune checkpoint inhibitors. However, the effectiveness of these combining therapies could be hindered by multiple mechanisms of resistance, including also the role played by the immunosuppressive tumor microenvironment. In this review, we summarize the use of PARPi in PCa and the potential synergies with different molecular pathways. However, numerous unanswered questions remain, including the identification of the patient population that could benefit most from PARPi, determining whether to use PARPi as monotherapy or in combination, and finding the optimal timing of PARPi, expanding the use of genomic tests, and optimizing combination therapies.
Collapse
Affiliation(s)
- Marianna Garofoli
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | | | - Giuseppina Bruno
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Piergiorgio Di Tullio
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Felicia Maria Maselli
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Matteo Landriscina
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Viale Pinto, 1, Foggia 71122, Italy
| | - Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Viale Pinto, 1, Foggia 71122, Italy
| |
Collapse
|
13
|
Smack C, Johnson B, Nyalwidhe JO, Semmes OJ, Yang L. Small extracellular vesicles: Roles and clinical application in prostate cancer. Adv Cancer Res 2024; 161:119-190. [PMID: 39032949 DOI: 10.1016/bs.acr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is a significant health problem in the United States. It is remarkably heterogenous, ranging from slow growing disease amenable to active surveillance to highly aggressive forms requiring active treatments. Therefore, being able to precisely determine the nature of disease and appropriately match patients to available and/or novel therapeutics is crucial to improve patients' overall outcome and quality of life. Recently small extracellular vesicles (sEVs), a subset of nanoscale membranous vesicles secreted by various cells, have emerged as important analytes for liquid biopsy and promising vehicles for drug delivery. sEVs contain various biomolecules such as genetic material, proteins, and lipids that recapitulate the characteristics and state of their donor cells. The application of existing and newly developed technologies has resulted in an increased depth of knowledge about biophysical structures, biogenesis, and functions of sEVs. In prostate cancer patients, tumor-derived sEVs can be isolated from biofluids, commonly urine and blood. They mediate intercellular signaling within the tumor microenvironment and distal organ-specific sites, supporting cancer initiation, progression, and metastasis. A mounting body of evidence suggests that sEV components can be potent biomarkers for prostate cancer diagnosis, prognosis, and prediction of disease progression and treatment response. Due to enhanced circulation stability and bio-barrier permeability, sEVs can be also used as effective drug delivery carriers to improve the efficacy and specificity of anti-tumor therapies. This review discusses recent studies on sEVs in prostate cancer and is focused on their role as biomarkers and drug delivery vehicles in the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Caleb Smack
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Benjamin Johnson
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Julius O Nyalwidhe
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - O John Semmes
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Lifang Yang
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
14
|
Guo S, Ding R, Zhao Q, Wang X, Lv S, Ji XY. Recent Insights into the Roles of PEST-Containing Nuclear Protein. Mol Biotechnol 2024:10.1007/s12033-024-01188-5. [PMID: 38762838 DOI: 10.1007/s12033-024-01188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
PEST-containing nuclear protein (PCNP), a short-lived small nuclear protein with 178 amino acids, is a nuclear protein containing two PEST sequences. PCNP is highly expressed in several malignant tumors such as cervical cancer, rectal cancer, and lung cancer. It is also associated with cell cycle regulation and the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and Wnt signaling pathways during tumor growth. The present article discuss how PCNP regulates the PI3K/AKT/mTOR and Wnt signaling pathways and related proteins, and the ubiquitination of PCNP regulates tumor cell cycle as well as the progress of the application of PCNP in the pathophysiology and treatment of colon cancer, human ovarian cancer, thyroid cancer, lung adenocarcinoma and oral squamous cell carcinoma. The main relevant articles were retrieved from PubMed, with keywords such as PEST-containing nuclear protein (PCNP), cancer (tumor), and signaling pathways as inclusion/exclusion criteria. Relevant references has been included and cited in the manuscript.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Ruidong Ding
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Qian Zhao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Xu Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, Kaifeng, 475004, Henan, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Mazhai, Erqi District, Zhengzhou, 450064, Henan, China.
| |
Collapse
|
15
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
16
|
Fei X, Liu J, Xu J, Jing H, Cai Z, Yan J, Wu Z, Li H, Wang Z, Shen Y. Integrating spatial transcriptomics and single-cell RNA-sequencing reveals the alterations in epithelial cells during nodular formation in benign prostatic hyperplasia. J Transl Med 2024; 22:380. [PMID: 38654277 PMCID: PMC11036735 DOI: 10.1186/s12967-024-05212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVE Proliferative nodular formation represents a characteristic pathological feature of benign prostatic hyperplasia (BPH) and serves as the primary cause for prostate volume enlargement and consequent lower urinary tract symptoms (LUTS). Its specific mechanism is largely unknown, although several cellular processes have been reported to be involved in BPH initiation and development and highlighted the crucial role of epithelial cells in proliferative nodular formation. However, the technological limitations hinder the in vivo investigation of BPH patients. METHODS The robust cell type decomposition (RCTD) method was employed to integrate spatial transcriptomics and single cell RNA sequencing profiles, enabling the elucidation of epithelial cell alterations during nodular formation. Immunofluorescent and immunohistochemical staining was performed for verification. RESULTS The alterations of epithelial cells during the formation of nodules in BPH was observed, and a distinct subgroup of basal epithelial (BE) cells, referred to as BE5, was identified to play a crucial role in driving this progression through the hypoxia-induced epithelial-mesenchymal transition (EMT) signaling pathway. BE5 served as both the initiating cell during nodular formation and the transitional cell during the transformation from luminal epithelial (LE) to BE cells. A distinguishing characteristic of the BE5 cell subgroup in patients with BPH was its heightened hypoxia and upregulated expression of FOS. Histological verification results confirmed a significant association between c-Fos expression and key biological processes such as hypoxia and cell proliferation, as well as the close relationship between hypoxia and EMT in BPH tissues. Furthermore, a strong link between c-Fos expression and the progression of BPH was also been validated. Additionally, notable functional differences were observed in glandular and stromal nodules regarding BE5 cells, with BE5 in glandular nodules exhibiting enhanced capacities for EMT and cell proliferation characterized by club-like cell markers. CONCLUSIONS This study elucidated the comprehensive landscape of epithelial cells during in vivo nodular formation in patients, thereby offering novel insights into the initiation and progression of BPH.
Collapse
Affiliation(s)
- Xiawei Fei
- Department of Urology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201799, People's Republic of China
| | - Jican Liu
- Department of Pathology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201799, People's Republic of China
| | - Junyan Xu
- University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
- Department of Urology and Andrology, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Hongyan Jing
- Department of Pathology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201799, People's Republic of China
| | - Zhonglin Cai
- Department of Urology and Andrology, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Jiasheng Yan
- Department of Urology and Andrology, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Zhenqi Wu
- Department of Urology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201799, People's Republic of China
| | - Huifeng Li
- Department of Urology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201799, People's Republic of China.
| | - Zhong Wang
- Department of Urology and Andrology, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, People's Republic of China.
| | - Yanting Shen
- Department of Urology and Andrology, Gongli Hospital, the Second Military Medical University, Shanghai, 200135, People's Republic of China.
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
17
|
Hu J, Wu J, Liu X, Zhang Y, Mo L, Liu L, Liu S, Ou C, He Y. Hypoxia enhances autophagy level of human sperms. Sci Rep 2024; 14:8465. [PMID: 38605082 PMCID: PMC11009268 DOI: 10.1038/s41598-024-59213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
The relationship between oxygen sensing and autophagy in human sperms was explored in this study. Health semen and asthenozoospermia (astheno) semen were incubated with hypoxia-inducible factor-1α (HIF-1α) interferents, i.e., lificiguat (YC-1) or cobalt chloride (CoCl2), respectively. Label-free quantitative proteomic technology was used to identify the differentially expressed proteins in human semen under the hypoxia condition. Selected proteins were detected with ELISA. It was found that the autophagy levels of sperm in the YC-1 + health group or CoCl2 + astheno group increased while the vitality decreased. A total of 17, 34 and 35 differentially expressed proteins were observed in the Astheno group, the YC-1 + health group and the CoCl2 + astheno group, respectively. These proteins were primarily associated with protein processing in endoplasmic reticulum, Th17 cell differentiation, progesterone-mediated oocyte maturation, glycolysis/gluconeogenesis, HIF-1 signaling pathway, biosynthesis of amino acids, and carbon metabolism. The expression levels of protein HIF-1α, LC3B, histone H4, cathepsin L and ENO1 changed significantly in the groups. The study suggests that hypoxia can increase sperm autophagy level and reduce their vitality through HIF-1 signaling pathway and glycolysis/gluconeogenesis signaling pathway. Furthermore, proteins histone H4, cathepsin L, glutathione synthetase and ENO1 are proposed as potential biomarkers of autophagy and vitality in asthenozoospermia sperm.
Collapse
Affiliation(s)
- Jie Hu
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China
| | - Jiwei Wu
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China
| | - Xinge Liu
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China
| | - Yan Zhang
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China
| | - Linfeng Mo
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China
- Medicine and Health Science College, Guangzhou Huashang Vocational College, Guangzhou, 511300, Guangdong, China
| | - Liangzhao Liu
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China
| | - Shengxue Liu
- Centre of Reproductive Medicine, Affiliated Hospital of Guilin Medical University, Yiwu Road, Xiufeng District, Guilin, 541001, Guangxi, China
| | - Chaoyan Ou
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China.
| | - Yonghua He
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China.
| |
Collapse
|
18
|
Rizaner N, Fraser SP, Gul IB, Purut E, Djamgoz MBA, Altun S. Lidocaine Inhibits Rat Prostate Cancer Cell Invasiveness and Voltage-Gated Sodium Channel Expression in Plasma Membrane. J Membr Biol 2024; 257:17-24. [PMID: 38165418 DOI: 10.1007/s00232-023-00302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/25/2023] [Indexed: 01/03/2024]
Abstract
There is increasing evidence, mostly from breast cancer, that use of local anaesthetics during surgery can inhibit disease recurrence by suppressing the motility of the cancer cells dependent on inherent voltage-gated sodium channels (VGSCs). Here, the possibility that lidocaine could affect cellular behaviours associated with metastasis was tested using the Dunning cell model of rat prostate cancer. Mostly, the strongly metastatic (VGSC-expressing) Mat-LyLu cells were used under both normoxic and hypoxic conditions. The weakly metastatic AT-2 cells served for comparison in some experiments. Lidocaine (1-500 μM) had no effect on cell viability or growth but suppressed Matrigel invasion dose dependently in both normoxia and hypoxia. Used as a control, tetrodotoxin produced similar effects. Exposure to hypoxia increased Nav1.7 mRNA expression but VGSCα protein level in plasma membrane was reduced. Lidocaine under both normoxia and hypoxia had no effect on Nav1.7 mRNA expression. VGSCα protein expression was suppressed by lidocaine under normoxia but no effect was seen in hypoxia. It is concluded that lidocaine can suppress prostate cancer invasiveness without effecting cellular growth or viability. Extended to the clinic, the results would suggest that use of lidocaine, and possibly other local anaesthetics, during surgery can suppress any tendency for post-operative progression of prostate cancer.
Collapse
Affiliation(s)
- Nahit Rizaner
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
- Biotechnology Research Centre, Cyprus International University, Haspolat, Mersin 10, North Cyprus, Turkey
| | - Scott P Fraser
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Ilknur Bugan Gul
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Esma Purut
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Biotechnology Research Centre, Cyprus International University, Haspolat, Mersin 10, North Cyprus, Turkey.
| | - Seyhan Altun
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Kultur University, Istanbul, 34158, Turkey
| |
Collapse
|
19
|
Zhou J, Lan F, Liu M, Wang F, Ning X, Yang H, Sun H. Hypoxia inducible factor-1ɑ as a potential therapeutic target for osteosarcoma metastasis. Front Pharmacol 2024; 15:1350187. [PMID: 38327979 PMCID: PMC10847273 DOI: 10.3389/fphar.2024.1350187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Osteosarcoma (OS) is a malignant tumor originating from mesenchymal tissue. Pulmonary metastasis is usually present upon initial diagnosis, and metastasis is the primary factor affecting the poor prognosis of patients with OS. Current research shows that the ability to regulate the cellular microenvironment is essential for preventing the distant metastasis of OS, and anoxic microenvironments are important features of solid tumors. During hypoxia, hypoxia-inducible factor-1α (HIF-1α) expression levels and stability increase. Increased HIF-1α promotes tumor vascular remodeling, epithelial-mesenchymal transformation (EMT), and OS cells invasiveness; this leads to distant metastasis of OS cells. HIF-1α plays an essential role in the mechanisms of OS metastasis. In order to develop precise prognostic indicators and potential therapeutic targets for OS treatment, this review examines the molecular mechanisms of HIF-1α in the distant metastasis of OS cells; the signal transduction pathways mediated by HIF-1α are also discussed.
Collapse
Affiliation(s)
- Jianghu Zhou
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fengjun Lan
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Liu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fengyan Wang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
20
|
Qin L, Berk M, Chung YM, Cui D, Zhu Z, Chakraborty AA, Sharifi N. Chronic hypoxia stabilizes 3βHSD1 via autophagy suppression. Cell Rep 2024; 43:113575. [PMID: 38181788 PMCID: PMC10851248 DOI: 10.1016/j.celrep.2023.113575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/02/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
Progression of prostate cancer depends on androgen receptor, which is usually activated by androgens. Therefore, a mainstay treatment is androgen deprivation therapy. Unfortunately, despite initial treatment response, resistance nearly always develops, and disease progresses to castration-resistant prostate cancer (CRPC), which remains driven by non-gonadal androgens synthesized in prostate cancer tissues. 3β-Hydroxysteroid dehydrogenase/Δ5-->4 isomerase 1 (3βHSD1) catalyzes the rate-limiting step in androgen synthesis. However, how 3βHSD1, especially the "adrenal-permissive" 3βHSD1(367T) that permits tumor synthesis of androgen from dehydroepiandrosterone (DHEA), is regulated at the protein level is not well understood. Here, we investigate how hypoxia regulates 3βHSD1(367T) protein levels. Our results show that, in vitro, hypoxia stabilizes 3βHSD1 protein by suppressing autophagy. Autophagy inhibition promotes 3βHSD1-dependent tumor progression. Hypoxia represses transcription of autophagy-related (ATG) genes by decreasing histone acetylation. Inhibiting deacetylase (HDAC) restores ATG gene transcription under hypoxia. Therefore, HDAC inhibition may be a therapeutic target for hypoxic tumor cells.
Collapse
Affiliation(s)
- Liang Qin
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael Berk
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yoon-Mi Chung
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Di Cui
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ziqi Zhu
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Abhishek A Chakraborty
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
21
|
Gonzalez-Avila G, Sommer B, Flores-Soto E, Aquino-Galvez A. Hypoxic Effects on Matrix Metalloproteinases' Expression in the Tumor Microenvironment and Therapeutic Perspectives. Int J Mol Sci 2023; 24:16887. [PMID: 38069210 PMCID: PMC10707261 DOI: 10.3390/ijms242316887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
The tumor microenvironment (TME) is characterized by an acidic pH and low oxygen concentrations. Hypoxia induces neoplastic cell evasion of the immune surveillance, rapid DNA repair, metabolic reprogramming, and metastasis, mainly as a response to the hypoxic inducible factors (HIFs). Likewise, cancer cells increase matrix metalloproteinases' (MMPs) expression in response to TME conditions, allowing them to migrate from the primary tumor to different tissues. Since HIFs and MMPs are augmented in the hypoxic TME, it is easy to consider that HIFs participate directly in their expression regulation. However, not all MMPs have a hypoxia response element (HRE)-HIF binding site. Moreover, different transcription factors and signaling pathways activated in hypoxia conditions through HIFs or in a HIF-independent manner participate in MMPs' transcription. The present review focuses on MMPs' expression in normal and hypoxic conditions, considering HIFs and a HIF-independent transcription control. In addition, since the hypoxic TME causes resistance to anticancer conventional therapy, treatment approaches using MMPs as a target alone, or in combination with other therapies, are also discussed.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico;
| | - Arnoldo Aquino-Galvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| |
Collapse
|
22
|
Teng H, Yang B, Su Y, Chen J, Cui L, Sun R, Zhao J, Liu Q, Qin A. Aminooxyacetic acid hemihydrochloride leads to decreased intracellular ATP levels and altered cell cycle of prostate cancer cells by suppressing energy metabolism. Biomed Pharmacother 2023; 167:115605. [PMID: 37801901 DOI: 10.1016/j.biopha.2023.115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
The second most common cancer among men is prostate cancer, which is also the fifth leading reason for male cancer deaths worldwide. Bone metastases are the main factor affecting the prognosis of prostate cancer. Consequently, antitumor and anti-prostate cancer-induced bone destruction medicines are urgently needed. We previously discovered that aminooxyacetic acid hemihydrochloride (AOAA) suppressed bone resorption and osteoclast growth by decreasing adenosine triphosphate (ATP) production and limiting oxidative phosphorylation (OXPHOS). Here, we evaluated the impacts of AOAA on prostate cancer RM-1 cells in vitro. It's found that AOAA significantly inhibited cell proliferation, migration, and invasiveness, decreased ATP levels, increased ROS, halted the cell cycle phase, and triggered apoptosis. AOAA also decreased mitochondrial membrane potential and the ability to uptake glucose, suggesting that the antitumor effects of AOAA were expressed through the inhibition of OXPHOS and glycolysis. Furthermore, we assessed the effects of AOAA in vivo using a prostate cancer-induced bone osteolysis mice model. AOAA also delayed tumor growth and bone destruction in vivo. On the whole, our findings imply that AOAA may potentially have therapeutic effects on prostate cancer and prostate cancer-induced osteolysis.
Collapse
Affiliation(s)
- Hailong Teng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Biao Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuangang Su
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Junchun Chen
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Lei Cui
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Ran Sun
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China.
| | - An Qin
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China; Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
24
|
Ben-Eltriki M, Gayle EJ, Walker N, Deb S. Pharmacological Significance of Heme Oxygenase 1 in Prostate Cancer. Curr Issues Mol Biol 2023; 45:4301-4316. [PMID: 37232742 DOI: 10.3390/cimb45050273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Heme oxygenase 1 (HO-1) is a detoxifying antioxidant microsomal enzyme that regulates inflammation, apoptosis, cell proliferation, and angiogenesis in prostate cancer (PCa). This makes HO-1 a promising target for therapeutic prevention and treatment due to its anti-inflammatory properties and ability to control redox homeostasis. Clinical evidence highlights the possible correlation between HO-1 expression and PCa growth, aggressiveness, metastasized tumors, resistance to therapy, and poor clinical outcomes. Interestingly, studies have reported anticancer benefits mediated by both HO-1 induction and inhibition in PCa models. Contrasting evidence exists on the role of HO-1 in PCa progression and possible treatment targets. Herein, we provide an overview of available evidence on the clinical significance of HO-1 signaling in PCa. It appears that the beneficial effects of HO-1 induction or inhibition are dependent on whether it is a normal versus malignant cell as well as the intensity (major vs. minor) of the increase in HO-1 enzymatic activity. The current literature evidence indicates that HO-1 has dual effects in PCa. The amount of cellular iron and reactive oxygen species (ROS) can determine the role of HO-1 in PCa. A major increase in ROS enforces HO-1 to a protective role. HO-1 overexpression may provide cryoprotection to normal cells against oxidative stress via suppressing the expression of proinflammatory genes, and thus offer therapeutic prevention. In contrast, a moderate increase in ROS can lead to the perpetrator role of HO-1, which is associated with PCa progression and metastasis. HO-1 inhibition by xenobiotics in DNA-damaged cells tilts the balance to promote apoptosis and inhibit PCa proliferation and metastasis. Overall, the totality of the evidence revealed that HO-1 may play a dual role in the therapeutic prevention and treatment of PCa.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- Department of Pharmacology and Therapeutics, Clinical Pharmacology Lab, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Cochrane Hypertension Review Group, Therapeutic Initiative, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Erysa J Gayle
- College of Biomedical Sciences, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA
| | - Noah Walker
- College of Biomedical Sciences, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|