1
|
de Oliveira LC, de Souza PHR, Barbosa AN, Mineiro LS, Pontes GS. Impact of Exon 1 polymorphism in the MBL2 gene on MBL serum levels and infection susceptibility in acute lymphoid leukemia. Sci Rep 2025; 15:244. [PMID: 39747272 PMCID: PMC11696297 DOI: 10.1038/s41598-024-81971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Polymorphisms in the MBL2 gene exon 1 can decrease serum levels of mannose-binding lectin (MBL), increasing the risk of infection in immunocompromised individuals. This study evaluated the association between the polymorphism in exon 1 of the MBL2 gene, genotypes, serum MBL levels, and infection in 122 patients with acute lymphoid leukemia (ALL). The MBL*A allele exhibited the highest frequency (0.37) within the study population. The MBL*D (0.32) was the predominant variant. The combined frequency of O polymorphic alleles (either B or D) was 0.63. The frequencies of the A/A, A/O and O/O genotypes were 0.13, 0.49 and 0.38, respectively. All patients exhibited consistently low levels of serum MBL, irrespective of their exon 1 genotype. Parasitic infections (n = 103), bacterial (n = 69) and viral (n = 48). A/O genotype (0.49) had higher infection rates, A/A (0.13) had lower rates, and O/O showed increased viral susceptibility (OR: 0.37; 95% CI 0.13-1.06; p = 0.05). Our findings demonstrated that the study population were MBL-deficient, regardless of their MLB2 genotype. Individuals with the A/O genotype had more infections, while those with the O/O genotype appeared more susceptible to viral infections. These findings highlight the impact of MBL levels and genetic variants on infection susceptibility in ALL patients.
Collapse
Affiliation(s)
- Leonardo Calheiros de Oliveira
- Postgraduate Program in Sciences Applied to Hematology, State University of Amazonas, Av. Djalma Batista, 3578-Flores, Manaus, AM, Brazil
- Society, Environment and Health Coordination, Virology and Immunology Laboratory, National Amazon Research Institute, Av. André Araújo, 2.936-Petrópolis, Manaus, AM, Brazil
| | - Paulo Henrique Rodrigues de Souza
- Postgraduate Program in Sciences Applied to Hematology, State University of Amazonas, Av. Djalma Batista, 3578-Flores, Manaus, AM, Brazil
- Society, Environment and Health Coordination, Virology and Immunology Laboratory, National Amazon Research Institute, Av. André Araújo, 2.936-Petrópolis, Manaus, AM, Brazil
| | - Anderson Nogueira Barbosa
- Society, Environment and Health Coordination, Virology and Immunology Laboratory, National Amazon Research Institute, Av. André Araújo, 2.936-Petrópolis, Manaus, AM, Brazil
| | - Luma Silva Mineiro
- Postgraduate Program in Sciences Applied to Hematology, State University of Amazonas, Av. Djalma Batista, 3578-Flores, Manaus, AM, Brazil
- Society, Environment and Health Coordination, Virology and Immunology Laboratory, National Amazon Research Institute, Av. André Araújo, 2.936-Petrópolis, Manaus, AM, Brazil
| | - Gemilson Soares Pontes
- Postgraduate Program in Sciences Applied to Hematology, State University of Amazonas, Av. Djalma Batista, 3578-Flores, Manaus, AM, Brazil.
- Society, Environment and Health Coordination, Virology and Immunology Laboratory, National Amazon Research Institute, Av. André Araújo, 2.936-Petrópolis, Manaus, AM, Brazil.
| |
Collapse
|
2
|
Kovanda A, Lukežič T, Maver A, Vokač Križaj H, Čižek Sajko M, Šelb J, Rijavec M, Bidovec-Stojković U, Bitežnik B, Rituper B, Korošec P, Peterlin B. Genomic Landscape of Susceptibility to Severe COVID-19 in the Slovenian Population. Int J Mol Sci 2024; 25:7674. [PMID: 39062917 PMCID: PMC11277002 DOI: 10.3390/ijms25147674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Determining the genetic contribution of susceptibility to severe SARS-CoV-2 infection outcomes is important for public health measures and individualized treatment. Through intense research on this topic, several hundred genes have been implicated as possibly contributing to the severe infection phenotype(s); however, the findings are complex and appear to be population-dependent. We aimed to determine the contribution of human rare genetic variants associated with a severe outcome of SARS-CoV-2 infections and their burden in the Slovenian population. A panel of 517 genes associated with severe SARS-CoV-2 infection were obtained by combining an extensive review of the literature, target genes identified by the COVID-19 Host Genetic Initiative, and the curated Research COVID-19 associated genes from PanelApp, England Genomics. Whole genome sequencing was performed using PCR-free WGS on DNA from 60 patients hospitalized due to severe COVID-19 disease, and the identified rare genomic variants were analyzed and classified according to the ACMG criteria. Background prevalence in the general Slovenian population was determined by comparison with sequencing data from 8025 individuals included in the Slovenian genomic database (SGDB). Results show that several rare pathogenic/likely pathogenic genomic variants in genes CFTR, MASP2, MEFV, TNFRSF13B, and RNASEL likely contribute to the severe infection outcomes in our patient cohort. These results represent an insight into the Slovenian genomic diversity associated with a severe COVID-19 outcome.
Collapse
Affiliation(s)
- Anja Kovanda
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Lukežič
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Hana Vokač Križaj
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Mojca Čižek Sajko
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Julij Šelb
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
| | | | - Barbara Bitežnik
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
| | - Boštjan Rituper
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
de Andrade LV, de Souza Sá MV, Vasconcelos B, Vasconcelos LRS, Khouri R, de Souza CDF, Armstrong ADC, do Carmo RF. High production MBL2 polymorphisms protect against COVID-19 complications in critically ill patients: A retrospective cohort study. Heliyon 2024; 10:e23670. [PMID: 38187242 PMCID: PMC10770498 DOI: 10.1016/j.heliyon.2023.e23670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Mannose-binding lectin (MBL) binds to SARS-CoV-2, inhibits infection of susceptible cells, and activates the complement system via the lectin pathway. In this study, we investigated the association of MBL2 polymorphisms with the risk of hospitalization and clinical worsening in patients with COVID-19. A total of 550 patients with COVID-19 were included (94 non-hospitalized and 456 hospitalized). Polymorphisms in MBL2 exon 1 (codons 52, 54 and 57) and promoter region (-550, -221, and +4) were determined by real-time PCR. MBL and complement proteins were measured by Luminex. A higher frequency of the H/H genotype and the HYPA haplotype was observed in non-hospitalized patients when compared to hospitalized. In addition, critically ill patients carrying haplotypes associated with high MBL levels (HYPA/HYPA + HYPA/LYPA + HYPA/LYQA + LYPA/LYQA + LYPA/LYPA + LYQA/LYQA + LXPA/HYPA + LXPA/LYQA + LXPA/LYPA) were protected against lower oxygen saturation levels (P = 0.02), use of invasive ventilation use (P = 0.02, OR 0.38), and shock (P = 0.01, OR 0.40), independent of other potential confounders adjusted by multivariate analysis. Our results suggest that variants in MBL2 associated with high MBL levels may play a protective role in the clinical course of COVID-19.
Collapse
Affiliation(s)
- Lorena Viana de Andrade
- Programa de Pós-graduação em Biociências, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Brazil
| | - Mirela Vanessa de Souza Sá
- Colegiado de Ciências Farmacêuticas, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Brazil
| | - Beatriz Vasconcelos
- Instituto de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | | | - Ricardo Khouri
- Instituto de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | | | | | - Rodrigo Feliciano do Carmo
- Programa de Pós-graduação em Biociências, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Brazil
- Colegiado de Ciências Farmacêuticas, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Brazil
| |
Collapse
|
4
|
Scialò F, Cernera G, Esposito S, Pinchera B, Gentile I, Di Domenico M, Bianco A, Pastore L, Amato F, Castaldo G. The MBL2 genotype relates to COVID-19 severity and may help to select the optimal therapy. Clin Chem Lab Med 2023; 61:2143-2149. [PMID: 37313996 DOI: 10.1515/cclm-2023-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Sars-CoV-2 acute infection is clinically heterogeneous, ranging from asymptomatic cases to patients with a severe, systemic clinical course. Among the involved factors age and preexisting morbidities play a major role; genetic host susceptibility contributes to modulating the clinical expression and outcome of the disease. Mannose-binding lectin is an acute-phase protein that activates the lectin-complement pathway, promotes opsonophagocytosis and modulates inflammation, and is involved in several bacterial and viral infections in humans. Understanding its role in Sars-CoV-2 infection could help select a better therapy. METHODS We studied MBL2 haplotypes in 419 patients with acute COVID-19 in comparison to the general population and related the haplotypes to clinical and laboratory markers of severity. RESULTS We recorded an enhanced frequency of MBL2 null alleles in patients with severe acute COVID-19. The homozygous null genotypes were significantly more frequent in patients with advanced WHO score 4-7 (OR of about 4) and related to more severe inflammation, neutrophilia, and lymphopenia. CONCLUSIONS Subjects with a defective MBL2 genotype (i.e., 0/0) are predisposed to a more severe acute Sars-CoV-2 infection; they may benefit from early replacement therapy with recombinant MBL. Furthermore, a subset of subjects with the A/A MBL genotype develop a relevant increase of serum MBL during the early phases of the disease and develop a more severe pulmonary disease; in these patients, the targeting of the complement may help. Therefore, COVID-19 patients should be tested at hospitalization with serum MBL analysis and MBL2 genotype, to define the optimal therapy.
Collapse
Affiliation(s)
- Filippo Scialò
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "L. Vanvitelli", Naples, Italy
- CEINGE-Biotecnologie Avanzate, scarl, Naples, Italy
| | - Gustavo Cernera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, scarl, Naples, Italy
| | | | - Biagio Pinchera
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Marina Di Domenico
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Andrea Bianco
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Lucio Pastore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, scarl, Naples, Italy
| | - Felice Amato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, scarl, Naples, Italy
| | - Giuseppe Castaldo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, scarl, Naples, Italy
| |
Collapse
|