1
|
Shimizu H, Enda K, Koyano H, Shimizu T, Shimodan S, Sato K, Ogawa T, Tanaka S, Iwasaki N, Takahashi D. Bimodal machine learning model for unstable hips in infants: integration of radiographic images with automatically-generated clinical measurements. Sci Rep 2024; 14:17826. [PMID: 39090235 PMCID: PMC11294347 DOI: 10.1038/s41598-024-68484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Bimodal convolutional neural networks (CNNs) are frequently combined with patient information or several medical images to enhance the diagnostic performance. However, the technologies that integrate automatically generated clinical measurements within the images are scarce. Hence, we developed a bimodal model that produced automatic algorithm for clinical measurement (aaCM) from radiographic images and integrated the model with CNNs. In this multicenter research project, the diagnostic performance of the model was investigated with 813 radiographic hip images of infants at risk of developmental dysplasia of the hips (232 and 581 images of unstable and stable hips, respectively), with the ground truth defined by provocative examinations. The results indicated that the accuracy of aaCM was equal or higher than that of specialists, and the bimodal model showed better diagnostic performance than LightGBM, XGBoost, SVM, and single CNN models. aaCM can provide expert's knowledge in a high level, and our proposed bimodal model has better performance than the state-of-art models.
Collapse
Affiliation(s)
- Hirokazu Shimizu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Cancer Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ken Enda
- Department of Cancer Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hidenori Koyano
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomohiro Shimizu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shun Shimodan
- Department of Orthopaedic Surgery, Kushiro City General Hospital, Kushiro, Hokkaido, Japan
| | - Komei Sato
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takuya Ogawa
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Daisuke Takahashi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
2
|
Hoyos K, Hoyos W. Supporting Malaria Diagnosis Using Deep Learning and Data Augmentation. Diagnostics (Basel) 2024; 14:690. [PMID: 38611603 PMCID: PMC11012121 DOI: 10.3390/diagnostics14070690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Malaria is an infection caused by the Plasmodium parasite that has a major epidemiological, social, and economic impact worldwide. Conventional diagnosis of the disease is based on microscopic examination of thick blood smears. This analysis can be time-consuming, which is key to generate prevention strategies and adequate treatment to avoid the complications associated with the disease. To address this problem, we propose a deep learning-based approach to detect not only malaria parasites but also leukocytes to perform parasite/μL blood count. We used positive and negative images with parasites and leukocytes. We performed data augmentation to increase the size of the dataset. The YOLOv8 algorithm was used for model training and using the counting formula the parasites were counted. The results showed the ability of the model to detect parasites and leukocytes with 95% and 98% accuracy, respectively. The time spent by the model to report parasitemia is significantly less than the time spent by malaria experts. This type of system would be supportive for areas with poor access to health care. We recommend validation of such approaches on a large scale in health institutions.
Collapse
Affiliation(s)
- Kenia Hoyos
- Human Clinical Laboratory, Social Health Clinic, Sincelejo 700001, Colombia;
| | - William Hoyos
- Sustainable and Intelligent Engineering Research Group, Cooperative University of Colombia, Montería 230002, Colombia
- R&D&I in ICT, EAFIT University, Medellín 050022, Colombia
- Microbiological and Biomedical Research Group of Cordoba, University of Córdoba, Montería 230002, Colombia
| |
Collapse
|
3
|
Thanchomnang T, Chaibutr N, Maleewong W, Janwan P. Automatic detection of Opisthorchis viverrini egg in stool examination using convolutional-based neural networks. PeerJ 2024; 12:e16773. [PMID: 38313031 PMCID: PMC10836206 DOI: 10.7717/peerj.16773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 02/06/2024] Open
Abstract
Background Human opisthorchiasis is a dangerous infectious chronic disease distributed in many Asian areas in the water-basins of large rivers, Siberia, and Europe. The gold standard for human opisthorchiasis laboratory diagnosis is the routine examination of Opisthorchis spp. eggs under a microscope. Manual detection is laborious, time-consuming, and dependent on the microscopist's abilities and expertise. Automatic screening of Opisthorchis spp. eggs with deep learning techniques is a useful diagnostic aid. Methods Herein, we propose a convolutional neural network (CNN) for classifying and automatically detecting O. viverrini eggs from digitized images. The image data acquisition was acquired from infected human feces and was processed using the gold standard formalin ethyl acetate concentration technique, and then captured under the microscope digital camera at 400x. Microscopic images containing artifacts and O.viverrini egg were augmented using image rotation, filtering, noising, and sharpening techniques. This augmentation increased the image dataset from 1 time to 36 times in preparation for the training and validation step. Furthermore, the overall dataset was subdivided into a training-validation and test set at an 80:20 ratio, trained with a five-fold cross-validation to test model stability. For model training, we customized a CNN for image classification. An object detection method was proposed using a patch search algorithm to detect eggs and their locations. A performance matrix was used to evaluate model efficiency after training and IoU analysis for object detection. Results The proposed model, initially trained on non-augmented data of artifacts (class 0) and O. viverrini eggs (class 1), showed limited performance with 50.0% accuracy, 25.0% precision, 50.0% recall, and a 33.0% F1-score. After implementing data augmentation, the model significantly improved, reaching 100% accuracy, precision, recall, and F1-score. Stability assessments using 5-fold cross-validation indicated better stability with augmented data, evidenced by an ROC-AUC metric improvement from 0.5 to 1.00. Compared to other models such as ResNet50, InceptionV3, VGG16, DenseNet121, and Xception, the proposed model, with a smaller file size of 2.7 MB, showed comparable perfect performance. In object detection, the augmented data-trained model achieved an IoU score over 0.5 in 139 out of 148 images, with an average IoU of 0.6947. Conclusion This study demonstrated the successful application of CNN in classifying and automating the detection of O. viverrini eggs in human stool samples. Our CNN model's performance metrics and true positive detection rates were outstanding. This innovative application of deep learning can automate and improve diagnostic precision, speed, and efficiency, particularly in regions where O. viverrini infections are prevalent, thereby possibly improving infection sustainable control and treatment program.
Collapse
Affiliation(s)
| | - Natthanai Chaibutr
- Medical Innovation and Technology Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Penchom Janwan
- Medical Innovation and Technology Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
4
|
Leo M, Carcagnì P, Signore L, Corcione F, Benincasa G, Laukkanen MO, Distante C. Convolutional Neural Networks in the Diagnosis of Colon Adenocarcinoma. AI 2024; 5:324-341. [DOI: 10.3390/ai5010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Colorectal cancer is one of the most lethal cancers because of late diagnosis and challenges in the selection of therapy options. The histopathological diagnosis of colon adenocarcinoma is hindered by poor reproducibility and a lack of standard examination protocols required for appropriate treatment decisions. In the current study, using state-of-the-art approaches on benchmark datasets, we analyzed different architectures and ensembling strategies to develop the most efficient network combinations to improve binary and ternary classification. We propose an innovative two-stage pipeline approach to diagnose colon adenocarcinoma grading from histological images in a similar manner to a pathologist. The glandular regions were first segmented by a transformer architecture with subsequent classification using a convolutional neural network (CNN) ensemble, which markedly improved the learning efficiency and shortened the learning time. Moreover, we prepared and published a dataset for clinical validation of the developed artificial neural network, which suggested the discovery of novel histological phenotypic alterations in adenocarcinoma sections that could have prognostic value. Therefore, AI could markedly improve the reproducibility, efficiency, and accuracy of colon cancer diagnosis, which are required for precision medicine to personalize the treatment of cancer patients.
Collapse
Affiliation(s)
- Marco Leo
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR) of Italy, 73100 Lecce, Italy
| | - Pierluigi Carcagnì
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR) of Italy, 73100 Lecce, Italy
| | - Luca Signore
- Dipartimento di Ingegneria per L’Innovazione, Università del Salento, 73100 Lecce, Italy
| | | | | | - Mikko O. Laukkanen
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Cosimo Distante
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR) of Italy, 73100 Lecce, Italy
- Dipartimento di Ingegneria per L’Innovazione, Università del Salento, 73100 Lecce, Italy
| |
Collapse
|
5
|
Hemachandran K, Alasiry A, Marzougui M, Ganie SM, Pise AA, Alouane MTH, Chola C. Performance Analysis of Deep Learning Algorithms in Diagnosis of Malaria Disease. Diagnostics (Basel) 2023; 13:diagnostics13030534. [PMID: 36766640 PMCID: PMC9914762 DOI: 10.3390/diagnostics13030534] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Malaria is predominant in many subtropical nations with little health-monitoring infrastructure. To forecast malaria and condense the disease's impact on the population, time series prediction models are necessary. The conventional technique of detecting malaria disease is for certified technicians to examine blood smears visually for parasite-infected RBC (red blood cells) underneath a microscope. This procedure is ineffective, and the diagnosis depends on the individual performing the test and his/her experience. Automatic image identification systems based on machine learning have previously been used to diagnose malaria blood smears. However, so far, the practical performance has been insufficient. In this paper, we have made a performance analysis of deep learning algorithms in the diagnosis of malaria disease. We have used Neural Network models like CNN, MobileNetV2, and ResNet50 to perform this analysis. The dataset was extracted from the National Institutes of Health (NIH) website and consisted of 27,558 photos, including 13,780 parasitized cell images and 13,778 uninfected cell images. In conclusion, the MobileNetV2 model outperformed by achieving an accuracy rate of 97.06% for better disease detection. Also, other metrics like training and testing loss, precision, recall, fi-score, and ROC curve were calculated to validate the considered models.
Collapse
Affiliation(s)
- K. Hemachandran
- Department of Analytics, School of Business, Woxsen University, Hyderabad 502345, Telangana, India
| | - Areej Alasiry
- College of Computer Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Mehrez Marzougui
- College of Computer Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Shahid Mohammad Ganie
- Department of Analytics, School of Business, Woxsen University, Hyderabad 502345, Telangana, India
| | - Anil Audumbar Pise
- Siatik Premier Google Cloud Platform Partner, Johannesburg 2000, South Africa
- School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg 2000, South Africa
- School Saveetha School of Engineering, Chennai 600124, Tamil Nadu, India
| | - M. Turki-Hadj Alouane
- College of Computer Science, King Khalid University, Abha 62529, Saudi Arabia
- Correspondence:
| | - Channabasava Chola
- Department of Studies in Computer Science, University of Mysore, Manasagangothri, Mysore 570006, Karnataka, India
| |
Collapse
|
6
|
Ferreras A, Sumalla-Cano S, Martínez-Licort R, Elío I, Tutusaus K, Prola T, Vidal-Mazón JL, Sahelices B, de la Torre Díez I. Systematic Review of Machine Learning applied to the Prediction of Obesity and Overweight. J Med Syst 2023; 47:8. [PMID: 36637549 DOI: 10.1007/s10916-022-01904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/15/2022] [Indexed: 01/14/2023]
Abstract
Obesity and overweight has increased in the last year and has become a pandemic disease, the result of sedentary lifestyles and unhealthy diets rich in sugars, refined starches, fats and calories. Machine learning (ML) has proven to be very useful in the scientific community, especially in the health sector. With the aim of providing useful tools to help nutritionists and dieticians, research focused on the development of ML and Deep Learning (DL) algorithms and models is searched in the literature. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol has been used, a very common technique applied to carry out revisions. In our proposal, 17 articles have been filtered in which ML and DL are applied in the prediction of diseases, in the delineation of treatment strategies, in the improvement of personalized nutrition and more. Despite expecting better results with the use of DL, according to the selected investigations, the traditional methods are still the most used and the yields in both cases fluctuate around positive values, conditioned by the databases (transformed in each case) to a greater extent than by the artificial intelligence paradigm used. Conclusions: An important compilation is provided for the literature in this area. ML models are time-consuming to clean data, but (like DL) they allow automatic modeling of large volumes of data which makes them superior to traditional statistics.
Collapse
Affiliation(s)
- Antonio Ferreras
- Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén 15, Valladolid, 47011, Spain
| | - Sandra Sumalla-Cano
- Research Group on Foods, Nutritional Biochemistry and Health, European University of the Atlantic, Santander, 39011, Spain
- Department of Health, Nutrition and Sport, Iberoamerican International University, Campeche, 24560, Mexico
| | - Rosmeri Martínez-Licort
- Telemedicine and eHealth Research Group, Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén 15, Valladolid, 47011, Spain.
- Department of Telecommunications, University of Pinar del Río, Pinar del Río, Cuba.
| | - Iñaki Elío
- Research Group on Foods, Nutritional Biochemistry and Health, European University of the Atlantic, Santander, 39011, Spain
- Department of Health, Nutrition and Sport, Iberoamerican International University, Campeche, 24560, Mexico
| | - Kilian Tutusaus
- Higher Polytechnic School, European University of the Atlantic, Santander, 39011, Spain
- Higher Polytechnic School, Iberoamerican International University, Campeche, 24560, Mexico
| | - Thomas Prola
- Faculty of Social Sciences and Humanites, European University of the Atlantic, Santander, Spain
| | - Juan Luís Vidal-Mazón
- Higher Polytechnic School, European University of the Atlantic, Santander, 39011, Spain
- Higher Polytechnic School, International University of Cuanza, Estrada nacional 250, Cuito-Bié, Angola
- Higher Polytechnic School, Iberoamerican International University, Arecibo, 00613, Puerto Rico
| | - Benjamín Sahelices
- Research group GCME, Department of Computer Science, University of Valladolid, Paseo de Belén 15, Valladolid, 47011, Spain
| | - Isabel de la Torre Díez
- Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén 15, Valladolid, 47011, Spain
| |
Collapse
|
7
|
Amin J, Sharif M, Mallah GA, Fernandes SL. An optimized features selection approach based on Manta Ray Foraging Optimization (MRFO) method for parasite malaria classification. Front Public Health 2022; 10:969268. [PMID: 36148344 PMCID: PMC9486170 DOI: 10.3389/fpubh.2022.969268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Malaria is a serious and lethal disease that has been reported by the World Health Organization (WHO), with an estimated 219 million new cases and 435,000 deaths globally. The most frequent malaria detection method relies mainly on the specialists who examine the samples under a microscope. Therefore, a computerized malaria diagnosis system is required. In this article, malaria cell segmentation and classification methods are proposed. The malaria cells are segmented using a color-based k-mean clustering approach on the selected number of clusters. After segmentation, deep features are extracted using pre-trained models such as efficient-net-b0 and shuffle-net, and the best features are selected using the Manta-Ray Foraging Optimization (MRFO) method. Two experiments are performed for classification using 10-fold cross-validation, the first experiment is based on the best features selected from the pre-trained models individually, while the second experiment is performed based on the selection of best features from the fusion of extracted features using both pre-trained models. The proposed method provided an accuracy of 99.2% for classification using the linear kernel of the SVM classifier. An empirical study demonstrates that the fused features vector results are better as compared to the individual best-selected features vector and the existing latest methods published so far.
Collapse
Affiliation(s)
- Javeria Amin
- Department of Computer Science, University of Wah, Wah Cantt, Pakistan,*Correspondence: Javeria Amin
| | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ghulam Ali Mallah
- Department of Computer Science, Shah Abdul Latif University, Khairpur, Pakistan
| | - Steven L. Fernandes
- Department of Computer Science, Design and Journalism, Creighton University, Omaha, NE, United States
| |
Collapse
|
8
|
Zhu Z, Wang S, Zhang Y. ROENet: A ResNet-Based Output Ensemble for Malaria Parasite Classification. ELECTRONICS 2022; 11:2040. [PMID: 36567678 PMCID: PMC7613984 DOI: 10.3390/electronics11132040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background (1)People may be infected with an insect-borne disease (malaria) through the blood input of malaria-infected people or the bite of Anopheles mosquitoes. Doctors need a lot of time and energy to diagnose malaria, and sometimes the results are not ideal. Many researchers use CNN to classify malaria images. However, we believe that the classification performance of malaria parasites can be improved. Methods (2)In this paper, we propose a novel method (ROENet) to automatically classify malaria parasite on the blood smear. The backbone of ROENet is the pretrained ResNet-18. We use randomized neural networks (RNNs) as the classifier in our proposed model. Three RNNs are used in ROENet, which are random vector functional link (RVFL), Schmidt neural network (SNN), and extreme learning machine (ELM). To improve the performance of ROENet, the results of ROENet are the ensemble outputs from three RNNs. Results (3)We evaluate the proposed ROENet by five-fold cross-validation. The specificity, F1 score, sensitivity, and accuracy are 96.68 ± 3.81%, 95.69 ± 2.65%, 94.79 ± 3.71%, and 95.73 ± 2.63%, respectively. Conclusions (4)The proposed ROENet is compared with other state-of-the-art methods and provides the best results of these methods.
Collapse
Affiliation(s)
- Ziquan Zhu
- School of Computing and Mathematical Sciences, University of Leicester, East Midlands, Leicester, LE1 7RH, UK
| | - ShuiHua Wang
- School of Computing and Mathematical Sciences, University of Leicester, East Midlands, Leicester, LE1 7RH, UK
- Correspondence: (S.-H.W.); (Y.-D.Z.)
| | - YuDong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, East Midlands, Leicester, LE1 7RH, UK
- Correspondence: (S.-H.W.); (Y.-D.Z.)
| |
Collapse
|