1
|
Ghorbel D, Amouri I, Khemekhem N, Neji S, Trabelsi H, Elloumi M, Sellami H, Makni F, Ayadi A, Hadrich I. Investigation of Azole Resistance Involving cyp51A and cyp51B Genes in Clinical Aspergillus flavus Isolates. Pol J Microbiol 2024; 73:131-142. [PMID: 38700908 PMCID: PMC11192525 DOI: 10.33073/pjm-2024-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/03/2023] [Indexed: 06/22/2024] Open
Abstract
This study aimed to investigate azole resistance mechanisms in Aspergillus flavus, which involve cyp51A and cyp51B genes. Real-time Reverse Transcriptase qPCR method was applied to determine the overexpression of cyp51A and cyp51B genes for 34 A. flavus isolates. PCR sequencing of these two genes was used to detect the presence of gene mutations. Susceptibility test found sensitivity to voriconazole (VOR) in all strains. 14.7% and 8.8% of isolates were resistant to itraconazole (IT) and posaconazole (POS), respectively, with a cross-resistance in 5.8%. For the double resistant isolates (IT/POS), the expression of cyp51A was up to 17-fold higher. PCR sequencing showed the presence of 2 mutations in cyp51A: a synonymous point mutation (P61P) in eight isolates, which did not affect the structure of CYP51A protein, and another non synonymous mutation (G206L) for only the TN-33 strain (cross IT/POS resistance) causing an amino acid change in the protein sequence. However, we noted in cyp51B the presence of the only non-synonymous mutation (L177G) causing a change in amino acids in the protein sequence for the TN-31 strain, which exhibits IT/POS cross-resistance. A short single intron of 67 bp was identified in the cyp51A gene, whereas three short introns of 54, 53, and 160 bp were identified in the cyp51B gene. According to the models provided by PatchDock software, the presence of non-synonymous mutations did not affect the interaction of CYP51A and CYP51B proteins with antifungals. In our study, the overexpression of the cyp51A and cyp51B genes is the primary mechanism responsible for resistance in A. flavus collection. Nevertheless, other resistance mechanisms can be involved.
Collapse
Affiliation(s)
- Dhoha Ghorbel
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Imen Amouri
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Nahed Khemekhem
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Sourour Neji
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Houaida Trabelsi
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Moez Elloumi
- Haematology Department, UH Hedi Chaker, Sfax, Tunisia
| | - Hayet Sellami
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Fattouma Makni
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Ali Ayadi
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Ines Hadrich
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
- Faculty of Science, University of Gabes, Gabes, Tunisia
| |
Collapse
|
2
|
Pekmezovic M, Kalagasidis Krusic M, Malagurski I, Milovanovic J, Stępień K, Guzik M, Charifou R, Babu R, O’Connor K, Nikodinovic-Runic J. Polyhydroxyalkanoate/Antifungal Polyene Formulations with Monomeric Hydroxyalkanoic Acids for Improved Antifungal Efficiency. Antibiotics (Basel) 2021; 10:737. [PMID: 34207011 PMCID: PMC8234488 DOI: 10.3390/antibiotics10060737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Novel biodegradable and biocompatible formulations of "old" but "gold" drugs such as nystatin (Nys) and amphotericin B (AmB) were made using a biopolymer as a matrix. Medium chain length polyhydroxyalkanoates (mcl-PHA) were used to formulate both polyenes (Nys and AmB) in the form of films (~50 µm). Thermal properties and stability of the materials were not significantly altered by the incorporation of polyenes in mcl-PHA, but polyene containing materials were more hydrophobic. These formulations were tested in vitro against a panel of pathogenic fungi and for antibiofilm properties. The films containing 0.1 to 2 weight % polyenes showed good activity and sustained polyene release for up to 4 days. A PHA monomer, namely 3-hydroxydecanoic acid (C10-OH), was added to the films to achieve an enhanced synergistic effect with polyenes against fungal growth. Mcl-PHA based polyene formulations showed excellent growth inhibitory activity against both Candida yeasts (C. albicans ATCC 1023, C. albicans SC5314 (ATCC MYA-2876), C. parapsilosis ATCC 22019) and filamentous fungi (Aspergillus fumigatus ATCC 13073; Trichophyton mentagrophytes ATCC 9533, Microsporum gypseum ATCC 24102). All antifungal PHA film preparations prevented the formation of a C. albicans biofilm, while they were not efficient in eradication of mature biofilms, rendering them suitable for the transdermal application or as coatings of implants.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11221 Belgrade, Serbia; (M.P.); (I.M.); (J.M.)
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Beutenberstrasse 11a, 07745 Jena, Germany
| | - Melina Kalagasidis Krusic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Ivana Malagurski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11221 Belgrade, Serbia; (M.P.); (I.M.); (J.M.)
| | - Jelena Milovanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11221 Belgrade, Serbia; (M.P.); (I.M.); (J.M.)
| | - Karolina Stępień
- Centre for Preclinical Research and Technology, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Romina Charifou
- AMBER Centre, CRANN Institute, School of Chemistry, Trinity College Dublin, D2 Dublin, Ireland; (R.C.); (R.B.)
| | - Ramesh Babu
- AMBER Centre, CRANN Institute, School of Chemistry, Trinity College Dublin, D2 Dublin, Ireland; (R.C.); (R.B.)
| | - Kevin O’Connor
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Belfield, D4 Dublin 4, Ireland;
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, D4 Dublin 4, Ireland
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, D4 Dublin 4, Ireland
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11221 Belgrade, Serbia; (M.P.); (I.M.); (J.M.)
| |
Collapse
|
3
|
Design, synthesis, and structure-activity relationship studies of novel triazole agents with strong antifungal activity against Aspergillus fumigatus. Bioorg Med Chem Lett 2020; 30:126951. [DOI: 10.1016/j.bmcl.2020.126951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 11/22/2022]
|
4
|
Szalewski DA, Hinrichs VS, Zinniel DK, Barletta RG. The pathogenicity ofAspergillus fumigatus, drug resistance, and nanoparticle delivery. Can J Microbiol 2018; 64:439-453. [DOI: 10.1139/cjm-2017-0749] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genus Aspergillus includes fungal species that cause major health issues of significant economic importance. These microorganisms are also the culprit for production of carcinogenic aflatoxins in grain storages, contaminating crops, and economically straining the production process. Aspergillus fumigatus is a very important pathogenic species, being responsible for high human morbidity and mortality on a global basis. The prevalence of these infections in immunosuppressed individuals is on the rise, and physicians struggle with the diagnosis of these deadly pathogens. Several virulence determinants facilitate fungal invasion and evasion of the host immune response. Metabolic functions are also important for virulence and drug resistance, since they allow fungi to obtain nutrients for their own survival and growth. Following a positive diagnostic identification, mortality rates remain high due, in part, to emerging resistance to frequently used antifungal drugs. In this review, we discuss the role of the main virulence, drug target, and drug resistance determinants. We conclude with the review of new technologies being developed to treat aspergillosis. In particular, microsphere and nanoparticle delivery systems are discussed in the context of improving drug bioavailability. Aspergillus will likely continue to cause problematic infections in immunocompromised patients, so it is imperative to improve treatment options.
Collapse
Affiliation(s)
- David A. Szalewski
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE 68583-0726, USA
- Department of Microbiology, University of Nebraska, Lincoln, NE 68588-0664, USA
| | - Victoria S. Hinrichs
- College of Agricultural Sciences and Natural Resources, University of Nebraska, Lincoln, NE 68583-0702, USA
| | - Denise K. Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0905, USA
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0905, USA
| |
Collapse
|
5
|
Wu J, Ni T, Chai X, Wang T, Wang H, Chen J, Jin Y, Zhang D, Yu S, Jiang Y. Molecular docking, design, synthesis and antifungal activity study of novel triazole derivatives. Eur J Med Chem 2017; 143:1840-1846. [PMID: 29133044 DOI: 10.1016/j.ejmech.2017.10.081] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Abstract
The incidence of life-threatening fungal infections has dramatically increased for decades. In order to develop novel antifungal agents, two series of (2R,3R)-1-(1H-1,2,4-triazol-1-yl)-2-(2,4-difluorophenyl)-3-(N-substitutied)-2-butanols (3a-o, 5a-f, 8a-u), which were analogues of voriconazole, were designed, synthesized and characterized by 1H NMR, 13C NMR and HRMS. The MIC80 values showed that the target compounds 3a-o indicated better activities than fluconazole on three important fungal pathogens except for 3i. Significant activity of compounds 3d, 3k, 3n, 3m and 3o was observed on the Aspergillus fumigatus strain (MIC80 range: 1-0.125 μg/ml). Especially, compound 3k had strong activity to inhibit the growth of ten fungal pathogens. But it didn't exhibit good activity in in vivo value. Molecular docking experiments demonstrated that 3k possessed superior affinity with target enzyme by strong hydrogen bond from morpholine ring.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Student Bridge, Second Military Medical University, Shanghai 200433, China
| | - Tingjunhong Ni
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ting Wang
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hongrui Wang
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jindong Chen
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yongsheng Jin
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Dazhi Zhang
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Shichong Yu
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yuanying Jiang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
6
|
Marshall AC, Kroker AJ, Murray LA, Gronthos K, Rajapaksha H, Wegener KL, Bruning JB. Structure of the sliding clamp from the fungal pathogen
Aspergillus fumigatus
(Afum
PCNA
) and interactions with Human p21. FEBS J 2017; 284:985-1002. [DOI: 10.1111/febs.14035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/16/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Andrew C. Marshall
- School of Biological Sciences The University of Adelaide South Australia Australia
| | - Alice J. Kroker
- School of Biological Sciences The University of Adelaide South Australia Australia
| | - Lauren A.M. Murray
- School of Biological Sciences The University of Adelaide South Australia Australia
| | - Kahlia Gronthos
- School of Biological Sciences The University of Adelaide South Australia Australia
| | - Harinda Rajapaksha
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Life Science La Trobe University Bundoora Australia
| | - Kate L. Wegener
- School of Biological Sciences The University of Adelaide South Australia Australia
| | - John B. Bruning
- School of Biological Sciences The University of Adelaide South Australia Australia
| |
Collapse
|
7
|
Fuji S, Löffler J, Einsele H, Kapp M. Immunotherapy for opportunistic infections: Current status and future perspectives. Virulence 2016; 7:939-949. [PMID: 27385102 DOI: 10.1080/21505594.2016.1207038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The outcome after allogeneic haematopoietic stem cell transplantation (allo-HSCT) has significantly improved during the last decades. However, opportunistic infections such as viral and mold infections are still a major obstacle for cure. Within this field, adoptive T cell therapy against pathogens is a promising treatment approach. Recently, the techniques to develop T cell products including pathogen-specific T cells have been sophisticated and are now available in accordance to good manufacturing practice (GMP). Here, we aim to summarize current knowledge about adoptive T cell therapy against viral and mold infections.
Collapse
Affiliation(s)
- Shigeo Fuji
- a Department of Haematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan.,b Department of Internal Medicine II , Division of Hematology/Oncology, University Hospital of Würzburg , Würzburg , Germany
| | - Jürgen Löffler
- b Department of Internal Medicine II , Division of Hematology/Oncology, University Hospital of Würzburg , Würzburg , Germany
| | - Hermann Einsele
- b Department of Internal Medicine II , Division of Hematology/Oncology, University Hospital of Würzburg , Würzburg , Germany
| | - Markus Kapp
- b Department of Internal Medicine II , Division of Hematology/Oncology, University Hospital of Würzburg , Würzburg , Germany
| |
Collapse
|
8
|
Oremland M, Michels KR, Bettina AM, Lawrence C, Mehrad B, Laubenbacher R. A computational model of invasive aspergillosis in the lung and the role of iron. BMC SYSTEMS BIOLOGY 2016; 10:34. [PMID: 27098278 PMCID: PMC4839115 DOI: 10.1186/s12918-016-0275-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022]
Abstract
Background Invasive aspergillosis is a severe infection of immunocompromised hosts, caused by the inhalation of the spores of the ubiquitous environmental molds of the Aspergillus genus. The innate immune response in this infection entails a series of complex and inter-related interactions between multiple recruited and resident cell populations with each other and with the fungal cell; in particular, iron is critical for fungal growth. Results A computational model of invasive aspergillosis is presented here; the model can be used as a rational hypothesis-generating tool to investigate host responses to this infection. Using a combination of laboratory data and published literature, an in silico model of a section of lung tissue was generated that includes an alveolar duct, adjacent capillaries, and surrounding lung parenchyma. The three-dimensional agent-based model integrates temporal events in fungal cells, epithelial cells, monocytes, and neutrophils after inhalation of spores with cellular dynamics at the tissue level, comprising part of the innate immune response. Iron levels in the blood and tissue play a key role in the fungus’ ability to grow, and the model includes iron recruitment and consumption by the different types of cells included. Parameter sensitivity analysis suggests the model is robust with respect to unvalidated parameters, and thus is a viable tool for an in silico investigation of invasive aspergillosis. Conclusions Using laboratory data from a mouse model of invasive aspergillosis in the context of transient neutropenia as validation, the model predicted qualitatively similar time course changes in fungal burden, monocyte and neutrophil populations, and tissue iron levels. This model lays the groundwork for a multi-scale dynamic mathematical model of the immune response to Aspergillus species. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0275-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew Oremland
- Mathematical Biosciences Institute, Ohio State University, 1735 Neil Ave, Columbus OH, USA.
| | - Kathryn R Michels
- University of Virginia, Pulmonary and Critical Care Medicine, Charlottesville VA, USA
| | - Alexandra M Bettina
- University of Virginia, Pulmonary and Critical Care Medicine, Charlottesville VA, USA
| | - Chris Lawrence
- Virginia Bioinformatics Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg VA, USA
| | - Borna Mehrad
- University of Virginia, Pulmonary and Critical Care Medicine, Charlottesville VA, USA
| | - Reinhard Laubenbacher
- Center for Quantitative Medicine, University of Connecticut Health Center, 236 Farmington Ave, Farmington CT, USA.,Jackson Laboratory for Genomic Medicine, 236 Farmington Ave, Farmington CT, USA
| |
Collapse
|
9
|
Sanguinetti M, Posteraro B. Diagnostic of Fungal Infections Related to Biofilms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:63-82. [PMID: 27300347 DOI: 10.1007/5584_2016_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fungal biofilm-related infections, most notably those caused by the Candida and Aspergillus genera, need to be diagnosed accurately and rapidly to avoid often unfavorable outcomes. Despite diagnosis of these infections is still based on the traditional histopathology and culture, the use of newer, rapid methods has enormously enhanced the diagnostic capability of a modern clinical mycology laboratory. Thus, while accurate species-level identification of fungal isolates can be achieved with turnaround times considerably shortened, nucleic acid-based or antigen-based detection methods can be considered useful adjuncts for the diagnosis of invasive forms of candidiasis and aspergillosis. Furthermore, simple, reproducible, and fast methods have been developed to quantify biofilm production by fungal isolates in vitro. In this end, isolates can be categorized as low, moderate, or high biofilm-forming, and this categorization may reflect their differential response to the conventional antifungal therapy. By means of drug susceptibility testing performed on fungal biofilm-growing isolates, it is now possible to evaluate not only the activity of conventional antifungal agents, but also of novel anti-biofilm agents. Despite this, future diagnostic methods need to target specific biofilm components/molecules, in order to provide a direct proof of the presence of this growth phenotype on the site of infection. In the meantime, our knowledge of the processes underlying the adaptive drug resistance within the biofilm has put into evidence biofilm-specific molecules that could be potentially helpful as therapeutic targets. Surely, the successful management of clinically relevant fungal biofilms will rely upon the advancement and/or refinement of these approaches.
Collapse
Affiliation(s)
| | - Brunella Posteraro
- Institute of Public Health (Section of Hygiene), Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
10
|
Cao X, Xu Y, Cao Y, Wang R, Zhou R, Chu W, Yang Y. Design, synthesis, and structure-activity relationship studies of novel thienopyrrolidone derivatives with strong antifungal activity against Aspergillus fumigates. Eur J Med Chem 2015; 102:471-6. [PMID: 26310892 DOI: 10.1016/j.ejmech.2015.08.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 11/16/2022]
Abstract
In order to further enhance the anti-Aspergillus efficacy of our previously discovered antifungal lead compounds (I), two series of novel azoles featuring thieno[2,3-c]pyrrolidone and thieno[3,2-c]pyrrolidone nuclei were designed and evaluated for their in vitro activity on the basis of the binding mode of albaconazole using molecular docking, along with SARs of antifungal triazoles. Most of target compounds exhibited excellent activity against Candida and Cryptococcus spp., with MIC values in the range of 0.0625 μg/ml to 0.0156 μg/ml. The thieno[3,2-c]pyrrolidone unit was more suited for improving activity against Aspergillus spp. The most potent compound, 18a, was selected for further development due to its significant in vitro activity against Aspergillus spp. (MIC = 0.25 μg/ml), as well as its high metabolic stability in human liver microsomes.
Collapse
Affiliation(s)
- Xufeng Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 555 Zuchong Zhi Road, Shanghai 201203, China
| | - Yuanyuan Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 555 Zuchong Zhi Road, Shanghai 201203, China
| | - Yongbing Cao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Ruilian Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Ran Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchong Zhi Road, Shanghai 201203, China
| | - Wenjing Chu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 555 Zuchong Zhi Road, Shanghai 201203, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 555 Zuchong Zhi Road, Shanghai 201203, China.
| |
Collapse
|
11
|
Ambasta A, Carson J, Church DL. The use of biomarkers and molecular methods for the earlier diagnosis of invasive aspergillosis in immunocompromised patients. Med Mycol 2015; 53:531-57. [DOI: 10.1093/mmy/myv026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
|
12
|
Paulussen C, Boulet G, Bosschaerts T, Cos P, Fortin A, Maes L. Efficacy of oleylphosphocholine (OlPC)in vitroand in a mouse model of invasive aspergillosis. Mycoses 2015; 58:127-32. [DOI: 10.1111/myc.12286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/21/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Caroline Paulussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH); Faculty of Pharmaceutical, Biomedical and Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | - Gaëlle Boulet
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH); Faculty of Pharmaceutical, Biomedical and Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | | | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH); Faculty of Pharmaceutical, Biomedical and Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | - Anny Fortin
- Dafra Pharma Research & Development; Turnhout Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH); Faculty of Pharmaceutical, Biomedical and Veterinary Sciences; University of Antwerp; Antwerp Belgium
| |
Collapse
|
13
|
Marquez J, Espinoza LR. Infectious arthritis II. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Singh S, Dabur R, Gatne MM, Singh B, Gupta S, Pawar S, Sharma SK, Sharma GL. In vivo efficacy of a synthetic coumarin derivative in a murine model of aspergillosis. PLoS One 2014; 9:e103039. [PMID: 25140804 PMCID: PMC4139195 DOI: 10.1371/journal.pone.0103039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022] Open
Abstract
Despite advances in therapeutic modalities, aspergillosis remains a leading cause of mortality. This has necessitated the identification of effective and safe antifungal molecules. In the present study, in vivo safety and antifungal efficacy of a coumarin derivative, N, N, N-Triethyl-11-(4-methyl-2-oxo-2H-benzopyran-7-yloxy)-11-oxoundecan-1-aminium bromide (SCD-1), was investigated. The maximum tolerable dose of compound was determined according to OECD 423 guidelines. The compound could be assigned to category IV of the Globally Harmonized System and its LD50 cut-off was found to be 2000 mg/kg body weight. The survival increased in Aspergillus fumigatus-infected mice treated with a dose of 200 mg/kg, orally or 100 mg/kg body weight, intraperitoneally, of SCD-1 in comparison to infected-untreated animals. The SCD-1 treatment resulted in significant reduction in colony counts in vital organs of the animals. Its protective effect was also observed on day 14 as there was marked reduction in fungal colonies. The treatment with SCD-1 also reduced the levels of serum biochemical parameters with respect to infected-untreated animals. It could be concluded that SCD-1 is a quite safe antifungal compound, which conferred dose dependent protection against experimental aspergillosis. Therefore, SCD-1 holds potential for developing new formulations for aspergillosis.
Collapse
Affiliation(s)
- Seema Singh
- Diagnostic Biochemistry, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Department of Biotechnology, University of Pune, Pune, India
| | - Rajesh Dabur
- Department of Biochemistry, Maharishi Dayanand University, Rohtak, India
| | - Madhumanjiri M. Gatne
- Department of Pharmacology and Toxicology, Bombay Veterinary College, Parel, Mumbai, India
| | - Bharat Singh
- Diagnostic Biochemistry, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Shilpi Gupta
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Sharad Pawar
- Department of Pharmacology, National Research Institute of Basic Ayurvedic Sciences, Kothrud, Pune, India
| | - Sunil K. Sharma
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Gainda L. Sharma
- Diagnostic Biochemistry, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- * E-mail:
| |
Collapse
|
15
|
Blosser SJ, Merriman B, Grahl N, Chung D, Cramer RA. Two C4-sterol methyl oxidases (Erg25) catalyse ergosterol intermediate demethylation and impact environmental stress adaptation in Aspergillus fumigatus. MICROBIOLOGY-SGM 2014; 160:2492-2506. [PMID: 25107308 DOI: 10.1099/mic.0.080440-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The human pathogen Aspergillus fumigatus adapts to stress encountered in the mammalian host as part of its ability to cause disease. The transcription factor SrbA plays a significant role in this process by regulating genes involved in hypoxia and low-iron adaptation, antifungal drug responses and virulence. SrbA is a direct transcriptional regulator of genes encoding key enzymes in the ergosterol biosynthesis pathway, including erg25A and erg25B, and ΔsrbA accumulates C4-methyl sterols, suggesting a loss of Erg25 activity [C4-sterol methyl oxidase (SMO)]. Characterization of the two genes encoding SMOs in Aspergillus fumigatus revealed that both serve as functional C4-demethylases, with Erg25A serving in a primary role, as Δerg25A accumulates more C4-methyl sterol intermediates than Δerg25B. Single deletion of these SMOs revealed alterations in canonical ergosterol biosynthesis, indicating that ergosterol may be produced in an alternative fashion in the absence of SMO activity. A Δerg25A strain displayed moderate susceptibility to hypoxia and the endoplasmic reticulum stress-inducing agent DTT, but was not required for virulence in murine or insect models of invasive aspergillosis. Inducing expression of erg25A partially restored the hypoxia growth defect of ΔsrbA. These findings implicated Aspergillus fumigatus SMOs in the maintenance of canonical ergosterol biosynthesis and indicated an overall involvement in the fungal stress response.
Collapse
Affiliation(s)
- Sara J Blosser
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Brittney Merriman
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Nora Grahl
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Dawoon Chung
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Robert A Cramer
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
16
|
Cao X, Sun Z, Cao Y, Wang R, Cai T, Chu W, Hu W, Yang Y. Design, synthesis, and structure-activity relationship studies of novel fused heterocycles-linked triazoles with good activity and water solubility. J Med Chem 2014; 57:3687-706. [PMID: 24564525 DOI: 10.1021/jm4016284] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Triazoles with fused-heterocycle nuclei were designed and evaluated for their in vitro activity on the basis of the binding mode of albaconazole using molecular docking, along with SAR of antifungal triazoles. Tetrahydro-[1,2,4]triazolo[1,5-a]pyrazine and tetrahydro-thiazolo[5,4-c]pyridine nuclei were preferable to the other four fused-heterocycle nuclei investigated. Potent in vitro activity, broad spectrum and better water solubility were attained when triazoles containing nitrogen aromatic heterocycles were attached to these two nuclei. The most potent compounds 27aa and 45x, with low hERG inhibition and hepatocyte toxicity, both exhibited excellent activity against Candida, Cryptococcus, and Aspergillus spp., as well as selected fluconazole-resistant strains. A high water-soluble compound 58 (the disulfate salt of 45x) displayed unsatisfactory in vivo activity because of its poor PK profiles. Mice infected with C.alb. SC5314 and C.alb. 103 (fluconazole-resistant strain) and administered with 27aa displayed significantly improved survival rates. 27aa also showed favorable pharmacokinetic (PK) profiles.
Collapse
Affiliation(s)
- Xufeng Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gheith S, Saghrouni F, Bannour W, Ben Youssef Y, Khelif A, Normand AC, Piarroux R, Ben Said M, Njah M, Ranque S. In vitro susceptibility to amphotericin B, itraconazole, voriconazole, posaconazole and caspofungin of Aspergillus spp. isolated from patients with haematological malignancies in Tunisia. SPRINGERPLUS 2014; 3:19. [PMID: 26034655 PMCID: PMC4447766 DOI: 10.1186/2193-1801-3-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/07/2014] [Indexed: 12/22/2022]
Abstract
The resistance of Aspergillus species to antifungal is increasingly reported and the knowledge of the local epidemiology and antifungal susceptibility pattern is pivotal to define adequate treatment policies. Our study aimed to: 1) describe the in vitro antifungal susceptibility profile of the Aspergillus species isolated from patients with haematological malignancies in Tunisia; 2) compare the E-test and Sensititre Yeast-One assays for the detection of paradoxical growth and trailing effect, both phenotypes commonly exhibited by Aspergillus spp. upon exposure to caspofungin and 3) to evaluate the mortality rate in patients according to the causative Aspergillus species and the antifungal treatment. We tested amphotericin B, itraconazole, voriconazole, posaconazole and caspofungin against 48 Aspergillus isolates (17, A. niger; 18, A. flavus; 9, A. tubingensis; 1, A. westerdijkiae; and 1, A. ochraceus) with the E-test. Minimal inhibition concentrations were above the epidemiological cut-off values for amphotericin B in 67% of A. flavus strains; for caspofungin in 22% of A. flavus strains; and for itraconazole in 22% of A. tubingensis strains, voriconazole and posaconazole MICs were below the epidemiological cut-off values for all strains. When exposed to caspofungin, 42% of the strains exhibited trailing effect and 38% paradoxical growth. Trailing effect occurred in 61% of A. flavus strains and paradoxical growth in 62% of Aspergillus section Nigri strains. E-test and Sensititre Yeast-One assays were only fairly concordant for the detection of these phenotypes. Repeatability of both assays was high for trailing effect but poor for paradoxical growth. The relatively high frequency of amphotericin B resistant strains makes voriconazole best adapted as a first-line treatment of invasive aspergillosis from amphotericin B to voriconazole in this hospital.
Collapse
Affiliation(s)
- Soukeina Gheith
- Service d'Hygiène Hospitalière, CHU Farhat Hached, Sousse, 4000 Tunisie ; Unité de recherche UR 04SP24, Ministère de la Santé Publique, Tunis, Tunisie ; Laboratoire de Parasitologie -Mycologie, CHU Farhat Hached, Sousse, 4000 Tunisie
| | - Fatma Saghrouni
- Unité de recherche UR 04SP24, Ministère de la Santé Publique, Tunis, Tunisie
| | - Wadiaa Bannour
- Service d'Hygiène Hospitalière, CHU Farhat Hached, Sousse, 4000 Tunisie
| | | | | | - Anne-Cécile Normand
- Parasitology & Mycology, CHU Timone-Adultes, Assistance Publique-Hôpitaux de Marseille, Marseille, 13005 France ; Aix-Marseille Université, IP-TPT UMR MD3, Marseille, 13885 France
| | - Renaud Piarroux
- Parasitology & Mycology, CHU Timone-Adultes, Assistance Publique-Hôpitaux de Marseille, Marseille, 13005 France ; Aix-Marseille Université, IP-TPT UMR MD3, Marseille, 13885 France
| | - Moncef Ben Said
- Unité de recherche UR 04SP24, Ministère de la Santé Publique, Tunis, Tunisie
| | - Mansour Njah
- Service d'Hygiène Hospitalière, CHU Farhat Hached, Sousse, 4000 Tunisie ; Unité de recherche UR 04SP24, Ministère de la Santé Publique, Tunis, Tunisie
| | - Stéphane Ranque
- Parasitology & Mycology, CHU Timone-Adultes, Assistance Publique-Hôpitaux de Marseille, Marseille, 13005 France ; Aix-Marseille Université, IP-TPT UMR MD3, Marseille, 13885 France
| |
Collapse
|
18
|
Natesan SK, Lamichchane A, Swaminathan S, Wu W. Differential expression of ATP-binding cassette and/or major facilitator superfamily class efflux pumps contributes to voriconazole resistance in Aspergillus flavus. Diagn Microbiol Infect Dis 2013; 76:458-63. [DOI: 10.1016/j.diagmicrobio.2013.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 12/27/2022]
|
19
|
Evaluation of (4-aminobutyloxy)quinolines as a novel class of antifungal agents. Bioorg Med Chem Lett 2013; 23:4641-3. [DOI: 10.1016/j.bmcl.2013.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 11/22/2022]
|
20
|
Dos Santos VM, da Trindade MC, de Souza DWDS, de Menezes AIC, Oguma PM, Nascimento ALO. A 76-year-old man with a right lung adenocarcinoma and invasive Aspergillosis. Mycopathologia 2013; 176:113-8. [PMID: 23615821 DOI: 10.1007/s11046-013-9651-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
Abstract
A 76-year-old male with adenocarcinoma on the right lung underwent five cycles of chemotherapy with pemetrexed disodium, cisplatin, and dexamethasone. Imaging studies of control showed a node in a cavitary lesion on the left lung, and the main hypothesis was Aspergillus infection. PCR was utilized and contributed to establish the early diagnosis in this patient with invasive aspergillosis. Furthermore, the species Aspergillus fumigatus was characterized by its growing at 50 °C but not at 10 °C, typical culture features, and presence of subclavate vesicles. Diagnosis criteria for Aspergillus pulmonary infection include characteristic clinical and imaging findings, elevated C-reactive protein and erythrocyte sedimentation rate, positive specific serological test, and isolation of Aspergillus from bronchoalveolar cultures. Molecular methods, as PCR, have been useful to complement the conventional microbiological investigations in immunocompromised people with invasive fungal infections. The patient was successfully treated with a schedule of voriconazole 4 mg/kg intravenous infusion every 12 h for 21 days and then switched to oral administration of 200 mg twice a day. He has been comfortable, maintaining normal vital signs, and the results of the periodical microbiologic tests of control are negative. Pathogenesis of invasive aspergillosis in patients with lung cancer is not completely understood. Case studies may contribute to a better knowledge about Aspergillus infection in this setting.
Collapse
|
21
|
Abstract
BACKGROUND Morbidity and mortality remain high for patients with invasive fungal infections (IFIs) despite an increasing number of antifungals and other treatments. Many studies indicate that delayed or inaccurate diagnosis and treatment are major causes of poor outcomes in patients with IFIs. OBJECTIVE The aim of the current paper is to provide a review of traditional and newer approaches to the diagnosis of IFIs, with a particular focus on invasive candidiasis (IC) and aspergillosis (IA). Recent studies from the author's institution are highlighted, along with an advancement in cryptococcal meningitis diagnosis that should improve the care of AIDS and its opportunistic infection in many developing countries. FINDINGS Currently available tools for the diagnosis of IFIs include traditional methods like histopathology, culture, and radiology, and newer antigen- and PCR-based diagnostic assays. Attempts have also been made to predict IFIs based on colonization or other factors, including genetic polymorphisms impacting IFI susceptibility in high-risk patients. Biopsy with histopathologic analysis is often not possible in patients suspected of pulmonary aspergillosis due to increased bleeding risk, and blood cultures for IC, IA, or other IFIs are hindered by poor sensitivity and slow turnaround time which delays diagnosis. Radiology is often used to predict IFI but suffers from inability to differentiate certain pathogens and does not generally provide certainty of IFI diagnosis. Newer antigen-based diagnostics for early diagnosis include the β-glucan assay for IFIs, galactomannan assay for IA, and a recent variation on the traditional cryptococcal antigen (CRAG) test with a Lateral Flow Assay for invasive cryptococcosis. PCR-based diagnostics represent additional tools with high sensitivity for the rapid diagnosis of IFIs, although better standardization of these methods is still required for their routine clinical use. CONCLUSION Better understanding of the strengths and weaknesses of currently available diagnostic tools, and further devising linked strategies to best implement them either alone or in combination, would greatly improve early and accurate diagnosis of IFIs and improve their successful management.
Collapse
|
22
|
Cao XF, Chu WJ, Cao YB, Yang YS. Design and synthesis of novel antifungal triazole derivatives with good activity and water solubility. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.01.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|