1
|
García Carnero LC, Pinzan CF, Diehl C, de Castro PA, Pontes L, Rodrigues AM, Dos Reis TF, Goldman GH. Milteforan, a promising veterinary commercial product against feline sporotrichosis. Microbiol Spectr 2024; 12:e0047424. [PMID: 39194287 PMCID: PMC11448087 DOI: 10.1128/spectrum.00474-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Sporotrichosis, the cutaneous mycosis most commonly reported in Latin America, is caused by the Sporothrix clinical clade species, including Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. Due to its zoonotic transmission in Brazil, S. brasiliensis represents a significant health threat to humans and domestic animals. Itraconazole, terbinafine, and amphotericin B are the most used antifungals for treating sporotrichosis. However, many strains of S. brasiliensis and S. schenckii have shown resistance to these agents, highlighting the importance of finding new therapeutic options. Here, we demonstrate that milteforan, a commercial veterinary product against dog leishmaniasis, whose active principle is miltefosine, is a possible therapeutic alternative for the treatment of sporotrichosis, as observed by its fungicidal activity in vitro against different strains of S. brasiliensis and S. schenckii. Fluorescent miltefosine localizes to the Sporothrix cell membrane and mitochondria and causes cell death through increased permeabilization. Milteforan decreases S. brasiliensis fungal burden in A549 pulmonary cells and bone marrow-derived macrophages and also has an immunomodulatory effect by decreasing TNF-α, IL-6, and IL-10 production. Our results suggest milteforan as a possible alternative to treat feline sporotrichosis. IMPORTANCE Sporotrichosis is an endemic disease in Latin America caused by different species of Sporothrix. This fungus can infect domestic animals, mainly cats and eventually dogs, as well as humans. Few drugs are available to treat this disease, such as itraconazole, terbinafine, and amphotericin B, but resistance to these agents has risen in the last few years. Alternative new therapeutic options to treat sporotrichosis are essential. Here, we propose milteforan, a commercial veterinary product against dog leishmaniasis, whose active principle is miltefosine, as a possible therapeutic alternative for treating sporotrichosis. Milteforan decreases S. brasiliensis fungal burden in human and mouse cells and has an immunomodulatory effect by decreasing several cytokine production.
Collapse
Affiliation(s)
- Laura C García Carnero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patricia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lais Pontes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Anderson Messias Rodrigues
- Department of Microbiology, Immunology and Parasitology, Discipline of Cellular Biology, Laboratory of Emerging Fungal Pathogens, Federal University of São Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
2
|
Aylward J, Wilson AM, Visagie CM, Spraker J, Barnes I, Buitendag C, Ceriani C, Del Mar Angel L, du Plessis D, Fuchs T, Gasser K, Krämer D, Li W, Munsamy K, Piso A, Price JL, Sonnekus B, Thomas C, van der Nest A, van Dijk A, van Heerden A, van Vuuren N, Yilmaz N, Duong TA, van der Merwe NA, Wingfield MJ, Wingfield BD. IMA Genome - F19 : A genome assembly and annotation guide to empower mycologists, including annotated draft genome sequences of Ceratocystis pirilliformis, Diaporthe australafricana, Fusarium ophioides, Paecilomyces lecythidis, and Sporothrix stenoceras. IMA Fungus 2024; 15:12. [PMID: 38831329 PMCID: PMC11149380 DOI: 10.1186/s43008-024-00142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 06/05/2024] Open
Abstract
The pace at which Next Generation Sequence data is being produced continues to accelerate as technology improves. As a result, such data are increasingly becoming accessible to biologists outside of the field of bioinformatics. In contrast, access to training in the methods of genome assembly and annotation are not growing at a similar rate. In this issue, we report on a Genome Assembly Workshop for Mycologists that was held at the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria, South Africa and make available the 12 draft genome sequences emanating from the event. With the aim of making the process of genome assembly and annotation more accessible to biologists, we provide a step-by-step guide to both genome assembly and annotation, intended to encourage and empower mycologists to use genome data in their research.
Collapse
Affiliation(s)
- Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Andi M Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Joseph Spraker
- Hexagon Bio, 1490 O'Brien Dr, Menlo Park, CA, 94025, USA
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Carla Buitendag
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Callin Ceriani
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Lina Del Mar Angel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Deanné du Plessis
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Taygen Fuchs
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Katharina Gasser
- Department of Crop Sciences, University of Natural Resources and Life Sciences (BOKU), Institute of Plant Protection, Konrad Lorenz-Strasse 24, Tulln an Der Donau, 3430, Vienna, Austria
| | - Daniella Krämer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - WenWen Li
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Kiara Munsamy
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Anja Piso
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Jenna-Lee Price
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Byron Sonnekus
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Chanel Thomas
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Ariska van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Alida van Dijk
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Alishia van Heerden
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Nicole van Vuuren
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Neriman Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Nicolaas A van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa.
| |
Collapse
|
3
|
Carnero LCG, Dos Reis TF, Diehl C, de Castro PA, Pontes L, Pinzan CF, Goldman GH. Milteforan, a promising veterinary commercial product against feline sporotrichosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580352. [PMID: 38405873 PMCID: PMC10888911 DOI: 10.1101/2024.02.14.580352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Sporotrichosis, the cutaneous mycosis most commonly reported in Latin America, is caused by the Sporothrix clinical clade species, including Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. In Brazil, S. brasiliensis represents a vital health threat to humans and domestic animals due to its zoonotic transmission. Itraconazole, terbinafine, and amphotericin B are the most used antifungals for treating sporotrichosis. However, many strains of S. brasiliensis and S. schenckii have shown resistance to these agents, highlighting the importance of finding new therapeutic options. Here, we demonstrate that milteforan, a commercial veterinary product against dog leishmaniasis whose active principle is miltefosine, is a possible therapeutic alternative for the treatment of sporotrichosis, as observed by its fungicidal activity in vitro against different strains of S. brasiliensis and S. schenckii, and by its antifungal activity when used to treat infected epithelial cells and macrophages. Our results suggest milteforan as a possible alternative to treat feline sporotrichosis.
Collapse
Affiliation(s)
- Laura C García Carnero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patricia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lais Pontes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Indoung S, Chanchayanon B, Chaisut M, Buapeth KO, Morteh R, Jantrakajorn S. Feline sporotrichosis caused by Sporothrix schenckii sensu stricto in Southern Thailand: phenotypic characterization, molecular identification, and antifungal susceptibility. Med Mycol 2022; 60:6706854. [PMID: 36130102 DOI: 10.1093/mmy/myac075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 01/19/2023] Open
Abstract
Feline sporotrichosis caused by the Sporothrix schenckii complex is a global subcutaneous mycosis, having higher prevalence in Latin America and Malaysia. However, its etiological agents have not been elucidated in Thailand, a neighboring country of Malaysia, where the cases are increasing. This study identified 38 feline isolates of S. schenckii from Southern Thailand, collected between 2018 and 2021, using phenotypic characterization and molecular identification using polymerase chain reaction (PCR)-sequencing of partial calmodulin (CAL) and ß-tubulin (Bt2) genes. Phenotypic characteristics proved that the isolates were S. schenckii sensu lato, with low thermotolerance. Based on partial CAL and Bt2-PCR sequencing, all isolates were identified as S. schenckii sensu stricto. Phylogenetic analyses revealed that the isolates were clustered with S. schenckii sensu stricto isolated from the cats in Malaysia. A low degree of genetic diversity was observed among the Thai feline isolates. The antifungal susceptibility of these isolates to antifungal agents, including itraconazole (ITC), ketoconazole (KTC), fluconazole (FLC), and amphotericin B (AMB), was investigated according to the M27-A3 protocol of the Clinical and Laboratory Standards Institute. Results showed low ITC, KTC, and AMB activities against S. schenckii sensu stricto isolates, with high minimum inhibitory concentration (MIC) ranges of 1-8, 1-8, and 2-16 µg/ml, respectively, whereas FLC exhibited MICs of 64 and > 64 µg/ml. This study indicated that S. schenckii sensu stricto is the causative agent responsible for feline sporotrichosis in Southern Thailand. Their phenotypic characteristics and in vitro antifungal susceptibility profiles will help to improve our understanding of this mycosis in Thailand.
Collapse
Affiliation(s)
- Saowakon Indoung
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Baramee Chanchayanon
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Mananya Chaisut
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kanok-On Buapeth
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Rajeef Morteh
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sasibha Jantrakajorn
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
5
|
de Carvalho JA, Monteiro RC, Hagen F, de Camargo ZP, Rodrigues AM. Trends in Molecular Diagnostics and Genotyping Tools Applied for Emerging Sporothrix Species. J Fungi (Basel) 2022; 8:jof8080809. [PMID: 36012797 PMCID: PMC9409836 DOI: 10.3390/jof8080809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Sporotrichosis is the most important subcutaneous mycosis that affects humans and animals worldwide. The mycosis is caused after a traumatic inoculation of fungal propagules into the host and may follow an animal or environmental transmission route. The main culprits of sporotrichosis are thermodimorphic Sporothrix species embedded in a clinical clade, including S. brasiliensis, S. schenckii, S. globosa, and S. luriei. Although sporotrichosis occurs worldwide, the etiological agents are not evenly distributed, as exemplified by ongoing outbreaks in Brazil and China, caused by S. brasiliensis and S. globosa, respectively. The gold standard for diagnosing sporotrichosis has been the isolation of the fungus in vitro. However, with the advance in molecular techniques, molecular assays have complemented and gradually replaced the classical mycological tests to quickly and accurately detect and/or differentiate molecular siblings in Sporothrix. Nearly all techniques available for molecular diagnosis of sporotrichosis involve PCR amplification, which is currently moving towards detecting Sporothrix DNA directly from clinical samples in multiplex qPCR assays. From an epidemiological perspective, genotyping is key to tracing back sources of Sporothrix infections, detecting diversity in outbreak areas, and thus uncovering finer-scale epidemiological patterns. Over the past decades, molecular epidemiological studies have provided essential information to policymakers regarding outbreak management. From high-to-low throughput genotyping methods, MLSA, AFLP, SSR, RAPD, PCR-RFLP, and WGS are available to assess the transmission dynamics and sporotrichosis expansion. This review discusses the trends in the molecular diagnosis of sporotrichosis, genotyping techniques applied in molecular epidemiological studies, and perspectives for the near future.
Collapse
Affiliation(s)
- Jamile Ambrósio de Carvalho
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
| | - Ruan Campos Monteiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Correspondence: ; Tel.: +55-1155764551 (ext. 1540)
| |
Collapse
|
6
|
Rodrigues AM, Gonçalves SS, de Carvalho JA, Borba-Santos LP, Rozental S, de Camargo ZP. Current Progress on Epidemiology, Diagnosis, and Treatment of Sporotrichosis and Their Future Trends. J Fungi (Basel) 2022; 8:776. [PMID: 35893145 PMCID: PMC9331723 DOI: 10.3390/jof8080776] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 01/19/2023] Open
Abstract
Sporotrichosis, a human and animal disease caused by Sporothrix species, is the most important implantation mycosis worldwide. Sporothrix taxonomy has improved in recent years, allowing important advances in diagnosis, epidemiology, and treatment. Molecular epidemiology reveals that S. brasiliensis remains highly prevalent during the cat-transmitted sporotrichosis outbreaks in South America and that the spread of S. brasiliensis occurs through founder effects. Sporothrix globosa and S. schenckii are cosmopolitan on the move, causing major sapronoses in Asia and the Americas, respectively. In this emerging scenario, one-health approaches are required to develop a creative, effective, and sustainable response to tackle the spread of sporotrichosis. In the 21st century, it has become vital to speciate Sporothrix, and PCR is the main pillar of molecular diagnosis, aiming at the detection of the pathogen DNA from clinical samples through multiplex assays, whose sensitivity reaches remarkably three copies of the target. The treatment of sporotrichosis can be challenging, especially after the emergence of resistance to azoles and polyenes. Alternative drugs arising from discoveries or repositioning have entered the radar of basic research over the last decade and point to several molecules with antifungal potential, especially the hydrazone derivatives with great in vitro and in vivo activities. There are many promising developments for the near future, and in this review, we discuss how these trends can be applied to the Sporothrix-sporotrichosis system to mitigate the advance of an emerging and re-emerging disease.
Collapse
Affiliation(s)
- Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), Sao Paulo 04023062, Brazil; (J.A.d.C.); (Z.P.d.C.)
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), Sao Paulo 04023062, Brazil
| | - Sarah Santos Gonçalves
- Infectious Diseases Postgraduate Program, Center for Research in Medical Mycology, Federal University of Espírito Santo (UFES), Vitoria 29043900, Brazil;
| | - Jamile Ambrósio de Carvalho
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), Sao Paulo 04023062, Brazil; (J.A.d.C.); (Z.P.d.C.)
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), Sao Paulo 04023062, Brazil
| | - Luana P. Borba-Santos
- Cell Biology and Parasitology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941902, Brazil; (L.P.B.-S.); (S.R.)
| | - Sonia Rozental
- Cell Biology and Parasitology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941902, Brazil; (L.P.B.-S.); (S.R.)
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), Sao Paulo 04023062, Brazil; (J.A.d.C.); (Z.P.d.C.)
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), Sao Paulo 04023062, Brazil
| |
Collapse
|
7
|
Epidemiology of Clinical Sporotrichosis in the Americas in the Last Ten Years. J Fungi (Basel) 2022; 8:jof8060588. [PMID: 35736071 PMCID: PMC9224952 DOI: 10.3390/jof8060588] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sporotrichosis is a fungal infection caused by species of the Sporothrix genus. Presently, the prevalence of sporotrichosis in the Americas is unknown, so this study aims to analyze the cases reported in the past 10 years. METHODS An advanced search was conducted from 2012 to 2022 in English and Spanish in PUBMED, SciELO, and Cochrane, with the terms: "sporotrichosis", "lymphocutaneous sporotrichosis", "fixed sporotrichosis", "mycosis", "Sporothrix spp.", "Sporothrix complex", "S. schenckii sensu stricto", "S. schenckii sensu lato", "S. globose", "S. brasiliensis", "S. luriei". Sporotrichosis is a fungal infection caused by species of the Sporothrix genus associated with "pathogenicity" or "epidemiology". RESULTS A total of 124 articles were found in the Americas, corresponding to 12,568 patients. Of these, 87.38% of cases were reported in South America, 11.62% in North America, and 1.00% in Central America and the Caribbean. Brazil, Peru, and Mexico had the highest number of cases. The most prevalent etiological agents were S. schenckii complex/Sporothrix spp. (52.91%), S. schenckii (42.38%), others (4.68%), and Not Determined (ND) (0.03%). The most frequent form of the disease was lymphocutaneous infection; however, the infection type was not determined in 5639 cases. Among the diagnostic methods, culture was the most used. CONCLUSIONS There is a high occurrence of cases reported in the literature. South America is the region with the highest number of reports because of its environment (climate, inhalation of spores, etc.), zoonotic transmission (scratches and sneezes from contaminated animals), and possible traumatic inoculation due to outdoor activities (agriculture, gardening, and related occupations). Molecular diagnosis has not been sufficiently developed due to its high cost.
Collapse
|
8
|
De Carolis E, Posteraro B, Sanguinetti M. Old and New Insights into Sporothrix schenckii Complex Biology and Identification. Pathogens 2022; 11:pathogens11030297. [PMID: 35335621 PMCID: PMC8948913 DOI: 10.3390/pathogens11030297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sporothrix schenckii is a worldwide-distributed thermally dimorphic fungus, which usually causes a subacute to chronic infection through traumatic implantation or inoculation of its infectious propagules. The fungus encompasses a group of phylogenetically closely related species, thus named the S. schenckii complex, of which S. schenckii sensu stricto and S. brasiliensis are main causative species of sporotrichosis. Owing to a multifaceted molecular dynamic, the S. schenckii complex can switch between the mycelium and the yeast form. This characteristic along with a varying cell wall composition account for significant species-specific differences in the host range, virulence, and susceptibility to antifungal drugs. While culture remains the gold standard to diagnose sporotrichosis, polymerase chain reaction (PCR) or matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry-based methods have become an essential for accurate species identification in many clinical laboratories. If directly applied on tissue samples, molecular methods are helpful to improve both sensitivity of and time to the etiological diagnosis of sporotrichosis. This mini-review aims to put together the old and new knowledge on the S. schenckii complex biology and identification, with particular emphasis on the laboratory diagnosis-related aspects of disease.
Collapse
Affiliation(s)
- Elena De Carolis
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Correspondence:
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
9
|
Barreira T, Corrêa-Moreira D, Borba C, Moraes A, Oliveira M. Molecular and phenotypic reidentification of Sporothrix schenckii clinical isolates preserved under mineral oil for 34 to 64 years in a culture collection in Brazil. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100128. [PMID: 35909610 PMCID: PMC9325794 DOI: 10.1016/j.crmicr.2022.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Impact of mineral oil as a method of preservation on clinical isolates of Sporothrix schenckii. Sporothrix spp sporulation induction using a culture medium supplemented with rose bush branches. Usefulness of polyphasic methodology in the re-identification of species of Sporothrix schenckii complex.
Sporotrichosis is a subcutaneous mycosis worldwide distributed reaching hyperendemic proportions in Brazil. Many isolates from patients with sporotrichosis are preserved in culture collections by different methods around the world. The preservation methods are used to maintain the viability and the morphophysiological and genetic characteristics of isolates for long periods. In this study, we evaluated 34 isolates, previously, identified as S. schenckii by a classical identification method, initially preserved by periodical subcultures and then under mineral oil at culture collection of Oswaldo Cruz Institute/Fiocruz, to re-identify them by polyphasic identification. Our results showed that seven isolates remained viable for 34 to 64 years under oil, one isolate lost the ability to sporulate which was reverted by using a medium culture supplemented with rosebush branches and all of them were identified as Sporothrix schenckii sensu stricto by morphological, physiological, partial β-tubulin gene sequencing and phylogenetic analysis.
Collapse
|
10
|
Liu F, Liu Y, Yuan N, Zhang X, Cao M, Dong J, Zhang J. Fixed Cutaneous Sporotrichosis Due to Sporothrix globosa. Clin Cosmet Investig Dermatol 2021; 14:91-96. [PMID: 33531824 PMCID: PMC7846868 DOI: 10.2147/ccid.s288259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/10/2021] [Indexed: 11/23/2022]
Abstract
Purpose This report describes a case of a skin sporotrichosis infection and the steps taken to identify an effective antifungal treatment. Patients and Methods A 50-year-old woman from Jilin province, China, presented complaining of a small mass that had been on her right upper eyelid for two years. A skin biopsy was taken and submitted for bacterial and mycological assessment. Bacterial culture from the lesion was negative, but a fungal culture was positive. In vitro susceptibility test was performed to assess its susceptibility to antifungal drugs. Results The skin biopsy showed infectious granuloma. Fungal culture was identified as Sporothrix globosa based on both the morphological features and confirmation by the molecular method; it was resistant to many kinds of antifungal drugs, including amphotericin B, voriconazole, fluconazole, and caspofungin. However, it was relatively sensitive to itraconazole. The patient was prescribed 0.2 g itraconazole to be taken twice per day. One month later, she had almost completely recovered from her symptoms. The treatment lasted for 3 months and her liver function and renal function were normal at the endpoint. Conclusion Itraconazole was an effective treatment in this case of a multidrug-resistant sporotrichosis caused by S. globosa.
Collapse
Affiliation(s)
- Fang Liu
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Yingmei Liu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Na Yuan
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Xiuying Zhang
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Mei Cao
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Jie Dong
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Jinqing Zhang
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| |
Collapse
|
11
|
Bao F, Pan Q, Wang Z, Liu H, Zhang F. Susceptibility testing of clinical isolates of Sporothrix globosa in Shandong, China. Mycoses 2020; 63:1191-1194. [PMID: 32654196 DOI: 10.1111/myc.13141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To evaluate the antifungal susceptibility of Sporothrix globosa isolated from Shandong, China, and compare the differences of antifungal activity in vitro between yeast and mycelial phases. METHODS The in vitro sensitivity of mycelium phase and yeast phase of Sporothrix globosa to anidulafungin, micafungin, caspofungin, 5-flucytosine, posaconazole, voriconazole, itraconazole, fluconazole and amphotericin B was tested by Sensititre™ YeastOne™. The minimum inhibitory concentration (MIC) values of mycelium phase and yeast phase were calculated. SPSS 19.0 software was used to conduct non-parametric rank sum test for MIC values, and P < .05 was considered statistically significant. RESULTS The mycelium phase and yeast phase were the most sensitive to itraconazole and the least sensitive to fluconazole. The yeast phase of the same strain was more sensitive to itraconazole, voriconazole, posaconazole, micafungin, anidulafungin, caspofungin and 5-fluorouracil, compared with the mycelium (P < .05). However, fluconazole and amphotericin B had no significant difference in mycelium phase and yeast phase. CONCLUSIONS Itraconazole is the most active antifungal agent in vitro against S globosa. The yeast phase of the same strain is more sensitive than that of the mycelium.
Collapse
Affiliation(s)
- Fangfang Bao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Veneorology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Pan
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Veneorology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Veneorology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Veneorology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Veneorology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
12
|
Development and Validation of an In-House Library for Filamentous Fungi Identification by MALDI-TOF MS in a Clinical Laboratory in Medellin (Colombia). Microorganisms 2020; 8:microorganisms8091362. [PMID: 32899976 PMCID: PMC7563289 DOI: 10.3390/microorganisms8091362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Identification of filamentous fungi by conventional phenotypic methods are time-consuming, and a correct identification at the species level is prone to errors. Therefore, a more accurate and faster time-to-results, and cost-effective technique, is required, such as the Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). In this study, we describe the development of an in-house spectra library for the identification of filamentous fungi frequently isolated from patients with infections. An in-house spectra library was constructed using 14 reference strains grown in solid medium. Clinical isolates were identified either by the in-house spectra library or the Biotyper commercial library from Bruker Daltonics. Fungal identification was carried following the Biotyper’s established scores: ≤1.699: not reliably identified (NRI); 1.700–1.999: genus-level; ≥2.000: species-level. Clinical isolates were identified, with the in-house library, at species- and genus-level at 88.70% (55) and 3.22% (2), respectively. While 4.80% (3) was NRI and 3.22% (2) was discrepant concerning sequencing. On the contrary, identification up to species and genus-level with the commercial library was 44.44% (16) and 22.22% (8), respectively. NRI and the discrepancy was 30.55% (11) and 2.77% (1), respectively. For the reaming 26 isolates, 16 from Neoscytalidium dimidiatum and 10 from Sporothrix spp., respectively, the absence of spectrum and the specific spectra within the Sporothrix complex in the commercial library resulted in the inability to obtain an identification. In conclusion, the current results advocate the importance that each clinical microbiological laboratory needs to develop an ad hoc library associated with the MALDI-TOF MS fungal identification to overcome the limitations of the available commercial libraries.
Collapse
|
13
|
Rodrigues AM, Della Terra PP, Gremião ID, Pereira SA, Orofino-Costa R, de Camargo ZP. The threat of emerging and re-emerging pathogenic Sporothrix species. Mycopathologia 2020; 185:813-842. [PMID: 32052359 DOI: 10.1007/s11046-020-00425-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023]
Abstract
Sporotrichosis is a neglected subcutaneous mycosis of humans and animals acquired by traumatic inoculation of soil and plant material (classical route) contaminated with infectious propagules of the pathogen or being bitten/scratched by infected cats (alternative route). Within a genus composed of 53 species displaying an essentially environmental core, there are only a few members which have considerable impacts on human or animal health. Infections are typically caused by S. brasiliensis, S. schenckii or S. globosa. Rare mammal pathogens include members of the S. pallida and S. stenocereus complexes. To illustrate the tremendous impact of emerging zoonotic sporotrichosis on public health, we discuss the main features of the expanding epidemics driven by S. brasiliensis in cats and humans. The cat entry in the transmission chain of sporotrichosis, causing epizooties (cat-cat) or zoonosis (cat-human), has contributed to the definition of new paradigms in Sporothrix transmission, reaching epidemic levels, making the disease a serious public health problem. Indeed, S. brasiliensis infection in humans and animals is likely to become even more important in the future, with projections of its expansion in biogeographic domains and host range, as well as greater virulence in mammals. Therefore, lessons from a long-standing outbreak in the state of Rio de Janeiro about the source and distribution of the etiological agents among outbreak areas can be used to create better control and prevention plans and increase awareness of sporotrichosis as a serious emerging zoonotic disease.
Collapse
Affiliation(s)
- Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Cell Biology Division, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, 04023-062, Brazil.
| | - Paula Portella Della Terra
- Laboratory of Emerging Fungal Pathogens, Cell Biology Division, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, 04023-062, Brazil
| | - Isabella Dib Gremião
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Sandro Antonio Pereira
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Rosane Orofino-Costa
- Dermatology Department, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (FCM-UERJ), Rio de Janeiro, RJ, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Cell Biology Division, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, 04023-062, Brazil
| |
Collapse
|