1
|
Karatayli E, Sadiq SC, Schattenberg JM, Grabbe S, Biersack B, Kaps L. Curcumin and Its Derivatives in Hepatology: Therapeutic Potential and Advances in Nanoparticle Formulations. Cancers (Basel) 2025; 17:484. [PMID: 39941855 PMCID: PMC11816286 DOI: 10.3390/cancers17030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Curcumin, a plant-derived polyphenol, shows promise in hepatology for treating both malignant and non-malignant liver diseases and a subset of extrahepatic cancers. Curcumin has hepatoprotective, anti-inflammatory, antifibrotic, and antiproliferative properties, as is evident in preclinical and clinical studies. This highlights its potential as an adjunct to established cancer therapies, especially in the context of hepatocellular carcinoma and secondary liver malignancies. Curcumin also demonstrates potential in metabolic dysfunction-associated steatotic liver disease (MASLD), owing to its antifibrotic and lipid-lowering effects. However, its clinical use is limited, relating to its poor bioavailability and rapid metabolism. Nanotechnology, including liposomal and polymeric carriers, alongside synthetic curcumin derivatives, offers strategies to enhance the bioavailability and pharmacokinetic properties. We propose to revisit the use of curcumin in nanoparticle preparations in chronic liver disease and summarize current evidence in this review article.
Collapse
Affiliation(s)
- Ersin Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
| | - Shifana C. Sadiq
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
| | - Jörn M. Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany;
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, 95440 Bayreuth, Germany
| | - Leonard Kaps
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany;
| |
Collapse
|
2
|
Feng L, Wei R, Wu J, Chen X, Wen Y, Chen J. Cyclodextrin Drugs in Liposomes: Preparation and Application of Anticancer Drug Carriers. AAPS PharmSciTech 2024; 26:3. [PMID: 39638889 DOI: 10.1208/s12249-024-02999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Cyclodextrin complexes have been widely used in pharmaceutical applications, but disadvantages such as the rapid clearance of cyclodextrins from the blood stream after in vivo administration or their replacement by other molecules in the biological medium with higher luminal affinity for cyclodextrins limit the application of cyclodextrins as drug carriers. Liposome-encapsulated hydrophobic drugs have low and unstable drug loading rates. Drug-in-CD-in-liposome (DCL), which encapsulate cyclodextrin inclusion complexes into liposomes, combine the advantages of both delivery systems, can effectively avoid the leakage and rapid release of lipophilic drugs in the lipid bilayer, and help to maintain the integrity of liposomes. This paper focuses on the preparation method, characterization and application of DCL, with a view to providing methods and references for the research and application of DCL technology.
Collapse
Affiliation(s)
- Lanni Feng
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Shanghai WeiEr Lab, Shanghai, 201707, China
| | - Ruting Wei
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Shanghai WeiEr Lab, Shanghai, 201707, China
| | - Jiali Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Shanghai WeiEr Lab, Shanghai, 201707, China
| | | | - Yan Wen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, No.415, Fengyang Road, Shanghai, 200003, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Shanghai WeiEr Lab, Shanghai, 201707, China.
| |
Collapse
|
3
|
Besasie BD, Saha A, DiGiovanni J, Liss MA. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia 2024; 91:90-106. [PMID: 37776274 DOI: 10.1177/03915603231202304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The major barriers to phytonutrients in prostate cancer therapy are non-specific mechanisms and bioavailability issues. Studies have pointed to a synergistic combination of curcumin (CURC) and ursolic acid (UA). We investigate this combination using a systematic review process to assess the most likely mechanistic pathway and human testing in prostate cancer. We used the PRISMA statement to screen titles, abstracts, and the full texts of relevant articles and performed a descriptive analysis of the literature reviewed for study inclusion and consensus of the manuscript. The most common molecular and cellular pathway from articles reporting on the pathways and effects of CURC (n = 173) in prostate cancer was NF-κB (n = 25, 14.5%). The most common molecular and cellular pathway from articles reporting on the pathways and effects of UA (n = 24) in prostate cancer was caspase 3/caspase 9 (n = 10, 41.6%). The three most common molecular and cellular pathway from articles reporting on the pathways and effects of both CURC and UA (n = 193) in prostate cancer was NF-κB (n = 28, 14.2%), Akt (n = 22, 11.2%), and androgen (n = 19, 9.6%). Therefore, we have identified the potential synergistic target pathways of curcumin and ursolic acid to involve NF-κB, Akt, androgen receptors, and apoptosis pathways. Our review highlights the limited human studies and specific effects in prostate cancer.
Collapse
Affiliation(s)
- Benjamin D Besasie
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
- Department of Urology, South Texas Veterans Healthcare System, USA
| |
Collapse
|
4
|
Sazdova I, Keremidarska-Markova M, Dimitrova D, Mitrokhin V, Kamkin A, Hadzi-Petrushev N, Bogdanov J, Schubert R, Gagov H, Avtanski D, Mladenov M. Anticarcinogenic Potency of EF24: An Overview of Its Pharmacokinetics, Efficacy, Mechanism of Action, and Nanoformulation for Drug Delivery. Cancers (Basel) 2023; 15:5478. [PMID: 38001739 PMCID: PMC10670065 DOI: 10.3390/cancers15225478] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
EF24, a synthetic monocarbonyl analog of curcumin, shows significant potential as an anticancer agent with both chemopreventive and chemotherapeutic properties. It exhibits rapid absorption, extensive tissue distribution, and efficient metabolism, ensuring optimal bioavailability and sustained exposure of the target tissues. The ability of EF24 to penetrate biological barriers and accumulate at tumor sites makes it advantageous for effective cancer treatment. Studies have demonstrated EF24's remarkable efficacy against various cancers, including breast, lung, prostate, colon, and pancreatic cancer. The unique mechanism of action of EF24 involves modulation of the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, disrupting cancer-promoting inflammation and oxidative stress. EF24 inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through inhibiting the NF-κB pathway and by regulating key genes by modulating microRNA (miRNA) expression or the proteasomal pathway. In summary, EF24 is a promising anticancer compound with a unique mechanism of action that makes it effective against various cancers. Its ability to enhance the effects of conventional therapies, coupled with improvements in drug delivery systems, could make it a valuable asset in cancer treatment. However, addressing its solubility and stability challenges will be crucial for its successful clinical application.
Collapse
Affiliation(s)
- Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Daniela Dimitrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
| | - Andre Kamkin
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Jane Bogdanov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Rudolf Schubert
- Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany;
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Mitko Mladenov
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| |
Collapse
|
5
|
Lu Q. Bioresponsive and multifunctional cyclodextrin-based non-viral nanocomplexes in cancer therapy: Building foundations for gene and drug delivery, immunotherapy and bioimaging. ENVIRONMENTAL RESEARCH 2023; 234:116507. [PMID: 37364628 DOI: 10.1016/j.envres.2023.116507] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The interest towards application of nanomaterials in field of cancer therapy is that the drawbacks of conventional therapies including chemoresistance, radio-resistance and lack of specific targeting of tumor cells can be solved by nanotechnology. Cyclodextrins (CDs) are amphiphilic cyclic oligosaccharides that can be present in three forms of α-, β- and γ-CDs, and they can be synthesized from natural sources. The application of CDs in cancer shows an increasing trend due to benefits of these nanocomplexes in improving solubility and bioavailability of current bioactives and therapeutics for cancer. CDs are widely utilized in delivery of drugs and genes in cancer therapy, and by targeted delivery of these therapeutics into target site, they improve anti-proliferative and anti-cancer potential. The blood circulation time and tumor site accumulation of therapeutics can be improved using CD-based nanostructures. More importantly, the stimuli-responsive types of CDs including pH-, redox- and light-sensitive types can accelerate release of bioactive compound at tumor site. Interestingly, the CDs are able to mediate photothermal and photodynamic impact in impairing tumorigenesis in cancer, enhancing cell death and improving response to chemotherapy. In improving the targeting ability of CDs, their surface functionalization with ligands has been conducted. Moreover, CDs can be modified with green products such as chitosan and fucoidan, and they can be embedded in green-based nanostructures to suppress tumorigenesis. The internalization of CDs into tumor cells can occur through endocytosis and this can be clethrin-, caveolae- or receptor-mediated endocytosis. Furthermore, CDs are promising candidates in bioimaging, cancer cell and organelle imaging as well as isolating tumor cells. The main benefits of using CDs in cancer therapy including sustained and low release of drugs and genes, targeted delivery, bioresponsive release of cargo, ease of surface functionalization and complexation with other nanostructures. The application of CDs in overcoming drug resistance requires more investigation.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
6
|
Sinsinwar S, Vadivel V. Development and characterization of catechin-in-cyclodextrin-in-phospholipid liposome to eradicate MRSA-mediated surgical site infection: Investigation of their anti-infective efficacy through in vitro and in vivo studies. Int J Pharm 2021; 609:121130. [PMID: 34600052 DOI: 10.1016/j.ijpharm.2021.121130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the prime pathogens responsible for surgical site infection (SSI). Treatment of SSI remains challenging because of resistant nature of MRSA, which is a major threat in recent years. Our previous work revealed the antibacterial potential of catechin isolated from cashewnut shell against MRSA. However, the application of catechin to treat MRSA-mediated SSI is hampered because of its poor solubility and low trans-dermal delivery. Hence, the present study focused on developing catechin-in-cyclodextrin-in-phospholipid liposome (CCPL) and evaluating its physicochemical characteristics and anti-infective efficacy through in vitro and in vivo models. Encapsulation of catechin with β-cyclodextrin and soybean lecithin was confirmed through UV-Vis spectroscopy, FTIR, and XRD techniques, while TEM imaging revealed the size of CCPL (206 nm). The CCPL displayed a higher level of water solubility (25.13%) and in vitro permeability (42.14%) compared to pure catechin. A higher level of encapsulation efficiency (98.9%) and antibacterial activity (19.8 mm of ZOI and 31.25 μg/mL of MIC) were noted in CCPL compared to the catechin/cyclodextrin complex. CCPL recorded significant and dose-dependent healing of the incision, significant reduction of bacterial count, improved epithelization, and effective prevention of inflammation in skin samples of SSI-induced Balb/c mice. Data of the present work suggest that the CCPL could be considered as a novel and potential candidate to mitigate MRSA-mediated SSI after clinical trials.
Collapse
Affiliation(s)
- Simran Sinsinwar
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - Vellingiri Vadivel
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India.
| |
Collapse
|
7
|
Adeluola A, Zulfiker AHM, Brazeau D, Amin ARMR. Perspectives for synthetic curcumins in chemoprevention and treatment of cancer: An update with promising analogues. Eur J Pharmacol 2021; 906:174266. [PMID: 34146588 DOI: 10.1016/j.ejphar.2021.174266] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
Curcumin, a pure compound extracted from the flowering plant, turmeric (Curcuma longa. Zingiberaceae), is a common dietary ingredient found in curry powder. It has been studied extensively for its anti-inflammatory, antioxidant, antimicrobial and anti-tumour activities. Evidence is accumulating demonstrating its potential in chemoprevention and as an anti-tumour agent for the treatment of cancer. Despite demonstrated safety and tolerability, the clinical application of curcumin is frustrated by its poor solubility, metabolic instability and low oral bioavailability. Consequently researchers have tried novel techniques of formulation and delivery as well as synthesis of analogues with enhanced properties to overcome these barriers. This review presents the synthetic analogues of curcumin that have proven their anticancer potential from different studies. It also highlights studies that combined these analogues with approved chemotherapies and delivered them via novel techniques. Currently, there are no reports of clinical studies on any of the synthetic congeners of curcumin and this presents an opportunity for future research. This review presents the synthetic analogues of curcumin and makes a compelling argument for their potential application in the management of cancerous disease.
Collapse
Affiliation(s)
- Adeoluwa Adeluola
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| | - Abu Hasanat Md Zulfiker
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - Daniel Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - A R M Ruhul Amin
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
8
|
Tran THY, Vu TTG, Pham TMH. Preparation and Characterization of Liposomes Double-loaded with Amphotericin B and Amphotericin B/hydroxypropyl-beta-cyclodextrin Inclusion Complex. Pharm Nanotechnol 2021; 9:236-244. [PMID: 33745428 DOI: 10.2174/2211738509666210310160436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Amphotericin B (AMB) is water-insoluble polyene, which has a broad spectrum of antifungal activity. The hydrophobic drug only exits in the phospholipid bilayer, leading to a low-drug liposomal loading capacity. OBJECTIVES This study is designed to prepare water-soluble inclusion complex (IC) between AMB and cyclodextrin (CD) to formulate liposomal vesicles, double-loaded with drug molecules in the phospholipid bilayer and AMB/CD IC in the aqueous core. METHODS Water-soluble AMB/CD IC was prepared by pH adjustment of the aqueous media and consequently characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Liposomes double-loaded with AMB were formulated by the thin-film hydration method and accordingly evaluated for vesicle size, polydispersity index, entrapment efficiency, zeta potential, and in vitro drug leakage. RESULTS Hydroxypropyl β cyclodextrin (HP-β-CD) better solubilized AMB than both α-CD and β- CD e.g., the concentration of water-soluble AMB/HP-β-CD IC could reach 465 μg/mL. Both DSC and SEM data illustrated that the drug no longer existed in its crystalline form, in AMB/HP-β-CD IC. Liposomes double-loaded with hydrophilic AMB/HP-β-CD IC and hydrophobic AMB had a diameter of 270 nm, polydispersity index less than 0.27, and zeta potential ca.-42.8 mV. Moreover, liposomes double-loaded with AMB enhanced drug-liposomal loading capacity by 25%, less leaked drug in phosphate buffer pH 7.4 at 37°C in comparison to liposomes loaded with only hydrophobic AMB. CONCLUSION Liposomes double-loaded with AMB and AMB/HP-β-CD IC increased drug-encapsulation ability and in vitro stability, suggesting potential drug delivery systems.
Collapse
Affiliation(s)
- Thi H Yen Tran
- Department of Pharmaceutics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoankiem District, Hanoi, Vietnam
| | - Thi T Giang Vu
- Department of Pharmaceutics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoankiem District, Hanoi, Vietnam
| | - Thi M H Pham
- Department of Pharmaceutics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoankiem District, Hanoi, Vietnam
| |
Collapse
|
9
|
He Y, Li W, Hu G, Sun H, Kong Q. Bioactivities of EF24, a Novel Curcumin Analog: A Review. Front Oncol 2018; 8:614. [PMID: 30619754 PMCID: PMC6297553 DOI: 10.3389/fonc.2018.00614] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Curcumin is an attractive agent due to its multiple bioactivities. However, the low oral bioavailability and efficacy profile hinders its clinical application. To improve the bioavailability, many analogs of curcumin have been developed, among which EF24 is an excellent representative. EF24 has enhanced bioavailability over curcumin and shows more potent bioactivity, including anti-cancer, anti-inflammatory, and anti-bacterial. EF24 inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through its inhibitory effect on the nuclear factor kappa B (NF-κB) pathway and by regulating key genes through microRNA (miRNA) or the proteosomal pathway. Based on the current structure, more potent EF24 analogs have been designed and synthesized. However, some roles of EF24 remain unclear, such as whether it induces or inhibits reactive oxygen species (ROS) production and whether it stimulates or inhibits the mitogen activated kinase-like protein (MAPK) pathway. This review summarizes the known biological and pharmacological activities and mechanisms of action of EF24.
Collapse
Affiliation(s)
- Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Wen Li
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Guangrong Hu
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Sun
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingpeng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
10
|
Ding T, Li T, Wang Z, Li J. Curcumin liposomes interfere with quorum sensing system of Aeromonas sobria and in silico analysis. Sci Rep 2017; 7:8612. [PMID: 28819178 PMCID: PMC5561023 DOI: 10.1038/s41598-017-08986-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/19/2017] [Indexed: 11/09/2022] Open
Abstract
Aeromonas sobria is opportunistic pathogen frequently found in environment and food. Interfering with its quorum sensing (QS) system could be a promising way to alleviate its virulence. In this study, curcumin liposomes were prepared and their characteristics like particle size, zeta potential, PDI (Polymey Disperse Index), encapsulation efficiency and loading capacity were measured. The quorum sensing inhibitory effect of curcumin liposomes under sub-MIC (Minimum Inhibitory Concentration) on siderophore production, swimming and swarming motility, extracellular proteases, biofilm formation and AHLs (N-acylhomoserine lactones) production of A. sobria were also determined. The results showed that, the curcumin liposomes with high encapsulation capacity (84.51 ± 0.58%) were stable and homogeneous. QS-regulated phenotypes of the pathogen were significantly inhibited by curcumin liposomes. The in silico analysis revealed that the QS system of A. sobria may be inhibited by released curcumin from curcumin liposomes through interacting with the built LuxI type protein and blocking the production of AHLs.
Collapse
Affiliation(s)
- Ting Ding
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning, 116600, China
| | - Zhi Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jianrong Li
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
11
|
Physical characteristics and in vitro skin permeation of elastic liposomes loaded with caffeic acid-hydroxypropyl-β-cyclodextrin. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0146-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Bisht S, Schlesinger M, Rupp A, Schubert R, Nolting J, Wenzel J, Holdenrieder S, Brossart P, Bendas G, Feldmann G. A liposomal formulation of the synthetic curcumin analog EF24 (Lipo-EF24) inhibits pancreatic cancer progression: towards future combination therapies. J Nanobiotechnology 2016; 14:57. [PMID: 27401816 PMCID: PMC4940769 DOI: 10.1186/s12951-016-0209-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/28/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal of human malignancies known to date and shows relative insensitivity towards most of the clinically available therapy regimens. 3,5-bis(2-fluorobenzylidene)-4-piperidone (EF24), a novel synthetic curcumin analog, has shown promising in vitro therapeutic efficacy in various human cancer cells, but insufficient water solubility and systemic bioavailability limit its clinical application. Here, we describe nano-encapsulation of EF24 into pegylated liposomes (Lipo-EF24) and evaluation of these particles in preclinical in vitro and in vivo model systems of pancreatic cancer. RESULTS Transmission electron microscopy and size distribution studies by dynamic light scattering confirmed intact spherical morphology of the formed liposomes with an average diameter of less than 150 nm. In vitro, treatment with Lipo-EF24 induced growth inhibition and apoptosis in MIAPaCa and Pa03C pancreatic cancer cells as assessed by using cell viability and proliferation assays, replating and soft agar clonogenicity assays as well as western blot analyses. Lipo-EF24 potently suppressed NF-kappaB nuclear translocation by inhibiting phosphorylation and subsequent degradation of its inhibitor I-kappa-B-alpha. In vivo, synergistic tumor growth inhibition was observed in MIAPaCa xenografts when Lipo-EF24 was given in combination with the standard-of-care cytotoxic agent gemcitabine. In line with in vitro observations, western blot analysis revealed decreased phosphorylation of I-kappa-B-alpha in excised Lipo-EF24-treated xenograft tumor tissues. CONCLUSION Due to its promising therapeutic efficacy and favorable toxicity profile Lipo-EF24 might be a promising starting point for development of future combinatorial therapeutic regimens against pancreatic cancer.
Collapse
Affiliation(s)
- Savita Bisht
- Department of Internal Medicine 3, Center of Integrated Oncology (CIO) Cologne-Bonn, University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | | | - Alexander Rupp
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital of Bonn, Bonn, Germany
| | - Rolf Schubert
- Department of Pharmaceutical Technology and Biopharmacy, Albert-Ludwigs-Universität, Freiburg im Breisgau, Germany
| | - Jens Nolting
- Department of Internal Medicine 3, Center of Integrated Oncology (CIO) Cologne-Bonn, University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Jörg Wenzel
- Department of Dermatology, Center of Integrated Oncology (CIO) Cologne-Bonn, University Hospital of Bonn, Bonn, Germany
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital of Bonn, Bonn, Germany
| | - Peter Brossart
- Department of Internal Medicine 3, Center of Integrated Oncology (CIO) Cologne-Bonn, University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Gerd Bendas
- Pharmaceutical Department, University of Bonn, Bonn, Germany
| | - Georg Feldmann
- Department of Internal Medicine 3, Center of Integrated Oncology (CIO) Cologne-Bonn, University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| |
Collapse
|
13
|
Chi L, Wu D, Li Z, Zhang M, Liu H, Wang C, Gui S, Geng M, Li H, Zhang J. Modified Release and Improved Stability of Unstable BCS II Drug by Using Cyclodextrin Complex as Carrier To Remotely Load Drug into Niosomes. Mol Pharm 2015; 13:113-24. [DOI: 10.1021/acs.molpharmaceut.5b00566] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liandi Chi
- Center
for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Delin Wu
- School
of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zhuo Li
- Center
for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- School
of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Minmin Zhang
- Division
of Anti-tumor Pharmacology, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongchun Liu
- Division
of Anti-tumor Pharmacology, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Caifen Wang
- Center
for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shuangying Gui
- School
of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Meiyu Geng
- Division
of Anti-tumor Pharmacology, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haiyan Li
- Center
for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiwen Zhang
- Center
for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- School
of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230038, China
| |
Collapse
|
14
|
Soo E, Thakur S, Qu Z, Jambhrunkar S, Parekh HS, Popat A. Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach. J Colloid Interface Sci 2015; 462:368-74. [PMID: 26479200 DOI: 10.1016/j.jcis.2015.10.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 11/16/2022]
Abstract
Despite the known anticancer potential of resveratrol, its clinical applications are often hindered by physicochemical limitations such as poor solubility and stability. The encapsulation of resveratrol in formulations such as polymeric nanoparticles and liposomes has shown limited success. This study aimed to develop and optimize a novel drug carrier by co-encapsulating pristine resveratrol alongside cyclodextrin-resveratrol inclusion complexes in the lipophilic and hydrophilic compartments of liposomes, respectively by using a novel dual carrier approach. The particle size, polydispersity index and zeta potential of the final formulation were 131±1.30nm, 0.089±0.005 and -2.64±0.51mV, respectively. Compared to free resveratrol and conventional liposomal formulations with drug release profile of 40-60%, our novel nanoformulations showed complete (100%) drug release in 24h. The formulation was stable for 14days at 4°C. We also studied the in vitro cytotoxicity of resveratrol encapsulated liposomes in HT-29 colon cancer cell lines. The cytotoxicity profile of our liposomes was observed to be dose dependent and enhanced in comparison to free resveratrol (in DMSO). Our study demonstrates that co-encapsulation of pristine resveratrol along with its cyclodextrin complex in liposomal formulations is a plausible option for the enhanced delivery of the hydrophobic chemotherapeutic agent.
Collapse
Affiliation(s)
- Ernest Soo
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Brisbane, Australia
| | - Sachin Thakur
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Brisbane, Australia
| | - Zhi Qu
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Brisbane, Australia
| | - Siddharth Jambhrunkar
- Mucosal Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Harendra S Parekh
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Brisbane, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Brisbane, Australia; Mucosal Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
15
|
Vilekar P, Rao G, Awasthi S, Awasthi V. Diphenyldifluoroketone EF24 Suppresses Pro-inflammatory Interleukin-1 receptor 1 and Toll-like Receptor 4 in lipopolysaccharide-stimulated dendritic cells. JOURNAL OF INFLAMMATION-LONDON 2015; 12:55. [PMID: 26401121 PMCID: PMC4580149 DOI: 10.1186/s12950-015-0096-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/23/2015] [Indexed: 01/24/2023]
Abstract
Background Unresolved and prolonged inflammation is a pathological basis of many disorders such as cancer and multiple organ failure in shock. Interleukin-1 receptor (IL-1R) superfamily consists of IL-1R1 and pathogen pattern recognition receptor toll-like receptor-4 (TLR4) which, upon ligand binding, initiate pro-inflammatory signaling. The study objective was to investigate the effect of a diphenyldifluoroketone EF24 on the expression of IL-1R1 and TLR4 in lipopolysaccharide (LPS)-stimulated dendritic cells (DCs). Methods Immortalized murine bone marrow-derived JAWS II dendritic cells (DC) were challenged with LPS (100 ng/ml) for 4 h. The LPS-stimulated DCs were treated with 10 μM of EF24 for 1 h. The expression levels of IL-1R1 and TLR4 were monitored by RT-PCR, immunoblotting, and confocal microscopy. The effect of EF24 on the viability and cell cycle of DCs was examined by lactate dehydrogenase assay and flow cytometry, respectively. Results EF24 treatment suppressed the LPS-induced TLR4 and IL-1R1 expression in DCs. However, the expression levels of IL-1RA and IL-1R2 were not influenced by either LPS or EF24 treatments. These effects of EF24 were associated with a decrease in LPS-induced expression of phospho-NF-kB p65, indicative of its role in the transcriptional control of IL-1R superfamily members. We did not find any significant effect of EF24 on the proliferation or cell cycle of DCs. Conclusions The results suggest that EF24 influences IL-1R superfamily signaling pathway in ways that could have salutary effects in inflammation. The pluripotent anti-inflammatory actions of EF24 warrant further investigation of EF24 in inflammatory conditions of systemic nature.
Collapse
Affiliation(s)
- Prachi Vilekar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117 USA
| | - Geeta Rao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117 USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117 USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117 USA
| |
Collapse
|
16
|
Poorghorban M, Karoyo AH, Grochulski P, Verrall RE, Wilson LD, Badea I. A 1H NMR Study of Host/Guest Supramolecular Complexes of a Curcumin Analogue with β-Cyclodextrin and a β-Cyclodextrin-Conjugated Gemini Surfactant. Mol Pharm 2015; 12:2993-3006. [DOI: 10.1021/acs.molpharmaceut.5b00261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Masoomeh Poorghorban
- Drug
Discovery and Development Research Group, College of Pharmacy and
Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Abdalla H. Karoyo
- Department
of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | - Pawel Grochulski
- Drug
Discovery and Development Research Group, College of Pharmacy and
Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
- Canadian Light Source, Saskatoon, Saskatchewan, S7N 2 V3, Canada
| | - Ronald E. Verrall
- Department
of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | - Lee D. Wilson
- Department
of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | - Ildiko Badea
- Drug
Discovery and Development Research Group, College of Pharmacy and
Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| |
Collapse
|
17
|
Yadav VR, Hussain A, Xie J, Kosanke S, Awasthi V. The salutary effects of diphenyldifluoroketone EF24 in liver of a rat hemorrhagic shock model. Scand J Trauma Resusc Emerg Med 2015; 23:8. [PMID: 25645333 PMCID: PMC4324433 DOI: 10.1186/s13049-015-0098-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background Liver is a target for injury in low flow states and it plays a central role in the progression of systemic failure associated with hemorrhagic shock. Pharmacologic support can help recover liver function even after it has suffered extensive damage during ischemia and reperfusion phases. In this work we assessed the efficacy of a diphenyldifluoroketone EF24, an IKKβ inhibitor, in controlling hepatic inflammatory signaling caused by hemorrhagic shock in a rat model. Methods Sprague Dawley rats were bled to about 50% of blood volume. The hemorrhaged rats were treated with vehicle control or EF24 (0.4 mg/kg) after 1 h of hemorrhage without any accompanying resuscitation. The study was terminated after additional 5 h to excise liver tissue for biochemical analyses and histology. Results EF24 treatment alleviated hemorrhagic shock-induced histologic injury in the liver and restored serum transaminases to normal levels. Hemorrhagic shock induced the circulating levels of CD163 (a marker for macrophage activation) and CINC (an IL-8 analog), as well as myeloperoxidase activity in liver tissue. These markers of inflammatory injury were reduced by EF24 treatment. EF24 treatment also suppressed the expression of the Toll-like receptor 4, phospho-p65/Rel A, and cyclooxygenase-2 in liver tissues, indicating that it suppressed inflammatory pathway. Moreover, it reduced the hemorrhagic shock-induced increase in the expression of high mobility group box-1 protein. The evidence for apoptosis after hemorrhagic shock was inconclusive. Conclusion Even in the absence of volume support, EF24 treatment suppresses pro-inflammatory signaling in liver tissue and improves liver functional markers in hemorrhagic shock.
Collapse
Affiliation(s)
- Vivek R Yadav
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Alamdar Hussain
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Jun Xie
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Stanley Kosanke
- Department of Comparative Medicine, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, USA.
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
18
|
Matloob AH, Mourtas S, Klepetsanis P, Antimisiaris SG. Increasing the stability of curcumin in serum with liposomes or hybrid drug-in-cyclodextrin-in-liposome systems: A comparative study. Int J Pharm 2014; 476:108-15. [DOI: 10.1016/j.ijpharm.2014.09.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/15/2014] [Accepted: 09/26/2014] [Indexed: 01/28/2023]
|
19
|
Chen J, Lu WL, Gu W, Lu SS, Chen ZP, Cai BC, Yang XX. Drug-in-cyclodextrin-in-liposomes: a promising delivery system for hydrophobic drugs. Expert Opin Drug Deliv 2014; 11:565-77. [PMID: 24490763 DOI: 10.1517/17425247.2014.884557] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Recently, the entrapment of hydrophobic drugs in the form of water-soluble drug-cyclodextrin (CD) complex in liposomes has been investigated as a new strategy to combine the relative advantages of CDs and liposomes into one system, namely drug-in-CD-in-liposome (DCL) systems. AREAS COVERED For DCLs preparation, an overall understanding of the interaction between CDs and lipid components of liposomes is necessary and valuable. The present article reviews the preparation, characterization and application of DCLs, especially as antitumor or transdermal carriers. Double-loading technique, an interesting strategy to control release and increase drug-loading capacity, is also discussed. EXPERT OPINION DCL approach can be useful in increasing drug solubility and vesicles stability, in controlling the in vivo fate of hydrophobic drugs and in avoiding burst release of drug from the vesicles. To obtain stable DCL, the CDs should have a higher affinity to drug molecules compared with liposomal membrane lipids. DCLs prepared by double-loading technique seem to be a suitable targeted drug delivery system because they have a fast onset action with prolonged drug release process and the significantly enhanced drug-loading capacity. In particular, DCLs are suitable for the delivery of hydrophobic drugs which also possess volatility.
Collapse
Affiliation(s)
- Jun Chen
- Nanjing University of Chinese Medicine, School of Pharmacy , Nanjing , PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
2-[3,5-Bis-(2-fluorobenzylidene)-4-piperidon-1-yl]-N-(4-fluorobenzyl)-acetamide and Its Evaluation as an Anticancer Agent. J CHEM-NY 2013. [DOI: 10.1155/2013/935646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Synthesis of 2-[3,5-bis-(2-fluorobenzylidene)-4-piperidon-1-yl]-N-(4-fluorobenzyl)-acetamide, a derivative of 3,5-bis-(2-fluorobenzylidene)-4-piperidone (EF24), as an antiproliferative and imageable compound is described. The radioactive derivative was synthesized in 40–45% radiochemical yield using N-[4-fluoro(18F)benzyl]-2-bromoacetamide (NFLOBA) as a radiolabeled synthon for coupling with EF24. Cell proliferation assays showed that 2-[3,5-bis-(2-fluorobenzylidene)-4-piperidon-1-yl]-N-(4-fluorobenzyl)-acetamide (NFLOBA-EF24) had antiproliferative efficacy similar to that of EF24 in lung adenocarcinoma H441 cells.18F-NFLOBA-EF24 was investigated in normal rats for whole-body PET imaging and biodistribution. At necropsy after 1 h of injection, about 12% of injected compound was still circulating in blood; liver, kidney, and muscle were other tissues with moderate amounts of accumulation. In order to assess the tumor-suppressive activity, nonradioactive NFLOBA-EF24 was administered in nude rats carrying xenograft H441 tumor. After 15 days of treatment, the tumor size decreased by approximately 83% compared to the tumors in control rats. The tumor regression was also confirmed by molecular imaging of glucose metabolism with18F- fluorodeoxyglucose. The results suggest that EF24 could be efficiently modified with18F-labeled synthon NFLOBA for convenient PET imaging without altering the antitumor efficacy of the original compound. This study provides visual kinetics of synthetic curcuminoid EF24 by positron emission tomography for the first time.
Collapse
|
21
|
Liu HT, Wang LL, Liu LX. Advances in understanding mechanisms underlying the antitumor activity of curcumin analogue EF24. Shijie Huaren Xiaohua Zazhi 2012; 20:1853-1857. [DOI: 10.11569/wcjd.v20.i20.1853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Curcumin, a natural polyphenol which was first extracted by Vogel and Pelletier from rhizomes of the plant Curcuma longa L, has potent anticarcinogenic activity and low toxic side effects in a wide variety of tumor cells. It has been listed as a third-generation chemoprophylactic drug by the US National Cancer Institute. However, the therapeutic benefit is hampered by its low absorption after transdermal or oral application. Ames et al. have developed a series of novel synthetic curcumin analogs that are more potent and have better water solubility than curcumin. One of these leading compounds, EF24, exhibits about 10-fold greater cytotoxic activity against various cancer cell lines in relation to curcumin. This article will review the recent advances in understanding mechanisms underlying the antitumor activity of EF24.
Collapse
|