1
|
Encapsulation of 67Cu therapeutic radiometal in luminescent lanthanide phosphate core and core-shell nanoparticles. Appl Radiat Isot 2022; 186:110296. [DOI: 10.1016/j.apradiso.2022.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
|
2
|
Ajili L, Férid M, Horchani-Naifer K. Synthesis and Spectroscopic Characterizations of Tb3+ Doped K2La(PO3)5 Luminophores. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s199079312110002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Comparative investigation of structural, EPR, optical and photoluminescence properties of nanostructured LaPO4:Ce/RE/Me and LaPO4:Yb/Er phosphors prepared by co-precipitation method. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Tailoring the Radionuclide Encapsulation and Surface Chemistry of La(223Ra)VO4 Nanoparticles for Targeted Alpha Therapy. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of targeted alpha therapy (TAT) as a viable cancer treatment requires innovative solutions to challenges associated with radionuclide retention to enhance local tumor cytotoxicity and to minimize off-target effects. Nanoparticles (NPs) with high encapsulation and high retention of radionuclides have shown potential in overcoming these issues. This article shows the influence of pH on the structure of lanthanum vanadate (LaVO4) NPs and its impact on the radiochemical yield of 223Ra and subsequent retention of its decay daughters, 211Pb and 211Bi. An acidic pH (4.9) results in a high fraction of La(223Ra)VO4 NPs with tetragonal structure (44.6–66.1%) and a 223Ra radiochemical yield <40%. Adjusting the pH to 11 yields >80% of La(223Ra)VO4 NPs with monoclinic structure and increases the 223Ra radiochemical yield >85%. The leakage of decay daughters from La(223Ra)VO4 NPs (pH 11) was <5% and <0.5% when exposed to deionized water and phosphate-buffered saline, respectively. Altering the surface chemistry of La(223Ra)VO4 NPs with carboxylate and phosphate compounds resulted in a threefold decrease in hydrodynamic diameter and a 223Ra radiochemical yield between 74.7% and 99.6%. These results show the importance of tailoring the synthesis parameters and surface chemistry of LaVO4 NPs to obtain high encapsulation and retention of radionuclides.
Collapse
|
5
|
Wu Y, Xu X, You X, Xiao Q. Synthesis of mesoporous core-shell structured GdPO4:Eu@SiO2@mSiO2 nanorods for drug delivery and cell imaging applications. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Toro-González M, Dame AN, Foster CM, Millet LJ, Woodward JD, Rojas JV, Mirzadeh S, Davern SM. Quantitative encapsulation and retention of 227Th and decay daughters in core-shell lanthanum phosphate nanoparticles. NANOSCALE 2020; 12:9744-9755. [PMID: 32324185 DOI: 10.1039/d0nr01172j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Targeted alpha therapy (TAT) offers great promise for treating recalcitrant tumors and micrometastatic cancers. One drawback of TAT is the potential damage to normal tissues and organs due to the relocation of decay daughters from the treatment site. The present study evaluates La(227Th)PO4 core (C) and core +2 shells (C2S) nanoparticles (NPs) as a delivery platform of 227Th to minimize systemic distribution of decay daughters, 223Ra and 211Pb. In vitro retention of decay daughters within La(227Th)PO4 C NPs was influenced by the concentration of reagents used during synthesis, in which the leakage of 223Ra was between 0.4 ± 0.2% and 20.3 ± 1.1% in deionized water. Deposition of two nonradioactive LaPO4 shells onto La(227Th)PO4 C NPs increased the retention of decay daughters to >99.75%. The toxicity of the nonradioactive LaPO4 C and C2S NP delivery platforms was examined in a mammalian breast cancer cell line, BT-474. No significant decrease in cell viability was observed for a monolayer of BT-474 cells for NP concentrations below 233.9 μg mL-1, however cell viability decreased below 60% when BT-474 spheroids were incubated with either LaPO4 C or C2S NPs at concentrations exceeding 29.2 μg mL-1. La(227Th)PO4 C2S NPs exhibit a high encapsulation and in vitro retention of radionuclides with limited contribution to cellular cytotoxicity for TAT applications.
Collapse
Affiliation(s)
- M Toro-González
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, , Richmond 23284, USA. and Isotope and Fuel Cycle Technology Division, Oak Ridge National Laboratory, Oak Ridge 37830, USA.
| | - A N Dame
- Isotope and Fuel Cycle Technology Division, Oak Ridge National Laboratory, Oak Ridge 37830, USA.
| | - C M Foster
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge 37830, USA
| | - L J Millet
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge 37830, USA and Joint Research Activity, The Bredesen Center, University of Tennessee, Knoxville 37996, USA
| | - J D Woodward
- Isotope and Fuel Cycle Technology Division, Oak Ridge National Laboratory, Oak Ridge 37830, USA.
| | - J V Rojas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, , Richmond 23284, USA.
| | - S Mirzadeh
- Isotope and Fuel Cycle Technology Division, Oak Ridge National Laboratory, Oak Ridge 37830, USA.
| | - S M Davern
- Isotope and Fuel Cycle Technology Division, Oak Ridge National Laboratory, Oak Ridge 37830, USA.
| |
Collapse
|
7
|
In-vitro cytotoxicity evaluation of surface design luminescent lanthanide core/shell nanocrystals. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Runowski M, Stopikowska N, Szeremeta D, Goderski S, Skwierczyńska M, Lis S. Upconverting Lanthanide Fluoride Core@Shell Nanorods for Luminescent Thermometry in the First and Second Biological Windows: β-NaYF 4:Yb 3+- Er 3+@SiO 2 Temperature Sensor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13389-13396. [PMID: 30895770 DOI: 10.1021/acsami.9b00445] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Upconverting core@shell type β-NaYF4:Yb3+-Er3+@SiO2 nanorods have been obtained by a two-step synthesis process, which encompasses hydrothermal and microemulsion routes. The synthesized nanomaterial forms stable aqueous colloids and exhibits a bright dual-center emission (λex = 975 nm), i.e., upconversion luminescence of Er3+ and down-shifting emission of Yb3+, located in the first (I-BW) and the second (II-BW) biological windows of the spectral range, respectively. The intensity ratios of the emission bands of Er3+ and Yb3+ observed in the vis-near-infrared (NIR) range monotonously change with temperature, i.e., the thermalized Er3+ levels (2H11/2 → 4I15/2/4S3/2 → 4I15/2) and the nonthermally coupled Yb3+/Er3+ levels (2F5/2 → 2F7/2/4I9/2 → 4I15/2 or 4F9/2 → 4I15/2). Hence, their thermal evolutions have been correlated with temperature using the Boltzmann type distribution and second-order polynomial fits for temperature-sensing purposes, i.e., Er3+ 525/545 nm (max Sr = 1.31% K-1) and Yb3+/Er3+ 1010/810 nm (1.64% K-1) or 1010/660 nm (0.96% K-1). Additionally, a fresh chicken breast was used as a tissue imitation in the performed ex vivo experiment, showing the advantage of the use of NIR Yb3+/Er3+ bands, vs. the typically used Er3+ 525/545 nm band ratio, i.e., better penetration of the luminescence signal through the tissue in the I-BW and II-BW. Such nanomaterials can be utilized as accurate and effective, broad-range vis-NIR optical, contactless sensors of temperature.
Collapse
Affiliation(s)
- Marcin Runowski
- Adam Mickiewicz University , Faculty of Chemistry, Department of Rare Earths , Umultowska 89b , 61-614 Poznań , Poland
| | - Natalia Stopikowska
- Adam Mickiewicz University , Faculty of Chemistry, Department of Rare Earths , Umultowska 89b , 61-614 Poznań , Poland
| | - Daria Szeremeta
- Adam Mickiewicz University , Faculty of Chemistry, Department of Rare Earths , Umultowska 89b , 61-614 Poznań , Poland
| | - Szymon Goderski
- Adam Mickiewicz University , Faculty of Chemistry, Department of Rare Earths , Umultowska 89b , 61-614 Poznań , Poland
| | - Małgorzata Skwierczyńska
- Adam Mickiewicz University , Faculty of Chemistry, Department of Rare Earths , Umultowska 89b , 61-614 Poznań , Poland
| | - Stefan Lis
- Adam Mickiewicz University , Faculty of Chemistry, Department of Rare Earths , Umultowska 89b , 61-614 Poznań , Poland
| |
Collapse
|
9
|
Hu H, Zhao P, Liu J, Ke Q, Zhang C, Guo Y, Ding H. Lanthanum phosphate/chitosan scaffolds enhance cytocompatibility and osteogenic efficiency via the Wnt/β-catenin pathway. J Nanobiotechnology 2018; 16:98. [PMID: 30497456 PMCID: PMC6263548 DOI: 10.1186/s12951-018-0411-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/10/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Fabrication of porous scaffolds with great biocompatibility and osteoinductivity to promote bone defect healing has attracted extensive attention. METHODS In a previous study, novel lanthanum phosphate (LaPO4)/chitosan (CS) scaffolds were prepared by distributing 40- to 60-nm LaPO4 nanoparticles throughout plate-like CS films. RESULTS Interconnected three dimensional (3D) macropores within the scaffolds increased the scaffold osteoconductivity, thereby promoting cell adhesion and bone tissue in-growth. The LaPO4/CS scaffolds showed no obvious toxicity and accelerated bone generation in a rat cranial defect model. Notably, the element La in the scaffolds was found to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) through the Wnt/β-catenin signalling pathway and induced high expression of the osteogenesis-related genes alkaline phosphatase, osteocalcin and Collagen I (Col-I). Moreover, the LaPO4/CS scaffolds enhanced bone regeneration and collagen fibre deposition in rat critical-sized calvarial defect sites. CONCLUSION The novel LaPO4/CS scaffolds provide an admirable and promising platform for the repair of bone defects.
Collapse
Affiliation(s)
- Haoran Hu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Peipei Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Jiayu Liu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Qinfei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Hao Ding
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
10
|
Runowski M, Shyichuk A, Tymiński A, Grzyb T, Lavín V, Lis S. Multifunctional Optical Sensors for Nanomanometry and Nanothermometry: High-Pressure and High-Temperature Upconversion Luminescence of Lanthanide-Doped Phosphates-LaPO 4/YPO 4:Yb 3+-Tm 3. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17269-17279. [PMID: 29722259 DOI: 10.1021/acsami.8b02853] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Upconversion luminescence of nano-sized Yb3+ and Tm3+ codoped rare earth phosphates, that is, LaPO4 and YPO4, has been investigated under high-pressure (HP, up to ∼25 GPa) and high-temperature (293-773 K) conditions. The pressure-dependent luminescence properties of the nanocrystals, that is, energy red shift of the band centroids, changes of the band ratios, shortening of upconversion lifetimes, and so forth, make the studied nanomaterials suitable for optical pressure sensing in nanomanometry. Furthermore, thanks to the large energy difference (∼1800 cm-1), the thermalized states of Tm3+ ions are spectrally well-separated, providing high-temperature resolution, required in optical nanothermometry. The temperature of the system containing such active nanomaterials can be determined on the basis of the thermally induced changes of the Tm3+ band ratio (3F2,3 → 3H6/3H4 → 3H6), observed in the emission spectra. The advantage of such upconverting optical sensors is the use of near-infrared light, which is highly penetrable for many materials. The investigated nanomanometers/nanothermometers have been successfully applied, as a proof-of-concept of a novel bimodal optical gauge, for the determination of the temperature of the heated system (473 K), which was simultaneously compressed under HP (1.5 and 5 GPa).
Collapse
Affiliation(s)
- Marcin Runowski
- Adam Mickiewicz University , Faculty of Chemistry , Umultowska 89b , 61-614 Poznań , Poland
| | - Andrii Shyichuk
- Faculty of Chemistry , University of Wrocław , F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Artur Tymiński
- Adam Mickiewicz University , Faculty of Chemistry , Umultowska 89b , 61-614 Poznań , Poland
| | - Tomasz Grzyb
- Adam Mickiewicz University , Faculty of Chemistry , Umultowska 89b , 61-614 Poznań , Poland
| | - Víctor Lavín
- Departamento de Física, MALTA Consolider Team, and IUdEA , Universidad de La Laguna , Apdo. 456 , E-38200 San Cristóbal de La Laguna , Santa Cruz de Tenerife , Spain
| | - Stefan Lis
- Adam Mickiewicz University , Faculty of Chemistry , Umultowska 89b , 61-614 Poznań , Poland
| |
Collapse
|
11
|
Runowski M, Marciniak J, Grzyb T, Przybylska D, Shyichuk A, Barszcz B, Katrusiak A, Lis S. Lifetime nanomanometry - high-pressure luminescence of up-converting lanthanide nanocrystals - SrF 2:Yb 3+,Er 3. NANOSCALE 2017; 9:16030-16037. [PMID: 29027549 DOI: 10.1039/c7nr04353h] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Anti-Stokes luminescence of up-converting nanocrystals SrF2:Yb3+,Er3+ can be used as a high pressure optical sensor alternative to the ruby fluorescence-scale. In nanocrystalline SrF2:Yb3+,Er3+, high pressure reversibly shortens the emission lifetimes nearly linearly up to 5.29 GPa at least. Its advantage is the use of NIR (≈980 nm) radiation, highly penetrable for many materials. The shortening of up-conversion lifetimes has been attributed mainly to the changes in energy transfer rates, caused by decreased interatomic distances and increased overlap integrals between 4f electrons and the valence shells of ligand ions. The origin of high-pressure effects on the luminescence intensity, band ratio and their spectral position has been explained by the increased interactions and distortions of the crystal-field symmetry around the emitting ions in the compressed structure.
Collapse
Affiliation(s)
- Marcin Runowski
- Adam Mickiewicz University, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland.
| | - Jędrzej Marciniak
- Adam Mickiewicz University, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland.
| | - Tomasz Grzyb
- Adam Mickiewicz University, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland.
| | - Dominika Przybylska
- Adam Mickiewicz University, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland.
| | - Andrii Shyichuk
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Bolesław Barszcz
- Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Andrzej Katrusiak
- Adam Mickiewicz University, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland.
| | - Stefan Lis
- Adam Mickiewicz University, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland.
| |
Collapse
|
12
|
van Hest JJHA, Blab GA, Gerritsen HC, Donega CDM, Meijerink A. Incorporation of Ln-Doped LaPO4 Nanocrystals as Luminescent Markers in Silica Nanoparticles. NANOSCALE RESEARCH LETTERS 2016; 11:261. [PMID: 27209405 PMCID: PMC4875915 DOI: 10.1186/s11671-016-1465-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/04/2016] [Indexed: 05/15/2023]
Abstract
Lanthanide ions are promising for the labeling of silica nanoparticles with a specific luminescent fingerprint due to their sharp line emission at characteristic wavelengths. With the increasing use of silica nanoparticles in consumer products, it is important to label silica nanoparticles in order to trace the biodistribution, both in the environment and living organisms.In this work, we synthesized LaPO4 nanocrystals (NCs) with sizes ranging from 4 to 8 nm doped with europium or cerium and terbium. After silica growth using an inverse micelle method, monodisperse silica spheres were obtained with a single LaPO4 NC in the center. We demonstrate that the size of the silica spheres can be tuned in the 25-55 nm range by addition of small volumes of methanol during the silica growth reaction. Both the LaPO4 core and silica nanocrystal showed sharp line emission characteristic for europium and terbium providing unique optical labels in silica nanoparticles of variable sizes.
Collapse
Affiliation(s)
- Jacobine J H A van Hest
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
- Molecular Biophysics, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Gerhard A Blab
- Molecular Biophysics, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Hans C Gerritsen
- Molecular Biophysics, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Celso de Mello Donega
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Andries Meijerink
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Goderski S, Runowski M, Lis S. Synthesis of luminescent KY3F10 nanopowder multi-doped with lanthanide ions by a co-precipitation method. J RARE EARTH 2016. [DOI: 10.1016/s1002-0721(16)60098-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
|
15
|
Szczeszak A, Ekner-Grzyb A, Runowski M, Szutkowski K, Mrówczyńska L, Kaźmierczak Z, Grzyb T, Dąbrowska K, Giersig M, Lis S. Spectroscopic, structural and in vitro cytotoxicity evaluation of luminescent, lanthanide doped core@shell nanomaterials GdVO4:Eu(3+)5%@SiO2@NH2. J Colloid Interface Sci 2016; 481:245-55. [PMID: 27478979 DOI: 10.1016/j.jcis.2016.07.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 11/19/2022]
Abstract
The luminescent GdVO4:Eu(3+)5%@SiO2@NH2 core@shell nanomaterials were obtained via co-precipitation method, followed by hydrolysis and co-condensation of silane derivatives: tetraethyl orthosilicate and 3-aminopropyltriethoxysilane. Their effect on human erythrocytes sedimentation and on proliferation of human lung microvascular endothelial cells was examined and discussed. The luminescent nanoparticles were synthesized in the presence of polyacrylic acid or glycerin in order to minimalize the agglomeration and excessive growth of nanostructures. Surface coating with amine functionalized silica shell improved their biocompatibility, facilitated further organic conjugation and protected the internal core. Magnetic measurements revealed an enhanced T1-relaxivity for the synthesized GdVO4:Eu(3+)5% nanostructures. Structure, morphology and average grain size of the obtained nanomaterials were determined by X-ray diffraction, transmission electron microscopy and dynamic light scattering analysis. The qualitative elemental composition of the nanomaterials was established using energy-dispersive X-ray spectroscopy. The spectroscopic characteristic of red emitting core@shell nanophosphors was completed by measuring luminescence spectra and decays. The emission spectra revealed characteristic bands of Eu(3+) ions related to the transitions (5)D0-(7)F0,1,2,3,4 and (5)D1-(7)F1. The luminescence lifetimes consisted of two components, associated with the presence of Eu(3+) ions located at the surface of the crystallites and in the bulk.
Collapse
Affiliation(s)
- Agata Szczeszak
- Adam Mickiewicz University, Faculty of Chemistry, Department of Rare Earths, Umultowska 89b, 61-614 Poznań, Poland.
| | - Anna Ekner-Grzyb
- Adam Mickiewicz University, Faculty of Biology, Umultowska 89, 61-614 Poznań, Poland.
| | - Marcin Runowski
- Adam Mickiewicz University, Faculty of Chemistry, Department of Rare Earths, Umultowska 89b, 61-614 Poznań, Poland.
| | - Kosma Szutkowski
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland.
| | - Lucyna Mrówczyńska
- Adam Mickiewicz University, Faculty of Biology, Department of Cell Biology, Umultowska 89, 61-614 Poznań, Poland.
| | - Zuzanna Kaźmierczak
- Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Bacteriophage Laboratory, Rudolfa Weigla 12, 53-114 Wrocław, Poland.
| | - Tomasz Grzyb
- Adam Mickiewicz University, Faculty of Chemistry, Department of Rare Earths, Umultowska 89b, 61-614 Poznań, Poland.
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Bacteriophage Laboratory, Rudolfa Weigla 12, 53-114 Wrocław, Poland.
| | - Michael Giersig
- Freie Universität Berlin, Institute of Experimental Physics, Arnimallee 14, 14195 Berlin, Germany.
| | - Stefan Lis
- Adam Mickiewicz University, Faculty of Chemistry, Department of Rare Earths, Umultowska 89b, 61-614 Poznań, Poland.
| |
Collapse
|
16
|
Kamimura M, Saito R, Hyodo H, Tsuji K, Umeda IO, Fujii H, Soga K. Over-1000 nm Near-infrared Fluorescence and SPECT/CT Dual-modal in vivo Imaging Based on Rare-earth Doped Ceramic Nanophosphors. J PHOTOPOLYM SCI TEC 2016. [DOI: 10.2494/photopolymer.29.525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Runowski M, Grzyb T, Zep A, Krzyczkowska P, Gorecka E, Giersig M, Lis S. Eu3+and Tb3+doped LaPO4nanorods, modified with a luminescent organic compound, exhibiting tunable multicolour emission. RSC Adv 2014. [DOI: 10.1039/c4ra06168c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Runowski M, Ekner-Grzyb A, Mrówczyńska L, Balabhadra S, Grzyb T, Paczesny J, Zep A, Lis S. Synthesis and organic surface modification of luminescent, lanthanide-doped core/shell nanomaterials (LnF3@SiO2@NH2@organic acid) for potential bioapplications: spectroscopic, structural, and in vitro cytotoxicity evaluation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9533-9543. [PMID: 25036848 DOI: 10.1021/la501107a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A facile coprecipitation reaction between Ce(3+), Gd(3+), Tb(3+), and F(-) ions, in the presence of glycerine as a capping agent, led to the formation of ultrafine, nanocrystalline CeF3:Tb(3+) 5%, Gd(3+) 5% (LnF3). The as-prepared fluoride nanoparticles were successfully coated with an amine modified silica shell. Subsequently, the obtained LnF3@SiO2@NH2 nanostructures were conjugated with 4-ethoxybenzoic acid in order to prove the possibility of organic modification and obtain a new functional nanomaterial. All of the nanophosphors synthesized exhibited intense green luminescence under UV light irradiation. Based on TEM (transmission electron microscopy) measurements, the diameters of the cores (≈12 nm) and core/shell particles (≈50 nm) were determined. To evaluate the cytotoxic activity of the nanomaterials obtained, their effect on human erythrocytes was investigated. LnF3 nanoparticles were bound to the erythrocyte membrane, without inducing any cytotoxic effects. After coating with silica, the nanoparticles revealed significant cytotoxicity. However, further functionalization of the nanomaterial with -NH2 groups as well as conjugation with 4-ethoxybenzoic acid entailed a decrease in cytotoxicity of the core/shell nanoparticles.
Collapse
Affiliation(s)
- Marcin Runowski
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University , Grunwaldzka 6, 60-780 Poznań, Poland
| | | | | | | | | | | | | | | |
Collapse
|