1
|
Hayee R, Iqtedar M, Albekairi NA, Alshammari A, Makhdoom MA, Islam M, Ahmed N, Rasool MF, Li C, Saeed H. Levofloxacin loaded chitosan and poly-lactic-co-glycolic acid nano-particles against resistant bacteria: Synthesis, characterization and antibacterial activity. J Infect Public Health 2024; 17:906-917. [PMID: 38569270 DOI: 10.1016/j.jiph.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND With the global increase in antibacterial resistance, the challenge faced by developing countries is to utilize the available antibiotics, alone or in combination, against resistant bacterial strains. We aimed to encapsulate the levofloxacin (LVX) into polymeric nanoparticles using biodegradable polymers i.e. Chitosan and PLGA, estimating their physicochemical characteristics followed by functional assessment as nanocarriers of levofloxacin against the different resistant strains of bacteria isolated from biological samples collected from tertiary care hospital in Lahore, Pakistan. METHODS LVX-NPs were synthesized using ion gelation and double emulsion solvent-evaporation method employing chitosan (CS) and poly-lactic-co-glycolic acid (PLGA), characterized via FTIR, XRD, SEM, and invitro drug release studies, while antibacterial activity was assessed using Kirby-Bauer disc-diffusion method. RESULTS Data revealed that the levofloxacin-loaded chitosan nanoparticles showed entrapment efficiency of 57.14% ± 0.03 (CS-I), 77.30% ± 0.08(CS-II) and 87.47% ± 0.08 (CS-III). The drug content, particle size, and polydispersity index of CS-I were 52.22% ± 0.2, 559 nm ± 31 nm, and 0.030, respectively, whereas it was 66.86% ± 0.17, 595 nm ± 52.3 nm and 0.057, respectively for CS-II and 82.65% ± 0.36, 758 nm ± 24 nm and 0.1, respectively for CS-III. The PLGA-levofloxacin nanoparticles showed an entrapment efficiency of 42.80% ± 0.4 (PLGA I) and 23.80% ± 0.4 (PLGA II). The drug content, particle size and polydispersity index of PLGA-I were 86% ± 0.21, 92 nm ± 10 nm, and 0.058, respectively, whereas it was 52.41% ± 0.45, 313 nm ± 32 nm and 0.076, respectively for PLGA-II. The XRD patterns of both polymeric nanoparticles showed an amorphous nature. SEM analysis reflects the circular-shaped agglomerated nanoparticles with PLGA polymer and dense spherical nanoparticles with chitosan polymer. The in-vitro release profile of PLGA-I nanoparticles showed a sustained release of 82% in 120 h and it was 58.40% for CS-III. Both types of polymeric nanoparticles were found to be stable for up to 6 months without losing any major drug content. Among the selected formulations, CS-III and PLGA-I, CS-III had better antibacterial potency against gram+ve and gram-ve bacteria, except for K. pneumonia, yet, PLGA-I demonstrated efficacy against K. pneumonia as per CSLI guidelines. All formulations did not exhibit any signs of hemotoxicity, nonetheless, the CS-NPs tend to bind on the surface of RBCs. CONCLUSION These data suggested that available antibiotics can effectively be utilized as nano-antibiotics against resistant bacterial strains, causing severe infections, for improved antibiotic sensitivity without compromising patient safety.
Collapse
Affiliation(s)
- Rabia Hayee
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000 Lahore, Pakistan.
| | - Mehwish Iqtedar
- Department of Biotechnology, Lahore College for Women University, Jail Road, Lahore, Pakistan.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia.
| | | | - Muhammad Islam
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000 Lahore, Pakistan.
| | - Nadeem Ahmed
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | | | - Chen Li
- Dept. of Pathology and Physiopathology, Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China.
| | - Hamid Saeed
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000 Lahore, Pakistan.
| |
Collapse
|
2
|
Polyakov V, Gadzhimagomedova Z, Kirsanova D, Soldatov A. Synthesis Optimization of BaGdF 5:x%Tb 3+ Nanophosphors for Tunable Particle Size. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8559. [PMID: 36500057 PMCID: PMC9740830 DOI: 10.3390/ma15238559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
X-ray photodynamic therapy (XPDT) is aimed at the treatment of deep-located malignant tumors thanks to the high penetration depth of X-rays. In XPDT therapy, it is necessary to use materials that effectively absorb X-rays and convert them into visible radiation-nanophosphors. Rare-earth elements, fluorides, in particular, doped BaGdF5, are known to serve as efficient nanophosphor. On the other hand, the particle size of nanophosphors has a crucial impact on biodistribution, cell uptake, and cytotoxicity. In this work, we investigated various Tb:Gd ratios in the range from 0.1 to 0.5 and optimized the terbium content to achieve the maximum luminescence under X-ray excitation. The effect of temperature, composition of the ethylene glycol/water solvent, and the synthesis technique (solvothermal and microwave) on the size of the nanophosphors was explored. It was found that the synthesis techniques and the solvent composition had the greatest influence on the averaged particle size. By varying these two parameters, it is possible to tune the size of the nanophosphor particles, which make them suitable for biomedical applications.
Collapse
|
3
|
A pH-response multifunctional nanoplatform based on NaGdF4:Yb,Er,Fe@Ce6@mSiO2-DOX for synergistic photodynamic/chemotherapy of cancer cells. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Isikawa M, Guidelli E. Microfluidic Synthesis of Theranostic Nanoparticles with Near-Infrared Scintillation: Toward Next-Generation Dosimetry in X-ray-Induced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:324-336. [PMID: 34963048 DOI: 10.1021/acsami.1c20689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We developed a microfluidic synthesis to grow GdF3:Eu theranostic scintillating nanoparticles to simultaneously monitor the X-ray dose delivered to tumors during treatments with X-ray activated photodynamic therapy (X-PDT). The flow reaction was optimized to enhance scintillation emission from the Eu3+ ions. The as-prepared ∼15 nm rhombohedral-shaped nanoparticles self-assembled into ∼100 nm mesoporous flower-like nanostructures, but the rhombohedral units remained intact and the scintillation spectra unaltered. The conjugation of the ScNPs with multilayers of methylene blue (MB) in a core-shell structure (GdF@MB) resulted in enhanced singlet oxygen (1O2) generation under X-ray irradiation, with maximum 1O2 production for nanoparticles with 4 MB layers (GdF@4MB). High 1O2 yield was further evidenced in cytotoxicity assays, demonstrating complete cell death only for the association of ScNPs with MB and X-rays. Because the scintillating Eu3+ emission at 694 nm is within the therapeutic window and was only partially absorbed by the MB molecules, it was explored for getting in vivo dosimetric information. Using porcine skin and fat to simulate the optical and radiological properties of the human tissues, we showed that the scintillation light can be detected for a tissue layer of ∼16 mm, thick enough to be employed in radiotherapy treatments of breast cancers, for instance. Therefore, the GdF3:Eu ScNPs and the GdF@4MB nanoconjugates are strong candidates for treating cancer with X-PDT while monitoring the treatment and the radiation dose delivered, opening new avenues to develop a next-generation modality of real-time in vivo dosimetry.
Collapse
Affiliation(s)
- Mileni Isikawa
- Departamento de Física. FFCLRP- Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Eder Guidelli
- Departamento de Física. FFCLRP- Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
5
|
Kirsanova D, Polyakov V, Butova V, Zolotukhin P, Belanova A, Gadzhimagomedova Z, Soldatov M, Pankin I, Soldatov A. The Rare-Earth Elements Doping of BaGdF 5 Nanophosphors for X-ray Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3212. [PMID: 34947560 PMCID: PMC8706573 DOI: 10.3390/nano11123212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
It is known that the initiation of photodynamic therapy (PDT) in deep-seated tumors requires the use of X-rays to activate the reactive oxygen species generation in deep tissues. The aim of this paper is to synthesize X-ray nanophosphors and analyze their structural and luminescence characteristics to push the PDT process deep into the body. The article deals with BaGdF5:Eu3+, BaGdF5:Sm3+, and BaGdF5:Tb3+ nanophosphors synthesized using microwave synthesis. It is found that the nanoparticles are biocompatible and have sizes 5-17 nm. However, according to the analysis of X-ray excited optical luminescence, BaGdF5:Sm3+ nanophosphors will not be effective for treating deep-seated tumors. Thus, BaGdF5:Eu3+ and BaGdF5:Tb3+ nanoparticles meet the requirements for the subsequent production of nanocomposites based on them that can be used in X-ray photodynamic therapy.
Collapse
Affiliation(s)
- Daria Kirsanova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (V.B.); (P.Z.); (A.B.); (Z.G.); (M.S.); (I.P.); (A.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shapoval O, Sulimenko V, Klebanovych A, Rabyk M, Shapoval P, Kaman O, Rydvalová E, Filipová M, Dráberová E, Dráber P, Horák D. Multimodal fluorescently labeled polymer-coated GdF 3 nanoparticles inhibit degranulation in mast cells. NANOSCALE 2021; 13:19023-19037. [PMID: 34755752 DOI: 10.1039/d1nr06127e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multimodal gadolinium fluoride nanoparticles belong to potential contrast agents useful for bimodal optical fluorescence and magnetic resonance imaging. However, the metallic nature of the nanoparticles, similarly to some paramagnetic iron oxides, might induce allergic and anaphylactic reactions in patients after administration. A reduction of these adverse side effects is a priority for the safe application of the nanoparticles. Herein, we prepared paramagnetic poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA)-stabilized GdF3 nanoparticles with surface modified by Atto 488-labeled poly(styrene-grad-2-dimethylaminoethyl acrylate)-block-poly(2-dimethylaminoethyl acrylate) (PSDA-A488) with reactive amino groups for introduction of an additional imaging (luminescence) modality and possible targeting of anticancer drugs. The saturation magnetization of GdF3@PSSMA particles according to SQUID magnetometry reached 157 Am2 kg-1 at 2 K and magnetic field of 7 T. GdF3@PSSMA-PSDA-A488 nanoparticles were well tolerated by human cervical adenocarcinoma (HeLa), mouse bone marrow-derived mast cells (BMMC), and rat basophilic mast cells (RBL-2H3); the particles also affected cell morphology and protein tyrosine phosphorylation in mast cells. Moreover, the nanoparticles interfered with the activation of mast cells by multivalent antigens and inhibited calcium mobilization and cell degranulation. These findings show that the new multimodal GdF3-based nanoparticles possess properties useful for various imaging methods and might minimize mast cell degranulation incurred after future nanoparticle diagnostic administration.
Collapse
Affiliation(s)
- Oleksandr Shapoval
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Vadym Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Anastasiya Klebanovych
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Mariia Rabyk
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Pavlo Shapoval
- Department of Physical, Analytical and General Chemistry, Lviv Polytechnic National University, Sv. Yura Sq. 9, 79013 Lviv, Ukraine
| | - Ondřej Kaman
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 112/10, 162 00 Prague 6, Czech Republic
| | - Eliška Rydvalová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Eduarda Dráberová
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Dráber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
7
|
Razumkova IA, Azarapin NO. The nature of the interaction of RE(NO
3
)
3
(yttrium subgroup) with HF or NH
4
F. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- I. A. Razumkova
- Institute of Chemistry Tyumen State University) 6, Volodarskogo Street Tyumen 625003 Russia
| | - N. O. Azarapin
- Institute of Chemistry Tyumen State University) 6, Volodarskogo Street Tyumen 625003 Russia
| |
Collapse
|
8
|
Multifunctionality of Nanosized Calcium Apatite Dual-Doped with Li +/Eu 3+ Ions Related to Cell Culture Studies and Cytotoxicity Evaluation In Vitro. Biomolecules 2021; 11:biom11091388. [PMID: 34572601 PMCID: PMC8466056 DOI: 10.3390/biom11091388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Li+/Eu3+ dual-doped calcium apatite analogues were fabricated using a microwave stimulated hydrothermal technique. XRPD, FT-IR, micro-Raman spectroscopy, TEM and SAED measurements indicated that obtained apatites are single-phased, crystallize with a hexagonal structure, have similar morphology and nanometric size as well as show red luminescence. Lithium effectively modifies the local symmetry of optical active sites and, thus, affects the emission efficiency. Moreover, the hydrodynamic size and surface charge of the nanoparticles have been extensively studied. The protein adsorption (lysozyme, LSZ; bovine serum albumin, BSA) on the nanoparticle surface depended on the type of cationic dopant (Li+, Eu3+) and anionic group (OH−, Cl−, F−) of the apatite matrix. Interaction with LSZ resulted in a positive zeta potential, and the nanoparticles had the lowest hydrodynamic size in this protein medium. The cytotoxicity assessment was carried out on the human osteosarcoma cell line (U2OS), murine macrophages (J774.E), as well as human red blood cells (RBCs). The studied apatites were not cytotoxic to RBCs and J774.E cells; however, at higher concentrations of nanoparticles, cytotoxicity was observed against the U2OS cell line. No antimicrobial activity was detected against Gram-negative bacteria with one exception for P. aeruginosa treated with Li+-doped fluorapatite.
Collapse
|
9
|
Ansari AA, Parchur AK, Thorat ND, Chen G. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Adusumalli VNKB, Mrówczyńska L, Kwiatek D, Piosik Ł, Lesicki A, Lis S. Ligand-Sensitised LaF 3 :Eu 3+ and SrF 2 :Eu 3+ Nanoparticles and in Vitro Haemocompatiblity Studies. ChemMedChem 2021; 16:1640-1650. [PMID: 33527762 DOI: 10.1002/cmdc.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 11/11/2022]
Abstract
Luminescent Ln3+ -doped nanoparticles (NPs) functionalised with the desired organic ligand molecules for haemocompatibility studies were obtained in a one-pot synthesis. Chelated aromatic organic ligands such as isophthalic acid, terephthalic acid, ibuprofen, aspirin, 1,2,4,5-benzenetetracarboxylic acid, 2,6-pyridine dicarboxylic acid and adenosine were applied for surface functionalisation. The modification of the nanoparticles is based on the donor-acceptor character of the ligand-nanoparticle system, which is an alternative to covalent functionalisation by peptide bonding as presented in our recent report. The aromatic groups of selected ligands absorb UV light and transfer their excited-state energy to the dopant Eu3+ ions in LaF3 and SrF2 NPs. Herein, we discuss the structural and spectroscopic characterisation of the NPs and the results of haemocompatibility studies. Flow cytometry analysis of the nanoparticles' membrane-binding is also presented.
Collapse
Affiliation(s)
- Venkata N K B Adusumalli
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Dorota Kwiatek
- Department of Molecular Probes and Prodrugs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Łukasz Piosik
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Andrzej Lesicki
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Stefan Lis
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
11
|
|
12
|
Woźniak M, Mrówczyńska L, Kwaśniewska-Sip P, Waśkiewicz A, Nowak P, Ratajczak I. Effect of the Solvent on Propolis Phenolic Profile and its Antifungal, Antioxidant, and In Vitro Cytoprotective Activity in Human Erythrocytes Under Oxidative Stress. Molecules 2020; 25:molecules25184266. [PMID: 32957629 PMCID: PMC7571116 DOI: 10.3390/molecules25184266] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/03/2023] Open
Abstract
Propolis is a natural bee product with various beneficial biological effects. The health-promoting properties of propolis depend on its chemical composition, particularly the presence of phenolic compounds. The aim of this study was to evaluate the relationship between extraction solvent (acetone 100%, ethanol 70% and 96%) and the antifungal, antioxidant, and cytoprotective activity of the extracts obtained from propolis. Concentrations of flavonoids and phenolic acids in the propolis extracts were determined using ultrahigh-performance liquid chromatography. The antioxidant potential of different extracts was assessed on the basis of 2,2-diphenyl-1-picrylhydrazyl (DPPH·) free-radical-scavenging activity, Fe3+-reducing power, and ferrous ion (Fe2+)-chelating activity assays. The ability of the extracts to protect human red blood cell membranes against free-radical-induced damage and their antifungal activity was also determined. The results showed that the concentration of flavonoids in the propolis extracts was dependent on the solvent used in the extraction process and pinocembrin, chrysin, galangin, and coumaric acid were the most abundant phenols. All extracts exhibited high antioxidant potential and significantly protected human erythrocytes against oxidative damage. On the other hand, the antifungal activity of the propolis extracts depended on the solvent used in extraction and the fungal strains tested. It needs to be stressed that, to the best of our knowledge, there is no study relating the effect of solvent used for extraction of Polish propolis to its phenolic profile, and its antifungal, antioxidant, and cytoprotective activity.
Collapse
Affiliation(s)
- Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland; (M.W.); (A.W.)
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61614 Poznań, Poland
- Correspondence: (L.M.); (I.R.)
| | - Patrycja Kwaśniewska-Sip
- Air Quality Investigation Department, Łukasiewicz Research Network–Wood Technology Institute, Winiarska 1, 60654 Poznań, Poland;
- Institute of Chemical Wood Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60637 Poznań, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland; (M.W.); (A.W.)
| | - Piotr Nowak
- Institute of Economic Sciences, Wrocław University, Uniwersytecka 22/26, 50145 Wrocław, Poland;
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland; (M.W.); (A.W.)
- Correspondence: (L.M.); (I.R.)
| |
Collapse
|
13
|
Sharma RK, Chouryal YN, Nema S, Nigam S, Bera SP, Bhargava Y, Ghosh P. Green EmittingCe
3+
/ Tb
3+
‐Doped BaF
2
Nanocrystals and Their Impact on Skeletal Muscle of Developing Zebrafish Larvae. ChemistrySelect 2020. [DOI: 10.1002/slct.202001268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rahul Kumar Sharma
- Department of ChemistryDr. H. S. Gour University (A Central University) Sagar 470003 Madhya Pradesh India
- Current address: Rahul Kumar SharmaDepartment of ChemistryGovernment Shyam Sundar Agrawal PG College Sihora 483225 Jabalpur India
| | - Yogendra Nath Chouryal
- Department of ChemistryDr. H. S. Gour University (A Central University) Sagar 470003 Madhya Pradesh India
| | - Shubham Nema
- Molecular Engineering and Imaging LabDepartment of MicrobiologySchool of Biological SciencesDr. H. S. Gour University (A Central University) Sagar 470003 Madhya Pradesh India
| | - Sandeep Nigam
- Chemistry DivisionBhabha Atomic Research Centre, Trombay Mumbai 400085 India
| | - Siba Prasad Bera
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhauri Bhopal 462066 Madhya Pradesh India
| | - Yogesh Bhargava
- Molecular Engineering and Imaging LabDepartment of MicrobiologySchool of Biological SciencesDr. H. S. Gour University (A Central University) Sagar 470003 Madhya Pradesh India
| | - Pushpal Ghosh
- Department of ChemistryDr. H. S. Gour University (A Central University) Sagar 470003 Madhya Pradesh India
| |
Collapse
|
14
|
Shapoval O, Kaman O, Hromádková J, Vavřík D, Jirák D, Machová D, Parnica J, Horák D. Multimodal PSSMA-Functionalized GdF 3 : Eu 3+ (Tb 3+ ) Nanoparticles for Luminescence Imaging, MRI, and X-Ray Computed Tomography. Chempluschem 2020; 84:1135-1139. [PMID: 31943967 DOI: 10.1002/cplu.201900352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/29/2019] [Indexed: 12/11/2022]
Abstract
Biocompatible poly(4-styrenesulfonic acid-co-maleic acid)-stabilized GdF3 : Eu3+ (Tb3+ ) nanoparticles were obtained by a one-step coprecipitation method in ethylene glycol or water. The particles are very small (3 nm), have a narrow size distribution, and were detectable by fluorescence, magnetic resonance, and X-ray contrast imaging. These properties allow multimodal imaging, which has prospective applications in the simultaneous and detailed detection of diseased tissues.
Collapse
Affiliation(s)
- Oleksandr Shapoval
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Ondřej Kaman
- Department of Magnetics and Superconductors, Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10/112, 162 00, Prague 6, Czech Republic
| | - Jiřina Hromádková
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Daniel Vavřík
- Department of Applied Physics and Technology, Institute of Experimental and Applied Physics, Czech Technical University in Prague, Husova 240/5, 110 00, Prague 1, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21, Praha 4, Czech Republic
| | - Daniela Machová
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Jozef Parnica
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Daniel Horák
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| |
Collapse
|
15
|
Kwiatek D, Mrówczyńska L, Stopikowska N, Runowski M, Lesicki A, Lis S. Surface Modification of Luminescent Ln III Fluoride Core-Shell Nanoparticles with Acetylsalicylic acid (Aspirin): Synthesis, Spectroscopic and in Vitro Hemocompatibility Studies. ChemMedChem 2020; 15:1490-1496. [PMID: 32510839 DOI: 10.1002/cmdc.202000269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 12/31/2022]
Abstract
Luminescent lanthanide fluoride core-shell (LaF3 :Tb3+ ,Ce3+ @SiO2 -NH2 ) nanoparticles, with acetylsalicylic acid (aspirin) coated on the surface have been obtained. The synthesized products, which combine the potential located in the silica shell with the luminescent activity of the core, were characterized in detail with the use of luminescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) methods. The in vitro effects of the modified luminescent nanoparticles on human red blood cell (RBC) membrane permeability, RBC shape, and sedimentation rate were investigated to assess the hemocompatibility of the obtained compounds. This study demonstrates that LaF3 : Tb3+ 5 %, Ce3+ 10 %@SiO2 -NH2 nanoparticles with acetylsalicylic acid (aspirin) coated on the surface are very good precursors for multifunctional drug-delivery systems or bio-imaging probes that can be used safely in potential biomedical applications.
Collapse
Affiliation(s)
- Dorota Kwiatek
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Current address, Department of Molecular Probes and Prodrugs, Institute of Bioorganic Chemistry, Polish Academy of Sciences Z., Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Natalia Stopikowska
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Marcin Runowski
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Andrzej Lesicki
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Stefan Lis
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
16
|
Razumkova IA, Denisenko YG, Boyko AN, Ikonnikov DA, Aleksandrovsky AS, Azarapin NO, Andreev OV. Synthesis and Upconversion Luminescence in LaF
3
:Yb
3+
, Ho
3+
, GdF
3
: Yb
3+
, Tm
3+
and YF
3
:Yb
3+
, Er
3+
obtained from Sulfide Precursors. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Illariia A. Razumkova
- Department of Inorganic and Physical Chemistry Tyumen State University 6, Volodarskogo Street 625003 Tyumen Russia
| | - Yuriy G. Denisenko
- Department of Inorganic and Physical Chemistry Tyumen State University 6, Volodarskogo Street 625003 Tyumen Russia
- Department of General and Special Chemistry Industrial University of Tyumen 38, Volodarskogo Street 625000 Tyumen Russia
| | - Andrey N. Boyko
- Department of Inorganic and Physical Chemistry Tyumen State University 6, Volodarskogo Street 625003 Tyumen Russia
| | - Denis A. Ikonnikov
- Laboratory of Coherent Optics Kirensky Institute of Physics Federal Research Center KSC SB RAS 660036 Krasnoyarsk Russia
| | - Aleksandr S. Aleksandrovsky
- Laboratory of Coherent Optics Kirensky Institute of Physics Federal Research Center KSC SB RAS 660036 Krasnoyarsk Russia
- Department of Photonics and Laser Technology Siberian Federal University 660041 Krasnoyarsk Russia
| | - Nikita O. Azarapin
- Department of Inorganic and Physical Chemistry Tyumen State University 6, Volodarskogo Street 625003 Tyumen Russia
| | - Oleg V. Andreev
- Department of Inorganic and Physical Chemistry Tyumen State University 6, Volodarskogo Street 625003 Tyumen Russia
| |
Collapse
|
17
|
Rajendran K, Rajendran G, Kasthuri J, Kathiravan K, Rajendiran N. Sweet Corn
(Zea mays L. var. rugosa)
Derived Fluorescent Carbon Quantum Dots for Selective Detection of Hydrogen Sulfide and Bioimaging Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201903385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kalimuthu Rajendran
- Department of Polymer ScienceUniversity of MadrasGuindy Campus, Chennai-25, Tamil Nadu India
| | - Ganapathy Rajendran
- Department of BiotechnologyUniversity of MadrasGuindy Campus, Chennai-25, Tamil Nadu India
| | - Jayapalan Kasthuri
- Department of ChemistryQuaid-E- Millath Govt. College for Women, Chennai-2 Tamil Nadu
| | - Krishnan Kathiravan
- Department of BiotechnologyUniversity of MadrasGuindy Campus, Chennai-25, Tamil Nadu India
| | - Nagappan Rajendiran
- Department of Polymer ScienceUniversity of MadrasGuindy Campus, Chennai-25, Tamil Nadu India
| |
Collapse
|
18
|
Cytotoxic Effect of Photoluminescent RE3+ Doped Ca3(PO4)2 Nanorods on Breast Cancer Cell Lines. Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Czarniewska E, Mrówczyńska L, Jędrzejczak-Silicka M, Nowicki P, Trukawka M, Mijowska E. Non-cytotoxic hydroxyl-functionalized exfoliated boron nitride nanoflakes impair the immunological function of insect haemocytes in vivo. Sci Rep 2019; 9:14027. [PMID: 31575876 PMCID: PMC6773946 DOI: 10.1038/s41598-019-50097-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/04/2019] [Indexed: 11/09/2022] Open
Abstract
To induce the water solubility of hexagonal boron nitride (h-BN), we exfoliated and functionalized bulk h-BN with hydroxyl groups (h-BN-OH-n). Short-term studies showed that h-BN-OH-n induced low cytotoxicity in different models: insect haemocytes (in vivo), human erythrocytes and mouse fibroblasts (in vitro). We also demonstrated that Alexa Fluor 647-h-BN-OH-n administered topically to the insects passed through the cuticle barrier and was phagocytosed by haemocytes. Nanoflakes did not affect the haemocyte cell membrane and did not interfere with the phagocytosis of latex beads. Long-term immunoassays showed that h-BN-OH-n, despite not inducing haemocytotoxicity, impaired nodulation, the most important cellular immune response in insects. The haemocytes exposed to h-BN-OH-n and then to bacteria differed in morphology and adhesiveness from the haemocytes exposed only to bacteria and exhibited the same morphology and adhesiveness as the control haemocytes. The h-BN-OH-n-induced decrease in nodulation can therefore result from the reduced ability of haemocytes to recognize bacteria, migrate to them or form microaggregates around them, which can lead to dysfunction of the immune system during pathogen infection. Long-term in vivo studies with animal models are still necessary to unambiguously confirm that h-BN is biocompatible and useful for application as a platform for drug delivery or for bioimaging.
Collapse
Affiliation(s)
- Elżbieta Czarniewska
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Institute of Experimental Biology, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland.
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Adam Mickiewicz University, Institute of Experimental Biology, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland
| | - Magdalena Jędrzejczak-Silicka
- Laboratory of Cytogenetics, West Pomeranian University of Technology, Klemensa Janickiego Str. 29, 71-270, Szczecin, Poland
| | - Patryk Nowicki
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Institute of Experimental Biology, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland
| | - Martyna Trukawka
- Nanomaterials Physicochemistry Department, West Pomeranian University of Technology, Piastów Avenue Str. 45, 70-311, Szczecin, Poland
| | - Ewa Mijowska
- Nanomaterials Physicochemistry Department, West Pomeranian University of Technology, Piastów Avenue Str. 45, 70-311, Szczecin, Poland
| |
Collapse
|
20
|
Wieszczycka K, Staszak K, Woźniak-Budych MJ, Jurga S. Lanthanides and tissue engineering strategies for bone regeneration. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Andrrev O, Razumkova I, Boiko A. Synthesis and thermal stability of rare earth compounds REF3, REF3·nH2O and (H3O)RE3F10·nH2O (RE = Tb − Lu, Y), obtained from sulphide precursors. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2017.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
|
23
|
Zairov R, Mustafina A, Shamsutdinova N, Nizameev I, Moreira B, Sudakova S, Podyachev S, Fattakhova A, Safina G, Lundstrom I, Gubaidullin A, Vomiero A. High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones. Sci Rep 2017; 7:40486. [PMID: 28091590 PMCID: PMC5238420 DOI: 10.1038/srep40486] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/06/2016] [Indexed: 01/08/2023] Open
Abstract
Polyelectrolyte-coated nanoparticles consisting of terbium and gadolinium complexes with calix[4]arene tetra-diketone ligand were first synthesized. The antenna effect of the ligand on Tb(III) green luminescence and the presence of water molecules in the coordination sphere of Gd(III) bring strong luminescent and magnetic performance to the core-shell nanoparticles. The size and the core-shell morphology of the colloids were studied using transmission electron microscopy and dynamic light scattering. The correlation between photophysical and magnetic properties of the nanoparticles and their core composition was highlighted. The core composition was optimized for the longitudinal relaxivity to be greater than that of the commercial magnetic resonance imaging (MRI) contrast agents together with high level of Tb(III)-centered luminescence. The tuning of both magnetic and luminescent output of nanoparticles is obtained via the simple variation of lanthanide chelates concentrations in the initial synthetic solution. The exposure of the pheochromocytoma 12 (PC 12) tumor cells and periphery human blood lymphocytes to nanoparticles results in negligible effect on cell viability, decreased platelet aggregation and bright coloring, indicating the nanoparticles as promising candidates for dual magneto-fluorescent bioimaging.
Collapse
Affiliation(s)
- Rustem Zairov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
- Kazan (Volga region) Federal university, Kremlyovskaya str., 18, 420008, Kazan, Russia
| | - Asiya Mustafina
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
- Kazan (Volga region) Federal university, Kremlyovskaya str., 18, 420008, Kazan, Russia
| | - Nataliya Shamsutdinova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
- Kazan (Volga region) Federal university, Kremlyovskaya str., 18, 420008, Kazan, Russia
| | - Irek Nizameev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
- Kazan National Research Technological University, K. Marks str., 68, 420015, Kazan, Russia
| | - Beatriz Moreira
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården4, 412 96 Gothenburg, Sweden
| | - Svetlana Sudakova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Sergey Podyachev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Alfia Fattakhova
- Kazan (Volga region) Federal university, Kremlyovskaya str., 18, 420008, Kazan, Russia
| | - Gulnara Safina
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården4, 412 96 Gothenburg, Sweden
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, Kemigården1, 412 96 Gothenburg, Sweden
| | - Ingemar Lundstrom
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187 Luleå, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Aidar Gubaidullin
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Alberto Vomiero
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
24
|
Becerro AI, González-Mancebo D, Cantelar E, Cussó F, Stepien G, de la Fuente JM, Ocaña M. Ligand-Free Synthesis of Tunable Size Ln:BaGdF₅ (Ln = Eu³⁺ and Nd³⁺) Nanoparticles: Luminescence, Magnetic Properties, and Biocompatibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:411-20. [PMID: 26673053 DOI: 10.1021/acs.langmuir.5b03837] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bifunctional and highly uniform Ln:BaGdF5 (Ln = Eu(3+) and Nd(3+)) nanoparticles have been successfully synthesized using a solvothermal method consisting of the aging at 120 °C of a glycerol solution containing the corresponding Lanthanide acetylacetonates and butylmethylimidazolium tetrafluoroborate. The absence of any surfactant in the synthesis process rendered hydrophilic nanospheres (with tunable diameter from 45 nm 85 nm, depending on the cations concentration of the starting solution) which are suitable for bioapplications. The particles are bifunctional because they showed both optical and magnetic properties due to the presence of the optically active lanthanides (Eu(3+) in the visible and Nd(3+) in the NIR regions of the electromagnetic spectrum) and the paramagnetic gadolinium ion, respectively. The luminescence decay curves of the nanospheres doped with different amounts of Eu(3+) and Nd(3+) have been recorded in order to determine the optimum dopant concentration in each case, which turned out to be 5% Eu(3+) and 0.5% Nd(3+). Likewise, proton relaxation times were measured at 1.5 T in water suspensions of the optimum particles found in the luminescence study. The values obtained suggested that both kinds of particles could be used as positive contrast agents for MRI. Finally, it was demonstrated that both the 5% Eu(3+) and 0.5% Nd(3+)-doped BaGdF5 nanospheres showed negligible cytotoxicity for VERO cells for concentrations up to 0.25 mg mL(-1).
Collapse
Affiliation(s)
- Ana I Becerro
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US) , c/Américo Vespucio, 49, 41092 Seville, Spain
| | - Daniel González-Mancebo
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US) , c/Américo Vespucio, 49, 41092 Seville, Spain
| | - Eugenio Cantelar
- Departamento Física de Materiales, C-04, Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Fernando Cussó
- Departamento Física de Materiales, C-04, Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Grazyna Stepien
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza , c/Mariano Esquilor s/n, 50018 Zaragoza, Spain
| | - Jesús M de la Fuente
- Instituto de Ciencia de Materiales de Aragon, CSIC/University of Zaragoza , C/Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Manuel Ocaña
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US) , c/Américo Vespucio, 49, 41092 Seville, Spain
| |
Collapse
|