1
|
Bocca B, Battistini B. Biomarkers of exposure and effect in human biomonitoring of metal-based nanomaterials: their use in primary prevention and health surveillance. Nanotoxicology 2024; 18:1-35. [PMID: 38436298 DOI: 10.1080/17435390.2023.2301692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
Metal-based nanomaterials (MNMs) have gained particular interest in nanotechnology industry. They are used in various industrial processes, in biomedical applications or to improve functional properties of several consumer products. The widescale use of MNMs in the global consumer market has resulted in increases in the likelihood of exposure and risks to human beings. Human exposure to MNMs and assessment of their potential health effects through the concomitant application of biomarkers of exposure and effect of the most commonly used MNMs were reviewed in this paper. In particular, interactions of MNMs with biological systems and the nanobiomonitoring as a prevention tool to detect the early damage caused by MNMs as well as related topics like the influence of some physicochemical features of MNMs and availability of analytical approaches for MNMs testing in human samples were summarized in this review. The studies collected and discussed seek to increase the current knowledge on the internal dose exposure and health effects of MNMs, highlighting the advantages in using biomarkers in primary prevention and health surveillance.
Collapse
Affiliation(s)
- Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
2
|
Abdel Aal SM, Mohammed MZ, Abdelrahman AA, Samy W, Abdelaal GMM, Deraz RH, Abdelrahman SA. Histological and biochemical evaluation of the effects of silver nanoparticles (AgNps) versus titanium dioxide nanoparticles (TiO 2NPs) on rat parotid gland. Ultrastruct Pathol 2023; 47:339-363. [PMID: 37132546 DOI: 10.1080/01913123.2023.2205924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
The unlimited use of nanoparticles (NPs) results in toxic impacts on different tissues. The current study aimed to compare the adverse effects of AgNPs and TiO2NPs on the parotid gland of adult male albino rats as regards the histopathological, immunohistochemical, and biochemical changes, exploring the possible underlying mechanisms and the degree of improvement after cessation of administration. Fifty-four adult male albino rats were divided into control group (I), AgNPs-injected group (II), and TiO2NPs-injected group (III). We measured the levels of tumor necrosis factor-alpha (TNF-α) and interleukin (IL-6) in the serum, and levels of MDA and GSH in parotid tissue homogenate. Quantitative real-time polymerase-chain reaction (qRT-PCR) was used to measure the expression levels of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1-α), nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), mouse double minute 2 (MDM2), Caspase-3 Col1a1, and Occludin. Parotid tissue sections were examined by light microscope (Hematoxylin & Eosin and Mallory trichrome stains), electron microscope, and immunohistochemical examination of CD68 and anti-caspase-3 antibodies. Both NPs severely affected the acinar cells and damaged the tight junction between them by enhancing expression of the inflammatory cytokines, inducing oxidative stress, and disturbing the expression levels of the studied genes. They also stimulated fibrosis, acinar cell apoptosis, and inflammatory cells infiltration in parotid tissue. TiO2NPs effects were less severe than AgNPs. Cessation of exposure to both NPs, ameliorated the biochemical and structural findings with more improvement in TiO2NPs withdrawal. In conclusion: AgNPs and TiO2NPs adversely affected the parotid gland, but TiO2NPs were less toxic than AgNPs.
Collapse
Affiliation(s)
- Sara M Abdel Aal
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Maha Z Mohammed
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A Abdelrahman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Samy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghadeer M M Abdelaal
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Raghda H Deraz
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa A Abdelrahman
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Luo X, Xie D, Hu J, Su J, Xue Z. Oxidative Stress and Inflammatory Biomarkers for Populations with Occupational Exposure to Nanomaterials: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2022; 11:2182. [PMID: 36358554 PMCID: PMC9687069 DOI: 10.3390/antiox11112182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2023] Open
Abstract
Exposure to nanomaterials (NMs) is suggested to have the potential to cause harmful health effects. Activations of oxidative stress and inflammation are assumed as main contributors to NM-induced toxicity. Thus, oxidative stress- and inflammation-related indicators may serve as biomarkers for occupational risk assessment. However, the correlation between NM exposure and these biomarkers remains controversial. This study aimed to perform a meta-analysis to systematically investigate the alterations of various biomarkers after NM exposure. Twenty-eight studies were found eligible by searching PubMed, EMBASE and Cochrane Library databases. The pooled results showed NM exposure was significantly associated with increases in the levels of malonaldehyde (MDA) [standardized mean difference (SMD) = 2.18; 95% confidence interval (CI), 1.50-2.87], 4-hydroxy-2-nonhenal (HNE) (SMD = 2.05; 95% CI, 1.13-2.96), aldehydes C6-12 (SMD = 3.45; 95% CI, 2.80-4.10), 8-hydroxyguanine (8-OHG) (SMD = 2.98; 95% CI, 2.22-3.74), 5-hydroxymethyl uracil (5-OHMeU) (SMD = 1.90; 95% CI, 1.23-2.58), o-tyrosine (o-Tyr) (SMD = 1.81; 95% CI, 1.22-2.41), 3-nitrotyrosine (3-NOTyr) (SMD = 2.63; 95% CI, 1.74-3.52), interleukin (IL)-1β (SMD = 1.76; 95% CI, 0.87-2.66), tumor necrosis factor (TNF)-α (SMD = 1.52; 95% CI, 1.03-2.01), myeloperoxidase (MPO) (SMD = 0.25; 95% CI, 0.16-0.34) and fibrinogen (SMD = 0.11; 95% CI, 0.02-0.21), and decreases in the levels of glutathione peroxidase (GPx) (SMD = -0.31; 95% CI, -0.52--0.11) and IL-6 soluble receptor (IL-6sR) (SMD = -0.18; 95% CI, -0.28--0.09). Subgroup analysis indicated oxidative stress biomarkers (MDA, HNE, aldehydes C6-12, 8-OHG, 5-OHMeU, o-Tyr, 3-NOTyr and GPx) in exhaled breath condensate (EBC) and blood samples were strongly changed by NM exposure; inflammatory biomarkers (IL-1β, TNF-α, MPO, fibrinogen and IL-6sR) were all significant in EBC, blood, sputum and nasal lavage samples. In conclusion, our findings suggest that these oxidative stress and inflammatory indicators may be promising biomarkers for the biological monitoring of occupationally NM-exposed workers.
Collapse
Affiliation(s)
- Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Jing Su
- Shanghai Institute of Spacecraft Equipment, 251 Huaning Road, Shanghai 200240, China
| | - Zhebin Xue
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| |
Collapse
|
4
|
Exposure to nanoparticles and occupational allergy. Curr Opin Allergy Clin Immunol 2022; 22:55-63. [DOI: 10.1097/aci.0000000000000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
In Vitro Toxicity of Industrially Relevant Engineered Nanoparticles in Human Alveolar Epithelial Cells: Air-Liquid Interface versus Submerged Cultures. NANOMATERIALS 2021; 11:nano11123225. [PMID: 34947574 PMCID: PMC8703991 DOI: 10.3390/nano11123225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Diverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. In vitro models have been widely used to investigate ENP toxicity. Air-liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as they are more representative of the inhalation exposure to airborne nano-sized particles. We compared the in vitro toxicity of four ENP used as raw materials in the advanced ceramics sector in human alveolar epithelial-like cells cultured under submerged or ALI conditions. Submerged cultures were exposed to ENP liquid suspensions or to aerosolised ENP at ALI. Toxicity was assessed by determining LDH release, WST-1 metabolisation and DNA damage. Overall, cells were more sensitive to ENP cytotoxic effects when cultured and exposed under ALI. No significant cytotoxicity was observed after 24 h exposure to ENP liquid suspensions, although aerosolised ENP clearly affected cell viability and LDH release. In general, all ENP increased primary DNA damage regardless of the exposure mode, where an increase in DNA strand-breaks was only detected under submerged conditions. Our data show that at relevant occupational concentrations, the selected ENP exert mild toxicity to alveolar epithelial cells and exposure at ALI might be the most suitable choice when assessing ENP toxicity in respiratory models under realistic exposure conditions.
Collapse
|
6
|
Susceptibility Factors in Chronic Lung Inflammatory Responses to Engineered Nanomaterials. Int J Mol Sci 2020; 21:ijms21197310. [PMID: 33022979 PMCID: PMC7582686 DOI: 10.3390/ijms21197310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022] Open
Abstract
Engineered nanomaterials (ENMs) are products of the emerging nanotechnology industry and many different types of ENMs have been shown to cause chronic inflammation in the lungs of rodents after inhalation exposure, suggesting a risk to human health. Due to the increasing demand and use of ENMs in a variety of products, a careful evaluation of the risks to human health is urgently needed. An assessment of the immunotoxicity of ENMs should consider susceptibility factors including sex, pre-existing diseases, deficiency of specific genes encoding proteins involved in the innate or adaptive immune response, and co-exposures to other chemicals. This review will address evidence from experimental animal models that highlights some important issues of susceptibility to chronic lung inflammation and systemic immune dysfunction after pulmonary exposure to ENMs.
Collapse
|
7
|
Susihono W, Gede Adiatmika IP. Assessment of inhaled dust by workers and suspended dust for pollution control change and ergonomic intervention in metal casting industry: A cross-sectional study. Heliyon 2020; 6:e04067. [PMID: 32509992 PMCID: PMC7264714 DOI: 10.1016/j.heliyon.2020.e04067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/20/2020] [Accepted: 05/22/2020] [Indexed: 01/15/2023] Open
Abstract
Metal casting industry including is an industry which produce high dust pollution (fly ash). Improvements in the form of ergonomic interventions have been carried out by many companies, but do not guarantee all parameters run well. The total indoor suspended dust (TSP) measurement results are not enough to guarantee healthy working conditions. Additional assessment of workers' inhaled dust is needed to change pollution control and work improvement to ergonomics. The design of this study is Cross Sectional Study. Research subjects numbered 84 people. All samples met the inclusion criteria. Measurement results of Characteristic of research subject, Working Environment Conditions, Exposition of dust inhaled by workers, Total Indoor Suspended Dust of the Company (p > 0.05). Found critical hours of workers exposed to dust (fly ash), starting from 4 h after working (Department of Process Cement, Department of Black Sand) and 2 h after working for the Department of Loam. Critical hours exposed to dust (fly ash) used as the basis for company management and regulators to take new policies in controlling fly ash pollution and ergonomic interventions. Ergonomic interventions can be carried out by activating the dust collector at critical hours, applying active resting hours at critical hours and conditioning workers to breathe fresh air. The impact of this ergonomic intervention is a decrease in musculoskeletal complaints by 25.27%, reduction in boredom 25.01%, and an increase in job satisfaction 38.46%.
Collapse
Affiliation(s)
- Wahyu Susihono
- Industrial Engineering Department, Faculty of Engineering, University of Sultan Ageng Tirtayasa, Banten, Indonesia
| | | |
Collapse
|
8
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
9
|
Westberg H, Hedbrant A, Persson A, Bryngelsson IL, Johansson A, Ericsson A, Sjögren B, Stockfelt L, Särndahl E, Andersson L. Inflammatory and coagulatory markers and exposure to different size fractions of particle mass, number and surface area air concentrations in Swedish iron foundries, in particular respirable quartz. Int Arch Occup Environ Health 2019; 92:1087-1098. [PMID: 31165309 PMCID: PMC6814634 DOI: 10.1007/s00420-019-01446-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/28/2019] [Indexed: 01/06/2023]
Abstract
Purpose To study the relationship between inhalation of airborne particles and quartz in Swedish iron foundries and markers of inflammation and coagulation in blood. Methods Personal sampling of respirable dust and quartz was performed for 85 subjects in three Swedish iron foundries. Stationary measurements were used to study the concentrations of respirable dust and quartz, inhalable and total dust, PM10 and PM2.5, as well as the particle surface area and the particle number concentrations. Markers of inflammation, namely interleukins (IL-1β, IL-6, IL-8, IL-10 and IL-12), C-reactive protein, and serum amyloid A (SAA) were measured in plasma or serum, together with markers of coagulation including fibrinogen, factor VIII (FVIII), von Willebrand factor and d-dimer. Complete sampling was performed on the second or third day of a working week after a work-free weekend, and follow-up samples were collected 2 days later. A mixed model analysis was performed including sex, age, smoking, infections, blood group, sampling day and BMI as covariates. Results The average 8-h time-weighted average air concentrations of respirable dust and quartz were 0.85 mg/m3 and 0.052 mg/m3, respectively. Participants in high-exposure groups with respect to some of the measured particle types exhibited significantly elevated levels of SAA, fibrinogen and FVIII. Conclusions These observed relationships between particle exposure and inflammatory markers may indicate an increased risk of cardiovascular disease among foundry workers with high particulate exposure.
Collapse
Affiliation(s)
- Håkan Westberg
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden. .,Department of Medical Sciences, School of Medicine and Health, Örebro University, 701 82, Örebro, Sweden. .,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 701 82, Örebro, Sweden. .,Department of Occupational and Environmental Medicine, Örebro University Hospital, 701 85, Örebro, Sweden.
| | - Alexander Hedbrant
- Department of Medical Sciences, School of Medicine and Health, Örebro University, 701 82, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 701 82, Örebro, Sweden
| | - Alexander Persson
- Department of Medical Sciences, School of Medicine and Health, Örebro University, 701 82, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 701 82, Örebro, Sweden
| | - Ing-Liss Bryngelsson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
| | - Anders Johansson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
| | - Annette Ericsson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
| | - Bengt Sjögren
- Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Leo Stockfelt
- Department of Occupational and Environmental Medicine, University of Gothenburg, PB 414, 405 30, Göteborg, Sweden
| | - Eva Särndahl
- Department of Medical Sciences, School of Medicine and Health, Örebro University, 701 82, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 701 82, Örebro, Sweden
| | - Lena Andersson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden.,Department of Medical Sciences, School of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
| |
Collapse
|
10
|
Deep Airway Inflammation and Respiratory Disorders in Nanocomposite Workers. NANOMATERIALS 2018; 8:nano8090731. [PMID: 30223600 PMCID: PMC6164906 DOI: 10.3390/nano8090731] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
Thousands of researchers and workers worldwide are employed in nanocomposites manufacturing, yet little is known about their respiratory health. Aerosol exposures were characterized using real time and integrated instruments. Aerosol mass concentration ranged from 0.120 mg/m3 to 1.840 mg/m3 during nanocomposite machining processes; median particle number concentration ranged from 4.8 × 104 to 5.4 × 105 particles/cm3. The proportion of nanoparticles varied by process from 40 to 95%. Twenty employees, working in nanocomposite materials research were examined pre-shift and post-shift using spirometry and fractional exhaled nitric oxide (FeNO) in parallel with 21 controls. Pro-inflammatory leukotrienes (LT) type B4, C4, D4, and E4; tumor necrosis factor (TNF); interleukins; and anti-inflammatory lipoxins (LXA4 and LXB4) were analyzed in their exhaled breath condensate (EBC). Chronic bronchitis was present in 20% of researchers, but not in controls. A significant decrease in forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity (FVC) was found in researchers post-shift (p ˂ 0.05). Post-shift EBC samples were higher for TNF (p ˂ 0.001), LTB4 (p ˂ 0.001), and LTE4 (p ˂ 0.01) compared with controls. Nanocomposites production was associated with LTB4 (p ˂ 0.001), LTE4 (p ˂ 0.05), and TNF (p ˂ 0.001), in addition to pre-shift LTD4 and LXB4 (both p ˂ 0.05). Spirometry documented minor, but significant, post-shift lung impairment. TNF and LTB4 were the most robust markers of biological effects. Proper ventilation and respiratory protection are required during nanocomposites processing.
Collapse
|