1
|
Wang Q, Liu XY, Zhang XQ, Huo ZX, Chen CY, Chen S, Liu CY, Zhu J, Liu SS, Lu B. LRRC45 promotes lung cancer proliferation and progression by enhancing c-MYC, slug, MMP2, and MMP9 expression. Adv Med Sci 2024; 69:451-462. [PMID: 39326735 DOI: 10.1016/j.advms.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND The leucine-rich repeat-containing (LRRC) superfamily members are known for their significant roles in tumorigenesis and cellular proliferation. However, the specific regulatory role of LRRC45 in lung cancer remains unexplored. This study investigated the impact and underlying mechanisms of LRRC45 on the proliferative, migratory, and invasive capacities of lung adenocarcinoma (LUAD) cells, potentially identifying new targets for therapeutic intervention. MATERIAL AND METHODS The importance of LRRC45 in lung cancer was analyzed using the online databases of UCSC Xena, TCGA, TISIDB, and UALCAN, whereas to detect target gene expression, we used the qRT-PCR, Western blot, and immunofluorescence confocal. The cell growth was monitored by colony formation assay and migration was examined by cell migration assay. Finally, a xenograft mouse tumor model using A549 cells was used to explore the in vivo effect of LRRC45 in lung cancer. RESULTS Inhibition of LRRC45 expression led to a notable decrease in proliferation, migration, and invasion of A549 and H1299 cells. LRRC45 silencing significantly reduced the tumor volume and improved the mice's survival. Additionally, inhibition of LRRC45 expression dramatically suppressed c-MYC, Slug, MMP2, and MMP9 expression. Overexpression of c-MYC and/or Slug in the LRRC45-deficient cells can partially or totally restore the LRRC45 deficiency-suppressed growth. Moreover, the overexpression of MMP2 and/or MMP9 could partially or totally restore LRRC45 deficiency-reduced cell metastasis. CONCLUSIONS LRRC45 could promote the proliferative, migrative, and invasive capacities of lung cancer cells by increasing c-MYC, Slug, MMP2, and MMP9 expression, indicating the therapeutic implications and potential significance of these pathways in lung cancer.
Collapse
Affiliation(s)
- Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China; Department of Respiratory Medicine, Suqian Affiliated Hospital of Nanjing University of Chinese Medicine, Suqian Hospital of Chinese Medicine, Suqian, Jiangsu, China.
| | - Xin-Yan Liu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao-Qi Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zheng-Xing Huo
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Cheng-Yu Chen
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shi Chen
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Cheng-Yong Liu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jia Zhu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shan-Shan Liu
- Department of Respiratory Medicine, Suqian Affiliated Hospital of Nanjing University of Chinese Medicine, Suqian Hospital of Chinese Medicine, Suqian, Jiangsu, China.
| | - Bing Lu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Taicang Hospital of Traditional Chinese Medicine, Taicang, Jiangsu, China.
| |
Collapse
|
2
|
Traversa D, Simonetti G, Tolomeo D, Visci G, Macchia G, Ghetti M, Martinelli G, Kristensen LS, Storlazzi CT. Unravelling similarities and differences in the role of circular and linear PVT1 in cancer and human disease. Br J Cancer 2022; 126:835-850. [PMID: 34754096 PMCID: PMC8927338 DOI: 10.1038/s41416-021-01584-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
The plasmacytoma variant translocation 1 (PVT1) is a long non-coding RNA gene involved in human disease, mainly in cancer onset/progression. Although widely analysed, its biological roles need to be further clarified. Notably, functional studies on PVT1 are complicated by the occurrence of multiple transcript variants, linear and circular, which generate technical issues in the experimental procedures used to evaluate its impact on human disease. Among the many PVT1 transcripts, the linear PVT1 (lncPVT1) and the circular hsa_circ_0001821 (circPVT1) are frequently reported to perform similar pathologic and pro-tumorigenic functions when overexpressed. The stimulation of cell proliferation, invasion and drug resistance, cell metabolism regulation, and apoptosis inhibition is controlled through multiple targets, including MYC, p21, STAT3, vimentin, cadherins, the PI3K/AKT, HK2, BCL2, and CASP3. However, some of this evidence may originate from an incorrect evaluation of these transcripts as two separate molecules, as they share the lncPVT1 exon-2 sequence. We here summarise lncPVT1/circPVT1 functions by mainly focusing on shared pathways, pointing out the potential bias that may exist when the biological role of each transcript is analysed. These considerations may improve the knowledge about lncPVT1/circPVT1 and their specific targets, which deserve further studies due to their diagnostic, prognostic, and therapeutic potential.
Collapse
Affiliation(s)
- Debora Traversa
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Giorgia Simonetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Doron Tolomeo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Visci
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Gemma Macchia
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Martina Ghetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | | | | |
Collapse
|
3
|
Massó-Vallés D, Beaulieu ME, Soucek L. MYC, MYCL, and MYCN as therapeutic targets in lung cancer. Expert Opin Ther Targets 2020; 24:101-114. [PMID: 32003251 DOI: 10.1080/14728222.2020.1723548] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Lung cancer is the leading cause of cancer-related mortality globally. Despite recent advances with personalized therapies and immunotherapy, the prognosis remains dire and recurrence is frequent. Myc is an oncogene deregulated in human cancers, including lung cancer, where it supports tumorigenic processes and progression. Elevated Myc levels have also been associated with resistance to therapy.Areas covered: This article summarizes the genomic and transcriptomic studies that compile evidence for (i) MYC, MYCN, and MYCL amplification and overexpression in lung cancer patients, and (ii) their prognostic significance. We collected the most recent literature regarding the development of Myc inhibitors where the emphasis is on those inhibitors tested in lung cancer experimental models and their potential for future clinical application.Expert opinion: The targeting of Myc in lung cancer is potentially an unprecedented opportunity for inhibiting a key player in tumor progression and maintenance and therapeutic resistance. Myc inhibitory strategies are on the path to their clinical application but further work is necessary for the assessment of their use in combination with standard treatment approaches. Given the role of Myc in immune suppression, a significant opportunity may exist in the combination of Myc inhibitors with immunotherapies.
Collapse
Affiliation(s)
| | | | - Laura Soucek
- Peptomyc S.L., Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain.,Edifici Cellex, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Institució Catalana De Recerca I Estudis Avançats (ICREA), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma De Barcelona, Bellaterra, Spain
| |
Collapse
|
4
|
Xia E, Kanematsu S, Suenaga Y, Elzawahry A, Kondo H, Otsuka N, Moriya Y, Iizasa T, Kato M, Yoshino I, Yokoi S. MicroRNA induction by copy number gain is associated with poor outcome in squamous cell carcinoma of the lung. Sci Rep 2018; 8:15363. [PMID: 30337605 PMCID: PMC6194131 DOI: 10.1038/s41598-018-33696-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Copy number gains in cancer genomes have been shown to induce oncogene expression and promote carcinogenesis; however, their role in regulating oncogenic microRNAs (onco-miRNAs) remains largely unknown. Our aim was to identify onco-miRNAs induced by copy number gains in human squamous cell carcinoma (Sq) of the lung. We performed a genome-wide screen of onco-miRNAs from 245 Sqs using data sets from RNA-sequencing, comparative genomic hybridization, and the corresponding clinical information from The Cancer Genome Atlas. Among 1001 miRNAs expressed in the samples, 231 were correlated with copy number alternations, with only 11 of these being highly expressed in Sq compared to adenocarcinoma and normal tissues. Notably, miR-296-5p, miR-324-3p, and miR-3928-3p expression was significantly associated with poor prognosis. Multivariate analysis using the Cox proportional hazards model showed that miRNA expression and smoking were independent prognostic factors and were associated with poor prognosis. Furthermore, the three onco-miRNAs inhibited FAM46C to induce MYC expression, promoting proliferation of Sq cells. We found that copy number gains in Sq of the lung induce onco-miRNA expression that is associated with poor prognosis.
Collapse
Affiliation(s)
- Endi Xia
- Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sotaro Kanematsu
- Division of Genetic Diagnostics, Chiba Cancer Center, Chiba, Japan
| | - Yusuke Suenaga
- Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Asmaa Elzawahry
- Department of Bioinformatics, National Cancer Center, Tokyo, Japan
| | - Hitomi Kondo
- Division of Genetic Diagnostics, Chiba Cancer Center, Chiba, Japan
| | - Noriko Otsuka
- Division of Genetic Diagnostics, Chiba Cancer Center, Chiba, Japan
| | - Yasumitsu Moriya
- Division of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Toshihiko Iizasa
- Division of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Mamoru Kato
- Department of Bioinformatics, National Cancer Center, Tokyo, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sana Yokoi
- Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan. .,Division of Genetic Diagnostics, Chiba Cancer Center, Chiba, Japan.
| |
Collapse
|
5
|
Estiar MA, Javan F, Zekri A, Mehrazin M, Mehdipour P. Prognostic significance of MYCN gene amplification and protein expression in primary brain tumors: Astrocytoma and meningioma. Cancer Biomark 2017; 19:341-351. [PMID: 28453467 DOI: 10.3233/cbm-160546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Astrocytoma and meningioma are the most common primary brain tumors. MYCN as a member of MYC proto-oncogenes has recently appeared as an attractive therapeutic target. Functions of MYCN are critical for growth of nervous system and neural differentiation. OBJECTIVE We examined MYCN amplification and protein expression in astrocytoma and meningioma cases. METHODS In this study, we used real-time PCR, FISH assay and flowcytometry to analyze DNA amplification and protein expression of MYCN. RESULTS Among 30 samples of brain tumor, 14 cases (46.6%) revealed MYCN amplification. High-protein expression of MYCN was also observed in 43.3% of patients. There was a significant correlation between MYCN gene amplification and protein expression (r= 0.523; p= 0.003), interestingly five case showed discrepancy between the gene amplification and protein expression. Although MYCN amplification fails to show correlation with poor prognosis (p= 0.305), protein high-expression of MYCN significantly reduce disease-free survival (p= 0.019). CONCLUSIONS Our results challenge the concept of the neural specificity of MYCN by demonstrating contribution of MYCN in meningioma. Moreover, this study highlights the importance of research at both level of DNA and protein, to determine the biological functions and medical impacts of MYCN.
Collapse
Affiliation(s)
- Mehrdad Asghari Estiar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Firouzeh Javan
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zekri
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics and Molecular Biology, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Mehrazin
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mehdipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Yung MK, Lo KW, Yip CW, Chung GTY, Tong CYK, Cheung PFY, Cheung TT, Poon RTP, So S, Fan ST, Cheung ST. Copy number gain of granulin-epithelin precursor (GEP) at chromosome 17q21 associates with overexpression in human liver cancer. BMC Cancer 2015; 15:264. [PMID: 25885205 PMCID: PMC4403714 DOI: 10.1186/s12885-015-1294-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/31/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Granulin-epithelin precursor (GEP), a secretory growth factor, demonstrated overexpression in various human cancers, however, mechanism remain elusive. Primary liver cancer, hepatocellular carcinoma (HCC), ranks the second in cancer-related death globally. GEP controlled growth, invasion, metastasis and chemo-resistance in liver cancer. Noted that GEP gene locates at 17q21 and the region has been frequently reported to be amplified in subset of HCC. The study aims to investigate if copy number gain would associate with GEP overexpression. METHODS Quantitative Microsatellite Analysis (QuMA) was used to quantify the GEP DNA copy number, and fluorescent in situ hybridization (FISH) was performed to consolidate the amplification status. GEP gene copy number, mRNA expression level and clinico-pathological features were analyzed. RESULTS GEP DNA copy number determined by QuMA corroborated well with the FISH data, and the gene copy number correlated with the expression levels (n = 60, r = 0.331, P = 0.010). Gain of GEP copy number was observed in 20% (12/60) HCC and associated with hepatitis B virus infection status (P = 0.015). In HCC with increased GEP copy number, tight association between GEP DNA and mRNA levels were observed (n = 12, r = 0.664, P = 0.019). CONCLUSIONS Gain of the GEP gene copy number was observed in 20% HCC and the frequency comparable to literatures reported on the chromosome region 17q. Increased gene copy number contributed to GEP overexpression in subset of HCC.
Collapse
Affiliation(s)
- Man Kuen Yung
- Department of Surgery, The University of Hong Kong, Hong Kong, China.
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Chi Wai Yip
- Department of Surgery, The University of Hong Kong, Hong Kong, China. .,Centre for Cancer Research, The University of Hong Kong, Hong Kong, China.
| | - Grace T Y Chung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Carol Y K Tong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Phyllis F Y Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China. .,Centre for Cancer Research, The University of Hong Kong, Hong Kong, China.
| | - Tan To Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China. .,Department of Surgery, Queen Mary Hospital, Hong Kong, China.
| | - Ronnie T P Poon
- Department of Surgery, The University of Hong Kong, Hong Kong, China. .,Centre for Cancer Research, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
| | - Samuel So
- Department of Surgery, Stanford University, Stanford, USA.
| | - Sheung Tat Fan
- Department of Surgery, The University of Hong Kong, Hong Kong, China. .,Centre for Cancer Research, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
| | - Siu Tim Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China. .,Centre for Cancer Research, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China. .,Department of Surgery, The University of Hong Kong, L9-55, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
7
|
D'Asti E, Kool M, Pfister SM, Rak J. Coagulation and angiogenic gene expression profiles are defined by molecular subgroups of medulloblastoma: evidence for growth factor-thrombin cross-talk. J Thromb Haemost 2014; 12:1838-49. [PMID: 25163932 DOI: 10.1111/jth.12715] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND The coagulation system becomes activated during progression and therapy of high-grade brain tumors. Triggering tissue factor (F3/TF) and thrombin receptors (F2R/PAR-1) may influence the vascular tumor microenvironment and angiogenesis irrespective of clinically apparent thrombosis. These processes are poorly understood in medulloblastoma (MB), in which diverse oncogenic pathways define at least four molecular disease subtypes (WNT, SHH, Group 3 and Group 4). We asked whether there is a link between molecular subtype and the network of vascular regulators expressed in MB. METHODS Using R2 microarray analysis and visualization platform, we mined MB datasets for differential expression of vascular (coagulation and angiogenesis)-related genes, and explored their link to known oncogenic drivers. We evaluated the functional significance of this link in DAOY cells in vitro following growth factor and thrombin stimulation. RESULTS The coagulome and angiome differ across MB subtypes. F3/TF and F2R/PAR-1 mRNA expression are upregulated in SHH tumors and correlate with higher levels of hepatocyte growth factor receptor (MET). Cultured DAOY (MB) cells exhibit an up-regulation of F3/TF and F2R/PAR-1 following combined SHH and MET ligand (HGF) treatment. These factors cooperate with thrombin, impacting the profile of vascular regulators, including interleukin 1β (IL1B) and chondromodulin 1 (LECT1). CONCLUSIONS Coagulation pathway sensors (F3/TF, F2R/PAR-1) are expressed in MB in a subtype-specific manner, and may be functionally linked to SHH and MET circuitry. Thus coagulation system perturbations may elicit subtype/context-specific changes in vascular and cellular responses in MB.
Collapse
Affiliation(s)
- E D'Asti
- Cancer and Angiogenesis Laboratory, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|
8
|
PVT1 dependence in cancer with MYC copy-number increase. Nature 2014; 512:82-6. [PMID: 25043044 DOI: 10.1038/nature13311] [Citation(s) in RCA: 562] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 04/08/2014] [Indexed: 12/22/2022]
Abstract
'Gain' of supernumerary copies of the 8q24.21 chromosomal region has been shown to be common in many human cancers and is associated with poor prognosis. The well-characterized myelocytomatosis (MYC) oncogene resides in the 8q24.21 region and is consistently co-gained with an adjacent 'gene desert' of approximately 2 megabases that contains the long non-coding RNA gene PVT1, the CCDC26 gene candidate and the GSDMC gene. Whether low copy-number gain of one or more of these genes drives neoplasia is not known. Here we use chromosome engineering in mice to show that a single extra copy of either the Myc gene or the region encompassing Pvt1, Ccdc26 and Gsdmc fails to advance cancer measurably, whereas a single supernumerary segment encompassing all four genes successfully promotes cancer. Gain of PVT1 long non-coding RNA expression was required for high MYC protein levels in 8q24-amplified human cancer cells. PVT1 RNA and MYC protein expression correlated in primary human tumours, and copy number of PVT1 was co-increased in more than 98% of MYC-copy-increase cancers. Ablation of PVT1 from MYC-driven colon cancer line HCT116 diminished its tumorigenic potency. As MYC protein has been refractory to small-molecule inhibition, the dependence of high MYC protein levels on PVT1 long non-coding RNA provides a much needed therapeutic target.
Collapse
|
9
|
Seo AN, Yang JM, Kim H, Jheon S, Kim K, Lee CT, Jin Y, Yun S, Chung JH, Paik JH. Clinicopathologic and prognostic significance of c-MYC copy number gain in lung adenocarcinomas. Br J Cancer 2014; 110:2688-99. [PMID: 24809777 PMCID: PMC4037828 DOI: 10.1038/bjc.2014.218] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 03/26/2014] [Accepted: 04/01/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND c-MYC copy number gain (c-MYC gain) has been associated with aggressive behaviour in several cancers. However, the role of c-MYC gain has not yet been determined in lung adenocarcinomas classified by genetic alterations in epidermal growth factor receptor (EGFR), KRAS, and anaplastic lymphoma kinase (ALK) genes. We investigated the clinicopathologic and prognostic significance of c-MYC gain for disease-free survival (DFS) and overall survival (OS) according to EGFR, KRAS, and ALK gene status and stages in lung adenocarcinomas. METHODS In 255 adenocarcinomas resected in Seoul National University Bundang Hospital from 2003 to 2009, fluorescence in situ hybridisation (FISH) with c-MYC probe and centromeric enumeration probe 8 (CEP8) was analysed using tissue microarray containing single representative core per each case. EGFR (codon 18 to 21) and KRAS (codon 12, 13, and 61) mutations were analysed by polymerase chain reaction and direct sequencing method from formalin-fixed, paraffin-embedded tissue sections. ALK rearrangement was determined by FISH method. c-MYC gain was defined as >2 copies per nucleus, chromosome 8 gain as ⩾3 copies per nucleus, and gain of c-MYC:CEP8 ratio (hereafter, c-MYC amplification) as ⩾2. RESULTS We observed c-MYC gain in 20% (51 out of 255), chromosome 8 gain in 5.5% (14 out of 255), c-MYC amplification in 2.4% (6 out of 255), EGFR mutation in 49.4% (118 out of 239), KRAS mutation in 5.7% (7 out of 123), and ALK rearrangement in 4.9% (10 out of 205) of lung adenocarcinomas. c-MYC gain was observed in 19% (22 out of 118) of patients with lung adenocarcinomas with an EGFR mutation, but not in any patients with a KRAS mutation, or an ALK rearrangement. c-MYC gain (but not chromosome 8 gain or c-MYC amplification) was an independent poor-prognostic factor in the full cohort of lung adenocarcinoma (P=0.022, hazard ratio (HR)=1.71, 95% confidence interval (CI), 1.08-2.69 for DFS; P=0.032, HR=2.04, 95% CI, 1.06-3.91 for OS), as well as in stage I subgroup (P=0.023, HR=4.70, 95% CI, 1.24-17.78 for DFS; P=0.031, HR=4.65, 95% CI, 1.15-18.81 for OS), and in EGFR-mutant subgroup (P=0.022; HR=2.14; 95% CI, 1.11-4.10 for DFS). CONCLUSIONS c-MYC gain (but not chromosome 8 gain or c-MYC amplification) was an independent poor-prognostic factor for DFS and OS in lung adenocarcinomas, both in full cohort and stage I cancer, and possibly for DFS in EGFR-mutant adenocarcinomas. Additional studies are required to determine if patients with lung adenocarcinoma with c-MYC gain are candidates for additional first-line treatment to mitigate their increased risk for disease progression and death.
Collapse
Affiliation(s)
- A N Seo
- 1] Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, Gyeonggi 463-707, Korea [2] Department of Pathology, Kyungpook National University College of Medicine, 680 Gukchaebosang-ro, Jung-gu, Daegu 700-842, Korea
| | - J M Yang
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, Gyeonggi 463-707, Korea
| | - H Kim
- 1] Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, Gyeonggi 463-707, Korea [2] Department of Pathology, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| | - S Jheon
- 1] Department of Thoracic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, Gyeonggi 463-707, Korea [2] Department of Thoracic Surgery, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| | - K Kim
- 1] Department of Thoracic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, Gyeonggi 463-707, Korea [2] Department of Thoracic Surgery, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| | - C T Lee
- 1] Department of Internal medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, Gyeonggi 463-707, Korea [2] Department of Internal medicine, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| | - Y Jin
- 1] Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, Gyeonggi 463-707, Korea [2] Department of Pathology, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| | - S Yun
- 1] Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, Gyeonggi 463-707, Korea [2] Department of Pathology, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| | - J-H Chung
- 1] Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, Gyeonggi 463-707, Korea [2] Department of Pathology, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| | - J H Paik
- 1] Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, Gyeonggi 463-707, Korea [2] Department of Pathology, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| |
Collapse
|
10
|
Wang LL, Suganuma R, Ikegaki N, Tang X, Naranjo A, McGrady P, London WB, Hogarty MD, Gastier-Foster JM, Look AT, Park JR, Maris JM, Cohn SL, Seeger RC, Shimada H. Neuroblastoma of undifferentiated subtype, prognostic significance of prominent nucleolar formation, and MYC/MYCN protein expression: a report from the Children's Oncology Group. Cancer 2013; 119:3718-26. [PMID: 23901000 DOI: 10.1002/cncr.28251] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/19/2013] [Accepted: 04/25/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND This study sought to investigate biological/clinicopathological characteristics of neuroblastoma, undifferentiated subtype (NBUD). METHODS This study examined 157 NBUD cases filed at the Children's Oncology Group Neuroblastoma Pathology Reference Laboratory, and survival rates of the patients were analyzed with known prognostic factors. Immunostainings for MYCN and MYC protein were performed on 68 tumors. RESULTS NBUD cases had a poor prognosis (48.4% ± 5.0% 3-year event-free survival [EFS]; 56.5% ± 5.0% overall survival [OS]), and were often associated with high mitosis-karyorrhexis index (MKI, 65%), prominent nucleoli (PN, 83%), ≥ 18 months of age (75%), MYCN amplification (MYCN-A, 83%), diploid pattern (63%), and 1pLOH (loss of heterozygosity (72%). However, these prognostic indicators, except for MYCN status, had no significant impact on survival. Surprisingly, EFS for patients with MYCN-A tumors (53.4% ± 5.6%) was significantly better (P=.0248) than for patients with MYCN-nonamplified (MYCN-NA) tumors (31.7% ± 11.7%), with MYCN-NA and PN (+) tumors having the worst prognosis (9.3% ± 8.8%, P=.0045). Immunohistochemically, MYCN expression was found in 42 of 48 MYCN-A tumors. In contrast, MYC expression was almost exclusively found in the MYCN-NA tumors (9 of 20) especially when they had PN (8 of 11). Those patients with only MYC-positive tumors had the worst EFS (N=8, 12.5% ± 11.7%) compared with only MYCN-positive (N=39, 49.9% ± 17.7%) and both negative tumors (N=15, 70.0% ± 17.1%) (P= .0029). High MKI was often found in only MYCN-positive (30 of 38) but rarely in only MYC-positive (2 of 8) tumors. CONCLUSIONS NBUD represents a unique subtype of neuroblastoma associated with a poor prognosis. In this subtype, MYC protein expression may be a new prognostic factor indicating more aggressive clinical behavior than MYCN amplification and subsequent MYCN protein expression.
Collapse
Affiliation(s)
- Larry L Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
A contemporary review of molecular candidates for the development and treatment of childhood medulloblastoma. Childs Nerv Syst 2013; 29:381-8. [PMID: 23292496 DOI: 10.1007/s00381-012-2014-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/22/2012] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Medulloblastoma is the most common pediatric central nervous system tumor; however, the causes are not well established. There has been some emphasis on mutations in developmental pathways and their impact on tumor pathology in hereditary diseases, but, in order to better understand the nature of diseases like medulloblastoma, other mechanisms also require attention. PURPOSE The purpose of this review is to provide an overview of the main genes involved in neurodevelopment, their downstream targets, and modulatory links by growth factors. Occurrence of pediatric brain tumors including medulloblastoma are mostly sporadic, but some hereditary diseases like Li-Fraumeni syndrome, Gorlin's syndrome, Turcot's syndrome, and Rubenstein-Tarbi syndrome are known to contribute their development as consequences of germline mutations at specific points: DNA-repairing gene Tp53 for Li-Fraumeni syndrome or Patch for Gorlin's, and apoptosis-related gene product adenomatous polyposis coli for Turcot's disease. CONCLUSION Intracellular relations at molecular level and future therapeutics that specifically target the corresponding pathways should be well understood in order to prevent and cure childhood medulloblastoma.
Collapse
|
12
|
Integrated genomic analysis of the 8q24 amplification in endometrial cancers identifies ATAD2 as essential to MYC-dependent cancers. PLoS One 2013; 8:e54873. [PMID: 23393560 PMCID: PMC3564856 DOI: 10.1371/journal.pone.0054873] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/17/2012] [Indexed: 01/12/2023] Open
Abstract
Chromosome 8q24 is the most commonly amplified region across multiple cancer types, and the typical length of the amplification suggests that it may target additional genes to MYC. To explore the roles of the genes most frequently included in 8q24 amplifications, we analyzed the relation between copy number alterations and gene expression in three sets of endometrial cancers (N = 252); and in glioblastoma, ovarian, and breast cancers profiled by TCGA. Among the genes neighbouring MYC, expression of the bromodomain-containing gene ATAD2 was the most associated with amplification. Bromodomain-containing genes have been implicated as mediators of MYC transcriptional function, and indeed ATAD2 expression was more closely associated with expression of genes known to be upregulated by MYC than was MYC itself. Amplifications of 8q24, expression of genes downstream from MYC, and overexpression of ATAD2 predicted poor outcome and increased from primary to metastatic lesions. Knockdown of ATAD2 and MYC in seven endometrial and 21 breast cancer cell lines demonstrated that cell lines that were dependent on MYC also depended upon ATAD2. These same cell lines were also the most sensitive to the histone deacetylase (HDAC) inhibitor Trichostatin-A, consistent with prior studies identifying bromodomain-containing proteins as targets of inhibition by HDAC inhibitors. Our data indicate high ATAD2 expression is a marker of aggressive endometrial cancers, and suggest specific inhibitors of ATAD2 may have therapeutic utility in these and other MYC-dependent cancers.
Collapse
|
13
|
Cenci T, Martini M, Montano N, D’Alessandris QG, Falchetti ML, Annibali D, Savino M, Bianchi F, Pierconti F, Nasi S, Pallini R, Larocca LM. Prognostic relevance of c-Myc and BMI1 expression in patients with glioblastoma. Am J Clin Pathol 2012; 138:390-6. [PMID: 22912356 DOI: 10.1309/ajcprxhnjqlo09qa] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Although the c-Myc oncogene is frequently deregulated in human cancer, its involvement in the pathogenesis of glioblastoma is not clear. We conducted immunohistochemical analysis of the expression of c-Myc, polycomb ring finger oncogene (BMI1), and acetylation of the lysine 9 (H3K9Ac) of histone 3 in 48 patients with glioblastoma who underwent surgery followed by radiotherapy and temozolomide treatment. The expression of c-Myc, BMI1, and H3K9ac was correlated with clinical characteristics and outcome. We found that overexpression of c-Myc was significantly associated with that of BMI1 (P = .009), and that patients who harbored glioblastomas overexpressing c-Myc and BMI1 showed significantly longer overall survival (P < .0001 and P = .0009, respectively). Our results provide the first evidence of the prognostic value of c-Myc and associated genes in patients with glioblastoma. The favorable effect of c-Myc and BMI1 expression on survival is likely mediated by the sensitization of cancer cells to radiotherapy and temozolomide through the activation of apoptotic pathways.
Collapse
|
14
|
Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathol 2012; 123:515-27. [PMID: 22160402 DOI: 10.1007/s00401-011-0918-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/09/2011] [Accepted: 11/13/2011] [Indexed: 10/14/2022]
Abstract
Focal high-level amplifications of MYC (or MYCC) define a subset of high-risk medulloblastoma patients. However, the prognostic role of MYCN oncogene amplification remains unresolved. We aimed to evaluate the prognostic value of this alteration alone and in combination with biological modifiers in 67 pediatric medulloblastomas with MYCN amplification (MYCN-MB). Twenty-one MYCN-MB were examined using gene expression profiling and array-CGH, whereas for 46 tumors immunohistochemical analysis and FISH were performed. All 67 tumors were further subjected to mutational analyses. We compared molecular, clinical, and prognostic characteristics both within biological MYCN-MB groups and with non-amplified tumors. Transcriptomic analysis revealed SHH-driven tumorigenesis in a subset of MYCN-MBs indicating a biological dichotomy of MYCN-MB. Activation of SHH was accompanied by variant-specific cytogenetic aberrations including deletion of 9q in SHH tumors. Non-SHH MB were associated with gain of 7q and isochromosome 17q/17q gain. Among clinically relevant variables, SHH subtype and 10q loss for non-SHH tumors comprised the most powerful markers of favorable prognosis in MYCN-MB. In conclusion, we demonstrate considerable heterogeneity within MYCN-MB in terms of genetics, tumor biology, and clinical outcome. Thus, assessment of disease group and 10q copy-number status may improve risk stratification of this group and may delineate MYCN-MB with the same dismal prognosis as MYC amplified tumors. Furthermore, based on the enrichment of MYCN and GLI2 amplifications in SHH-driven medulloblastoma, amplification of these downstream signaling intermediates should be taken into account before a patient is enrolled into a clinical trial using a smoothened inhibitor.
Collapse
|
15
|
Ryan SL, Schwalbe EC, Cole M, Lu Y, Lusher ME, Megahed H, O'Toole K, Nicholson SL, Bognar L, Garami M, Hauser P, Korshunov A, Pfister SM, Williamson D, Taylor RE, Ellison DW, Bailey S, Clifford SC. MYC family amplification and clinical risk-factors interact to predict an extremely poor prognosis in childhood medulloblastoma. Acta Neuropathol 2012; 123:501-13. [PMID: 22139329 DOI: 10.1007/s00401-011-0923-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/16/2011] [Accepted: 11/22/2011] [Indexed: 12/20/2022]
Abstract
The MYC oncogenes are the most commonly amplified loci in medulloblastoma, and have previously been proposed as biomarkers of adverse disease prognosis by us and others. Here, we report focussed and comprehensive investigations of MYCC, MYCN and MYCL in an extensive medulloblastoma cohort (n = 292), aimed to define more precisely their biological significance and optimal clinical application to direct improved disease risk-stratification and individualisation of therapy. MYCC and MYCN expression elevations were multifactorial, associated with high-risk (gene amplification, large-cell/anaplastic pathology (LCA)) and favourable-risk (WNT/SHH molecular subgroups) disease features. Highly variable cellular gene amplification patterns underlay overall MYC copy number elevations observed in tumour biopsies; we used these alternative measures together to define quantitative methodologies and thresholds for amplification detection in routinely collected tumour material. MYCC and MYCN amplification, but not gain, each had independent prognostic significance in non-infants (≥3.0-16.0 years), but MYCC conferred a greater hazard to survival than MYCN when considered across this treatment group. MYCN's weaker group-wide survival relationship may be explained by its pleiotropic behaviour between clinical disease-risk groups; MYCN predicted poor prognosis in clinical high-risk (metastatic (M+) or LCA), but not standard-risk, patients. Extending these findings, survival decreased in proportion to the total number of independently significant high-risk features present (LCA, M+ or MYCC/MYCN amplification). This cumulative-risk model defines a patient group characterised by ≥2 independent risk-factors and an extremely poor prognosis (<15% survival), which can be identified straightforwardly using the reported MYC amplification detection methodologies alongside clinical assessments, enabling targeting for novel/intensified therapies in future clinical studies.
Collapse
Affiliation(s)
- Sarra L Ryan
- Northern Institute for Cancer Research, Newcastle University, Sir James Spence Institute Level, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bunt J, Hasselt NE, Zwijnenburg DA, Koster J, Versteeg R, Kool M. Joint binding of OTX2 and MYC in promotor regions is associated with high gene expression in medulloblastoma. PLoS One 2011; 6:e26058. [PMID: 22016811 PMCID: PMC3189962 DOI: 10.1371/journal.pone.0026058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/16/2011] [Indexed: 01/19/2023] Open
Abstract
Both OTX2 and MYC are important oncogenes in medulloblastoma, the most common malignant brain tumor in childhood. Much is known about MYC binding to promoter regions, but OTX2 binding is hardly investigated. We used ChIP-on-chip data to analyze the binding patterns of both transcription factors in D425 medulloblastoma cells. When combining the data for all promoter regions in the genome, OTX2 binding showed a remarkable bi-modal distribution pattern with peaks around −250 bp upstream and +650 bp downstream of the transcription start sites (TSSs). Indeed, 40.2% of all OTX2-bound TSSs had more than one significant OTX2-binding peak. This OTX2-binding pattern was very different from the TSS-centered single peak binding pattern observed for MYC and other known transcription factors. However, in individual promoter regions, OTX2 and MYC have a strong tendency to bind in proximity of each other. OTX2-binding sequences are depleted near TSSs in the genome, providing an explanation for the observed bi-modal distribution of OTX2 binding. This contrasts to the enrichment of E-box sequences at TSSs. Both OTX2 and MYC binding independently correlated with higher gene expression. Interestingly, genes of promoter regions with multiple OTX2 binding as well as MYC binding showed the highest expression levels in D425 cells and in primary medulloblastomas. Genes within this class of promoter regions were enriched for medulloblastoma and stem cell specific genes. Our data suggest an important functional interaction between OTX2 and MYC in regulating gene expression in medulloblastoma.
Collapse
Affiliation(s)
- Jens Bunt
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | - Nancy E. Hasselt
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | - Marcel Kool
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
17
|
Helland Å, Anglesio MS, George J, Cowin PA, Johnstone CN, House CM, Sheppard KE, Etemadmoghadam D, Melnyk N, Rustgi AK, Phillips WA, Johnsen H, Holm R, Kristensen GB, Birrer MJ, Pearson RB, Børresen-Dale AL, Huntsman DG, deFazio A, Creighton CJ, Smyth GK, Bowtell DDL. Deregulation of MYCN, LIN28B and LET7 in a molecular subtype of aggressive high-grade serous ovarian cancers. PLoS One 2011; 6:e18064. [PMID: 21533284 PMCID: PMC3076323 DOI: 10.1371/journal.pone.0018064] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/18/2011] [Indexed: 12/11/2022] Open
Abstract
Molecular subtypes of serous ovarian cancer have been recently described. Using data from independent datasets including over 900 primary tumour samples, we show that deregulation of the Let-7 pathway is specifically associated with the C5 molecular subtype of serous ovarian cancer. DNA copy number and gene expression of HMGA2, alleles of Let-7, LIN28, LIN28B, MYC, MYCN, DICER1, and RNASEN were measured using microarray and quantitative reverse transcriptase PCR. Immunohistochemistry was performed on 127 samples using tissue microarrays and anti-HMGA2 antibodies. Fluorescence in situ hybridisation of bacterial artificial chromosomes hybridized to 239 ovarian tumours was used to measure translocation at the LIN28B locus. Short interfering RNA knockdown in ovarian cell lines was used to test the functionality of associations observed. Four molecular subtypes (C1, C2, C4, C5) of high-grade serous ovarian cancers were robustly represented in each dataset and showed similar pattern of patient survival. We found highly specific activation of a pathway involving MYCN, LIN28B, Let-7 and HMGA2 in the C5 molecular subtype defined by MYCN amplification and over-expression, over-expression of MYCN targets including the Let-7 repressor LIN28B, loss of Let-7 expression and HMGA2 amplification and over-expression. DICER1, a known Let-7 target, and RNASEN were over-expressed in C5 tumours. We saw no evidence of translocation at the LIN28B locus in C5 tumours. The reported interaction between LIN28B and Let-7 was recapitulated by siRNA knockdown in ovarian cancer cell lines. Our results associate deregulation of MYCN and downstream targets, including Let-7 and oncofetal genes, with serous ovarian cancer. We define for the first time how elements of an oncogenic pathway, involving multiple genes that contribute to stem cell renewal, is specifically altered in a molecular subtype of serous ovarian cancer. By defining the drivers of a molecular subtype of serous ovarian cancers we provide a novel strategy for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Åslaug Helland
- Division of Surgery and Cancer, Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Michael S. Anglesio
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshy George
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry, University of Melbourne, Parkville, Australia
| | - Prue A. Cowin
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Colin M. House
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | - Nataliya Melnyk
- British Columbia Cancer Agency, Centre for Translational and Applied Genomics, Vancouver, British Columbia, Canada
| | - Anil K. Rustgi
- Department of Medicine and Abramson Cancer Centre, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Hilde Johnsen
- Division of Surgery and Cancer, Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Ruth Holm
- Division of Surgery and Cancer, Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Gunnar B. Kristensen
- Division of Surgery and Cancer, Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Michael J. Birrer
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Richard B. Pearson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry, University of Melbourne, Parkville, Australia
| | - Anne-Lise Børresen-Dale
- Division of Surgery and Cancer, Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - David G. Huntsman
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Cancer Agency, Centre for Translational and Applied Genomics, Vancouver, British Columbia, Canada
| | - Anna deFazio
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead Hospital, Sydney, New South Wales, Australia
| | - Chad J. Creighton
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gordon K. Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - David D. L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry, University of Melbourne, Parkville, Australia
- * E-mail:
| |
Collapse
|
18
|
von Bueren AO, Oehler C, Shalaby T, von Hoff K, Pruschy M, Seifert B, Gerber NU, Warmuth-Metz M, Stearns D, Eberhart CG, Kortmann RD, Rutkowski S, Grotzer MA. c-MYC expression sensitizes medulloblastoma cells to radio- and chemotherapy and has no impact on response in medulloblastoma patients. BMC Cancer 2011; 11:74. [PMID: 21324178 PMCID: PMC3050852 DOI: 10.1186/1471-2407-11-74] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 02/16/2011] [Indexed: 12/27/2022] Open
Abstract
Background To study whether and how c-MYC expression determines response to radio- and chemotherapy in childhood medulloblastoma (MB). Methods We used DAOY and UW228 human MB cells engineered to stably express different levels of c-MYC, and tested whether c-MYC expression has an effect on radio- and chemosensitivity using the colorimetric 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay, clonogenic survival, apoptosis assays, cell cycle analysis, and western blot assessment. In an effort to validate our results, we analyzed c-MYC mRNA expression in formalin-fixed paraffin-embedded tumor samples from well-documented patients with postoperative residual tumor and compared c-MYC mRNA expression with response to radio- and chemotherapy as examined by neuroradiological imaging. Results In DAOY - and to a lesser extent in UW228 - cells expressing high levels of c-MYC, the cytotoxicity of cisplatin, and etoposide was significantly higher when compared with DAOY/UW228 cells expressing low levels of c-MYC. Irradiation- and chemotherapy-induced apoptotic cell death was enhanced in DAOY cells expressing high levels of c-MYC. The response of 62 of 66 residual tumors was evaluable and response to postoperative radio- (14 responders (CR, PR) vs. 5 non-responders (SD, PD)) or chemotherapy (23 CR/PR vs. 20 SD/PD) was assessed. c-MYC mRNA expression was similar in primary MB samples of responders and non-responders (Mann-Whitney U test, p = 0.50, ratio 0.49, 95% CI 0.008-30.0 and p = 0.67, ratio 1.8, 95% CI 0.14-23.5, respectively). Conclusions c-MYC sensitizes MB cells to some anti-cancer treatments in vitro. As we failed to show evidence for such an effect on postoperative residual tumors when analyzed by imaging, additional investigations in xenografts and larger MB cohorts may help to define the exact function of c-MYC in modulating response to treatment.
Collapse
Affiliation(s)
- André O von Bueren
- Neuro-Oncology Program, University Children's Hospital, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|