1
|
Li C, Li K, Zhong S, Tang M, Shi X, Bao Y. Which is the best treatment for melanoma brain metastases? A Bayesian network meta-analysis and systematic review. Crit Rev Oncol Hematol 2024; 194:104227. [PMID: 38220124 DOI: 10.1016/j.critrevonc.2023.104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024] Open
Abstract
OBJECTIVE Melanoma has a high degree of central nervous system tropism, and there are many treatment modalities for melanoma brain metastases (MBM). The efficacy and toxicity of various treatments are still controversial. Therefore, they were evaluated by direct and indirect comparison to assist clinical decision-making in this study. METHOD A total of 7 therapeutic modalities for MBM were studied. Retrieval was conducted through Embase, PubMed, Cochrane Library and Web of science databases and the quality of the included literature was evaluated. Meta-analysis and Bayesian network meta-analysis were performed using Review Manager and R language. RESULTS A total of 10 articles were included with 836 MBM patients. Direct comparison showed that stereotactic radiotherapy combined with immunotherapy (SRS + IT) was superior to IT (HR = 0.66, 95%CI = 0.52-0.84) or SRS (HR = 0.81, 95%CI = 0.63-1.03) alone in improving intracranial progression-free survival (PFS). In terms of overall survival (OS), SRS + IT was superior to SRS alone (HR = 0.64, 95%CI = 0.49-0.83), or IT (HR = 0.59, 95%CI = 0.29-1.21). Rank probability and surface under the cumulative ranking curve (SUCRA) by indirect comparison showed that SRS + IT had the best effect on improving intracranial PFS (0.88) and OS (0.98). Additionally, various combination therapies, especially SRS + IT (0.72), increased the incidence of radiation necrosis (RN). In direct comparisons, SRS + IT (RR = 0.93, 95%CI = 0.47-1.83) and SRS + TT (targeted therapy) (RR = 0.24, 95%CI = 0.10-0.56) did not increase intracranial hemorrhage (ICH) compared with SRS. CONCLUSIONS SRS + IT treatment was the best choice for MBM patients in both intracranial PFS and OS, even though it also led to an increased probability of RN.
Collapse
Affiliation(s)
- Cong Li
- Department of Neurosurgery, The Fourth Hospital of China Medical University, No. 4 Chongshandong, Huanggu, Shenyang 110084, China
| | - Kunhang Li
- Department of Neurosurgery, The Fourth Hospital of China Medical University, No. 4 Chongshandong, Huanggu, Shenyang 110084, China
| | - Shiyu Zhong
- Department of Neurosurgery, The Fourth Hospital of China Medical University, No. 4 Chongshandong, Huanggu, Shenyang 110084, China
| | - Mingzheng Tang
- The First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Xin Shi
- School of Maths and Information Science, Shandong Technology and Business University, Yantai 264005, China; Business School, All Saints Campus, Manchester Metropolitan University, Oxford Road, Manchester, United Kingdom; Institute of Health Sciences, China Medical University, Shenyang 110122, China.
| | - Yijun Bao
- Department of Neurosurgery, The Fourth Hospital of China Medical University, No. 4 Chongshandong, Huanggu, Shenyang 110084, China.
| |
Collapse
|
2
|
Badrigilan S, Meola A, Chang SD, Rezaeian S, Nemati H, Almasi T, Rostampour N. Stereotactic radiosurgery with immune checkpoint inhibitors for brain metastases: a meta-analysis study. Br J Neurosurg 2023; 37:1533-1543. [PMID: 34979828 DOI: 10.1080/02688697.2021.2022098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are an emerging tool in the treatment of brain metastases (BMs), Stereotactic radiosurgery (SRS), traditionally used for BMs, elicits an immune brain response and can act synergistically with ICIs. We aim to investigate the efficacy of ICI administered with SRS and determine the impact of timing on BM response. METHODS A systematical search was performed to identify potential studies concerning BMs managed with SRS alone or with SRS + ICI with relative timing administration (ICI concurrent with SRS, ICI nonconcurrent with SRS, SRS before ICI, SRS after ICI). The overall survival (OS), 12-month OS, local progression-free survival (LPFS), 12-month local brain control (LBC), distant progression-free survival (DPFS), 12-month distant brain control (DBC), and adverse events (intracranial hemorrhage, radionecrosis) were analyzed using the random-effects model. RESULTS A total of 16 retrospective studies with 1356 BM patients were included. Compared to nonconcurrent therapy, concurrent therapy revealed a significantly longer OS (HR= 1.43; p = 0.008) and 12-months LBC (HR = 1.91; p = 0.04), a similar 12-months DBC (HR = 1.12; p = 0.547) and higher complication rate (R = 0.77; p = 0.346). Concurrent therapy leads to a significantly higher OS compared to ICI before SRS (HR = 2.55; p = 0.0003). CONCLUSION The combination of SRS with ICI improves patients' clinical and radiological outcomes. The effectiveness of the combination is subject to the identification of an optimal therapeutic window.
Collapse
Affiliation(s)
- Samireh Badrigilan
- Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Antonio Meola
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Shahab Rezaeian
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Nemati
- Department of Epidemiology, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tinoosh Almasi
- Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nima Rostampour
- Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Vaios EJ, Winter SF, Shih HA, Dietrich J, Peters KB, Floyd SR, Kirkpatrick JP, Reitman ZJ. Novel Mechanisms and Future Opportunities for the Management of Radiation Necrosis in Patients Treated for Brain Metastases in the Era of Immunotherapy. Cancers (Basel) 2023; 15:2432. [PMID: 37173897 PMCID: PMC10177360 DOI: 10.3390/cancers15092432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Radiation necrosis, also known as treatment-induced necrosis, has emerged as an important adverse effect following stereotactic radiotherapy (SRS) for brain metastases. The improved survival of patients with brain metastases and increased use of combined systemic therapy and SRS have contributed to a growing incidence of necrosis. The cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING) pathway (cGAS-STING) represents a key biological mechanism linking radiation-induced DNA damage to pro-inflammatory effects and innate immunity. By recognizing cytosolic double-stranded DNA, cGAS induces a signaling cascade that results in the upregulation of type 1 interferons and dendritic cell activation. This pathway could play a key role in the pathogenesis of necrosis and provides attractive targets for therapeutic development. Immunotherapy and other novel systemic agents may potentiate activation of cGAS-STING signaling following radiotherapy and increase necrosis risk. Advancements in dosimetric strategies, novel imaging modalities, artificial intelligence, and circulating biomarkers could improve the management of necrosis. This review provides new insights into the pathophysiology of necrosis and synthesizes our current understanding regarding the diagnosis, risk factors, and management options of necrosis while highlighting novel avenues for discovery.
Collapse
Affiliation(s)
- Eugene J. Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sebastian F. Winter
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Helen A. Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jorg Dietrich
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katherine B. Peters
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Scott R. Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - John P. Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Karz A, Dimitrova M, Kleffman K, Alvarez-Breckenridge C, Atkins MB, Boire A, Bosenberg M, Brastianos P, Cahill DP, Chen Q, Ferguson S, Forsyth P, Glitza Oliva IC, Goldberg SB, Holmen SL, Knisely JPS, Merlino G, Nguyen DX, Pacold ME, Perez-Guijarro E, Smalley KSM, Tawbi HA, Wen PY, Davies MA, Kluger HM, Mehnert JM, Hernando E. Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities. Pigment Cell Melanoma Res 2022; 35:554-572. [PMID: 35912544 PMCID: PMC10171356 DOI: 10.1111/pcmr.13059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023]
Abstract
Brain metastases are the most common brain malignancy. This review discusses the studies presented at the third annual meeting of the Melanoma Research Foundation in the context of other recent reports on the biology and treatment of melanoma brain metastases (MBM). Although symptomatic MBM patients were historically excluded from immunotherapy trials, efforts from clinicians and patient advocates have resulted in more inclusive and even dedicated clinical trials for MBM patients. The results of checkpoint inhibitor trials were discussed in conversation with current standards of care for MBM patients, including steroids, radiotherapy, and targeted therapy. Advances in the basic scientific understanding of MBM, including the role of astrocytes and metabolic adaptations to the brain microenvironment, are exposing new vulnerabilities which could be exploited for therapeutic purposes. Technical advances including single-cell omics and multiplex imaging are expanding our understanding of the MBM ecosystem and its response to therapy. This unprecedented level of spatial and temporal resolution is expected to dramatically advance the field in the coming years and render novel treatment approaches that might improve MBM patient outcomes.
Collapse
Affiliation(s)
- Alcida Karz
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | - Maya Dimitrova
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA.,Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Kevin Kleffman
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | | | - Michael B Atkins
- Georgetown-Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Marcus Bosenberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Priscilla Brastianos
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Chen
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Sherise Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Forsyth
- Department of Neuro-Oncology and Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah B Goldberg
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute and Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Jonathan P S Knisely
- Meyer Cancer Center and Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Don X Nguyen
- Department of Pathology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael E Pacold
- Department of Radiation Oncology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Eva Perez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, United States, Boston, Massachusetts, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Janice M Mehnert
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA.,Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| |
Collapse
|
5
|
Muacevic A, Adler JR, Liu K, Sandhu N, Blomain E, Binkley MS, Gephart MH, Chang SD, Li GH, Reddy SA, Soltys SG, Pollom E. Intracranial Control With Combination BRAF and MEK Inhibitor Therapy in Patients With Metastatic Melanoma. Cureus 2022; 14:e31838. [PMID: 36579260 PMCID: PMC9788920 DOI: 10.7759/cureus.31838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose/Objectives Combination BRAF (vemurafenib, dabrafenib, or encorafenib) plus MEK (trametinib, cobimetinib, or binimetinib) inhibitor therapy is now widely used in the treatment of metastatic melanoma. However, data for intracranial response to these drugs are limited. We aimed to evaluate the intracranial efficacy of BRAF plus MEK inhibitors in patients with BRAF-mutant melanoma with brain metastases (BM) and to determine patterns of failure of these new agents to inform optimal integration of local intracranial therapy. Materials and methods We retrospectively reviewed charts of patients with BRAF-mutant melanoma with metastasis to the brain with at least one untreated brain metastasis at the time of initiation of BRAF plus MEK inhibitors at our institution from 2006 to 2020. We collected per-patient and per-lesion data on demographics, treatment modality, and outcomes. The cumulative incidence of local (LF), distant intracranial (DF), and extracranial failure (EF) were calculated with competing risk analysis with death as a competing risk and censored at the last brain MRI follow-up. LF was calculated on a per-lesion basis while DF and EF were calculated on a per-patient basis. DF was defined as any new intracranial lesions. Overall survival (OS) was analyzed using Kaplan-Meier. Logistic regression was used to identify predictors for LF. Results We identified 10 patients with 63 untreated brain metastases. The median age was 50.5 years. The median sum of the diameters of the five largest untreated brain metastases per patient was 20 mm (interquartile range 15-39 mm) and the median diameter for all measurable lesions was 4 mm. Median follow-up time was 9.0 months (range 1.4 months-46.2 months). Median OS was 13.6 months. The one-year cumulative incidence of LF, DF, and EF was 17.1%, 88.6, and 71.4%, respectively. The median time to LF, DF, and EF from the start of BRAF plus MEK inhibitors was 9.0 months, 4.7 months, and 7.0 months, respectively. The larger size of the BM was associated with LF on univariate analysis (odds ratio 1.13 per 1 mm increase in diameter, 95% confidence interval 1.019 to 1.308, p<0.02). Two (20%) patients eventually received stereotactic radiosurgery, and 2 (20%) received whole-brain radiotherapy for intracranial progression. Conclusion Although patients with BRAF-mutant melanoma with BM had fair local control on BRAF plus MEK inhibitors, the competing risk of death and distant intracranial and extracranial progression was high. Patients with larger brain metastases may benefit from local therapy.
Collapse
|
6
|
Ganz JC. Cerebral metastases. PROGRESS IN BRAIN RESEARCH 2022; 268:229-258. [PMID: 35074082 DOI: 10.1016/bs.pbr.2021.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brain metastases are common and deadly. Over the last 25 years GKNS has been established as an invaluable treatment. It may be used as a primary treatment or after either surgery or WBRT. Patients are assessed using one of a number of available scales. GKNS may be repeated for new metastases and for unresponsive tumors. Prescription doses are usually between 18 and 20Gy. The use of advanced MR techniques to highlight sensitive structures like the hippocampi have extended the efficacy of the treatment. More recently GKNS has been used with different target therapies with improved results. More recently frameless treatments have become more popular in this group of very sick patients. GKNS controls tumors in between 80% and over 95% of cases and may even be used for brainstem tumors.
Collapse
Affiliation(s)
- Jeremy C Ganz
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
7
|
Bouchè V, Aldegheri G, Donofrio CA, Fioravanti A, Roberts-Thomson S, Fox SB, Schettini F, Generali D. BRAF Signaling Inhibition in Glioblastoma: Which Clinical Perspectives? Front Oncol 2021; 11:772052. [PMID: 34804975 PMCID: PMC8595319 DOI: 10.3389/fonc.2021.772052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
IDH-wild type (wt) glioblastoma (GB) accounts for approximately 90% of all GB and has a poor outcome. Surgery and adjuvant therapy with temozolomide and radiotherapy is the main therapeutic approach. Unfortunately, after relapse and progression, which occurs in most cases, there are very limited therapeutic options available. BRAF which plays a role in the oncogenesis of several malignant tumors, is also involved in a small proportion of IDH-wt GB. Previous successes with anti-B-Raf targeted therapy in tumors with V600E BRAF mutation like melanoma, combined with the poor prognosis and paucity of therapeutic options for GB patients is leading to a growing interest in the potential efficacy of this approach. This review is thus focused on dissecting the state of the art and future perspectives on BRAF pathway inhibition in IDH-wt GB. Overall, clinical efficacy is mostly described within case reports and umbrella trials, with promising but still insufficient results to draw more definitive conclusions. Further studies are needed to better define the molecular and phenotypic features that predict for a favorable response to treatment. In addition, limitations of B-Raf-inhibitors, in monotherapy or in combination with other therapeutic partners, to penetrate the blood-brain barrier and the development of acquired resistance mechanisms responsible for tumor progression need to be addressed.
Collapse
Affiliation(s)
- Victoria Bouchè
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Giovanni Aldegheri
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Carmine Antonio Donofrio
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Antonio Fioravanti
- Medical Oncology and Translational Research Unit, Azienda Socio-Sanitaria Territoriale (ASST) of Cremona, Cremona Hospital, Cremona, Italy
| | | | - Stephen B. Fox
- Department of Pathology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
- Unit of Neurosurgery, Azienda Socio-Sanitaria Territoriale (ASST) of Cremona, Cremona Hospital, Cremona, Italy
| |
Collapse
|
8
|
Du W, Gu M, Hu M, Pinchi P, Chen W, Ryan M, Nold T, Bannaga A, Xu H. Lysosomal Zn 2+ release triggers rapid, mitochondria-mediated, non-apoptotic cell death in metastatic melanoma. Cell Rep 2021; 37:109848. [PMID: 34686351 PMCID: PMC8559338 DOI: 10.1016/j.celrep.2021.109848] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/16/2021] [Accepted: 09/27/2021] [Indexed: 01/18/2023] Open
Abstract
During tumor progression, lysosome function is often maladaptively upregulated to match the high energy demand required for cancer cell hyper-proliferation and invasion. Here, we report that mucolipin TRP channel 1 (TRPML1), a lysosomal Ca2+ and Zn2+ release channel that regulates multiple aspects of lysosome function, is dramatically upregulated in metastatic melanoma cells compared with normal cells. TRPML-specific synthetic agonists (ML-SAs) are sufficient to induce rapid (within hours) lysosomal Zn2+-dependent necrotic cell death in metastatic melanoma cells while completely sparing normal cells. ML-SA-caused mitochondria swelling and dysfunction lead to cellular ATP depletion. While pharmacological inhibition or genetic silencing of TRPML1 in metastatic melanoma cells prevents such cell death, overexpression of TRPML1 in normal cells confers ML-SA vulnerability. In the melanoma mouse models, ML-SAs exhibit potent in vivo efficacy of suppressing tumor progression. Hence, targeting maladaptively upregulated lysosome machinery can selectively eradicate metastatic tumor cells in vitro and in vivo.
Collapse
Affiliation(s)
- Wanlu Du
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4104 Biological Sciences Building, 1105 North University Ave., Ann Arbor, MI 48109, USA.
| | - Mingxue Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4104 Biological Sciences Building, 1105 North University Ave., Ann Arbor, MI 48109, USA
| | - Meiqin Hu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4104 Biological Sciences Building, 1105 North University Ave., Ann Arbor, MI 48109, USA
| | - Prateeksunder Pinchi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4104 Biological Sciences Building, 1105 North University Ave., Ann Arbor, MI 48109, USA
| | - Wei Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4104 Biological Sciences Building, 1105 North University Ave., Ann Arbor, MI 48109, USA
| | - Michael Ryan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4104 Biological Sciences Building, 1105 North University Ave., Ann Arbor, MI 48109, USA
| | - Timothy Nold
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4104 Biological Sciences Building, 1105 North University Ave., Ann Arbor, MI 48109, USA
| | - Ahmed Bannaga
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4104 Biological Sciences Building, 1105 North University Ave., Ann Arbor, MI 48109, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4104 Biological Sciences Building, 1105 North University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Ge Y, Che X, Gao X, Zhao S, Su J. Combination of radiotherapy and targeted therapy for melanoma brain metastases: a systematic review. Melanoma Res 2021; 31:413-420. [PMID: 34406985 DOI: 10.1097/cmr.0000000000000761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Radiotherapy is a mainstay of efficient treatment of brain metastases from solid tumors. Immunotherapy has improved the survival of metastatic cancer patients across many tumor types. However, targeted therapy is a feasible alternative for patients unable to continue immunotherapy or with poor outcomes of immunotherapy. The combination of radiotherapy and targeted therapy for the treatment of brain metastases has a strong theoretical underpinning, but data on the efficacy and safety of this combination is still limited. A systematic search of PubMed, Embase, Web of Science and the Cochrane library database was conducted. Eleven studies were included for a total of 316 patients. Median OS was about 6.2-17.8 months from radiotherapy. Weighted survival and local control at 1 and 2 years were correlated (50.1 and 17.8%, 90.7 and 14.7% at 1 and 2 year, respectively). Radiotherapy given before or concurrently to targeted therapy provided the best effect on the outcome. For patients with brain metastases from cutaneous melanoma, the addition of concurrent targeted therapy to brain radiotherapy can increase survival and provide long-term control.
Collapse
Affiliation(s)
- Yi Ge
- Department of Dermatology, Xiangya Hospital, Central South University
- Hunan Engineering Research Center of Skin Health and Disease
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Xuanlin Che
- Department of Dermatology, Xiangya Hospital, Central South University
- Hunan Engineering Research Center of Skin Health and Disease
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Xin Gao
- Department of Dermatology, Xiangya Hospital, Central South University
- Hunan Engineering Research Center of Skin Health and Disease
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University
- Hunan Engineering Research Center of Skin Health and Disease
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University
- Hunan Engineering Research Center of Skin Health and Disease
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| |
Collapse
|
10
|
Toxicity of combined targeted therapy and concurrent radiotherapy in metastatic melanoma patients: a single-center retrospective analysis. Melanoma Res 2021; 30:552-561. [PMID: 32658050 PMCID: PMC7643789 DOI: 10.1097/cmr.0000000000000682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supplemental Digital Content is available in the text. The Eastern Cooperative Oncology Group consensus guidelines from 2016 recommend interruption of targeted therapy with BRAF- and MEK-inhibitors during radiotherapy with data being based mostly on BRAF monotherapy. The aim of this study is to provide data on the safety of concurrent radiotherapy and combination targeted therapy with BRAF- and MEK-inhibitors. A total of 32 patients with 51 sessions of radiotherapy from one center receiving concurrent radiotherapy and BRAF- and MEK- inhibitors were included. Radiotherapy-associated toxicities were retrospectively collected. Incidence was compared between three groups: (A) targeted therapy during radiotherapy with and, (B) without interruption, and (C) radiotherapy before the start of targeted therapy. Survival and local disease control were examined. Targeted therapy was interrupted during radiotherapy in 16, not interrupted in 14, and only started after radiotherapy in 21 sessions. Stereotactic radiotherapy was applied in 28 sessions, conventionally fractionated radiotherapy in 23. The brain was the most common site of irradiation (n = 36). Radiotherapy-associated toxicities occurred in 41.2% (n = 21) of sessions and did not differ significantly among the groups. Overall survival was 11.7 months and progression-free survival was 8.4 months. No increase in radiotherapy-associated toxicity was seen where combination targeted therapy was not interrupted during radiotherapy. Prospective clinical trials are warranted to support our findings.
Collapse
|
11
|
Fallet V, Matton L, Schernberg A, Canellas A, Cornelis FH, Cadranel J. Local ablative therapy in oncogenic-driven oligometastatic non-small cell lung cancer: present and ongoing strategies-a narrative review. Transl Lung Cancer Res 2021; 10:3457-3472. [PMID: 34430380 PMCID: PMC8350076 DOI: 10.21037/tlcr-20-1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/02/2021] [Indexed: 01/09/2023]
Abstract
Oligometastatic (OM) disease is defined by a low metastatic tumor spread. OM non-small cell lung cancer (NSCLC) treatment aims to improve the patient's prognosis and quality of life, in an attempt-to-cure objective. Oncogenic-driven metastatic NSCLC accounts for about 20-25% of NSCLCs, with an ever-increasing number of potentially druggable molecular alterations. Due to specific targeted therapy, the care and prognosis of mutated NSCLC is quite different from non-oncogenic-driven NSCLC. However, OM-NSCLC treatment guidelines do not specifically discuss oncogenic-driven OM-NSCLC patients. We conducted a narrative review regarding retrospective and prospective studies published from inception to May 2020 dealing with oncogenic-driven OM-NSCLC in order to: (I) describe the specific patterns of metastatic spread of oncogenic-driven NSCLC (i.e., bone and pleural tropism in EGFR mutated NSCLC and serous and brain metastases in ALK NSCLC); (II) review the low level of current evidence for local ablative therapy (LAT) strategies in patients with oncogenic-driven OM-NSCLC, focusing on the benefit/risk of tyrosine kinase inhibitors (TKI) and LATs combination and (III) present strategies to help to select the best candidate for an attempt-to-cure approach. Finally, the optimal strategy may be to introduce a targeted therapy, then treat all tumor sites with LAT, and finally continue TKI for unknown prolonged duration in an attempt to prolong progression free survival in most patients, improve overall survival for some patients, and potentially lead to a cancer cure for a few patients.
Collapse
Affiliation(s)
- Vincent Fallet
- Department of Pneumology and Thoracic Oncology, Assistance Publique-Hôpitaux de Paris, Hôpital Tenon and GRC 4, Theranoscan, Sorbonne Université, Paris, France
| | - Lise Matton
- Department of Pneumology and Thoracic Oncology, Assistance Publique-Hôpitaux de Paris, Hôpital Tenon and GRC 4, Theranoscan, Sorbonne Université, Paris, France
| | - Antoine Schernberg
- Department of Radiation Oncology, DMU Orphé, Assistance Publique-Hôpitaux de Paris, Hôpital Tenon, Sorbonne Université, Paris, France
| | - Anthony Canellas
- Department of Pneumology and Thoracic Oncology, Assistance Publique-Hôpitaux de Paris, Hôpital Tenon and GRC 4, Theranoscan, Sorbonne Université, Paris, France
| | - François H. Cornelis
- Department of Interventional Radiology and Oncology, Assistance Publique-Hôpitaux de Paris, Hôpital Tenon, Sorbonne Université, Paris, France
| | - Jacques Cadranel
- Department of Pneumology and Thoracic Oncology, Assistance Publique-Hôpitaux de Paris, Hôpital Tenon and GRC 4, Theranoscan, Sorbonne Université, Paris, France
| |
Collapse
|
12
|
Khan M, Zheng T, Zhao Z, Arooj S, Liao G. Efficacy of BRAF Inhibitors in Combination With Stereotactic Radiosurgery for the Treatment of Melanoma Brain Metastases: A Systematic Review and Meta-Analysis. Front Oncol 2021; 10:586029. [PMID: 33692938 PMCID: PMC7937920 DOI: 10.3389/fonc.2020.586029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background BRAF inhibitors have improved the outcome for patients with BRAF mutant metastatic melanoma and have shown intracranial responses in melanoma brain metastases. Stereotactic radiosurgery (SRS) is being used as a local treatment for melanoma brain metastasis (MBM) with better local control and survival. We searched for studies comparing the combination of two treatments with SRS alone to detect any clinical evidence of synergism. Materials and Methods PubMed, EMBASE, Medline, and Cochrane library were searched until May 2020 for studies with desired comparative outcomes. Outcomes of interest that were obtained for meta-analysis included survival as the primary, and local control as the secondary outcome. Results A total of eight studies involving 976 patients with MBM were selected. Survival was significantly improved for patients receiving BRAF inhibitor plus SRS in comparison to SRS alone as assessed from the time of SRS induction (SRS survival: hazard ratio [HR] 0.67 [0.58–0.79], p <0.00001), from the time of brain metastasis diagnosis (BM survival: HR 0.65 [0.54, 0.78], p < 0.00001), or from the time of primary diagnosis (PD survival: HR 0.74 [0.57–0.95], p = 0.02). Dual therapy was also associated with improved local control, indicating an additive effect of the two treatments (HR 0.53 [0.31–0.93], p=0.03). Intracranial hemorrhage was higher in patients receiving BRAF inhibitors plus SRS than in those receiving SRS alone (OR, 3.16 [1.43–6.96], p = 0.004). Conclusions BRAF inhibitors in conjunction with SRS as local treatment appear to be efficacious. Local brain control and survival improved in patients with MBM receiving dual therapy. Safety assessment would need to be elucidated further as the incidence of intracranial hemorrhage was increased.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.,Department of Oncology, First affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Zheng
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zhihong Zhao
- Department of Nephrology, Shenzhen People's Hospital, Second Clinical Medicine Centre, Jinan University, Shenzhen, China
| | - Sumbal Arooj
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.,Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Guixiang Liao
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
Jiang C, Kleber TJ, Switchenko JM, Khan MK. Single institutional outcomes of whole brain radiotherapy for metastatic melanoma brain metastases. Radiat Oncol 2021; 16:31. [PMID: 33557890 PMCID: PMC7871629 DOI: 10.1186/s13014-021-01754-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/28/2021] [Indexed: 12/04/2022] Open
Abstract
Background The management of melanoma with brain metastases (MBM) is increasingly complex, especially given recent improvements in targeted agents, immunotherapy, and radiotherapy. Whole brain radiation therapy (WBRT) is a longstanding radiotherapy technique for which reported patient outcomes and experiences are limited. We sought to report our institutional outcomes for MBM patients receiving WBRT and assess whether other clinical factors impact prognosis. Methods A retrospective review of a single institution database was performed. Patients diagnosed with MBM from 2000 to 2018 treated with WBRT, with or without other systemic treatments, were included. Post-WBRT brain MRI scans were assessed at timed intervals for radiographic response. Clinical and treatment variables associated with overall survival (OS), distant failure-free survival (DFFS), local failure-free survival (LFFS), and progression-free survival (PFS) were assessed. Data on radiation-induced side effects, including radionecrosis, hemorrhage, and memory deficits, was also captured. Results 63 patients with MBM were ultimately included in our study. 69% of patients had 5 or more brain metastases at the time of WBRT, and 68% had extracranial disease. The median dose of WBRT was 30 Gy over 10 fractions. Median follow-up was 4.0 months. Patients receiving WBRT had a median OS of 7.0 months, median PFS of 2.2 months, median DFFS of 6.1 months, and median LFFS of 4.9 months. Performance status correlated with OS on both univariate and multivariable analysis. BRAF inhibitor was the only systemic therapy to significantly impact OS on univariate analysis (HR 0.24, 95% CI 0.07–0.79, p = 0.019), and this effect extended to multivariable analysis as well. Post-WBRT intralesional hemorrhage decreased DFFS on both univariate and multivariable analysis. Of patients with post-treatment brain scans available, there was a 16% rate of radionecrosis, 32% rate of hemorrhage, and 19% rate of memory deficits. Conclusions Outcomes for MBM patients receiving WBRT indicate that WBRT remains an effective treatment strategy to control intracranial disease. Treatment-related toxicities such as intralesional hemorrhage, necrosis, or neurocognitive side effects are limited. With continued innovations in WBRT technique and systemic therapy development, MBM outcomes may continue to improve. Further trials should evaluate the role of WBRT in the modern context.
Collapse
Affiliation(s)
- Cecilia Jiang
- Emory University School of Medicine, Atlanta, GA, USA
| | - Troy J Kleber
- Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mohammad K Khan
- Winship Cancer Institute, 1365 Clifton Road NE, Atlanta, GA, 30345, USA. .,Department of Radiation Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Jiang C, Wallington DG, Anker CJ, Lawson DH, Yushak ML, Kudchadkar RR, Tarhini A, Khan MK. Changing Therapeutic Landscape for Melanoma With Multiple Brain Metastases. Neurosurgery 2020; 87:498-515. [PMID: 32315430 DOI: 10.1093/neuros/nyaa076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
Over 90 000 people are expected to be diagnosed with melanoma in the United States this year. The development of brain metastases is particularly difficult to manage. Over the past few years, melanoma patients with multiple unresectable brain metastases for which stereotactic surgery might also not be a viable option have fortunately experienced a dramatic expansion in available management options given improvements made to targeted agents, immunotherapy, and radiotherapy. Whole-brain radiation therapy (WBRT) is a long-standing radiation technique that has become increasingly sophisticated. In this review, we summarize retrospective and prospective studies on individual advances in targeted agents, immunotherapy, and WBRT, highlighting important variables such as overall survival, intracranial progression-free survival, control and response rates, and toxicities. We also discuss the recent integration of these therapies into a multimodality approach, which has shown promise in the clinical setting although toxicities have not been insignificant. Finally, we describe ongoing prospective trials relevant to melanoma with brain metastases, and we conclude with our own thoughts on the optimal approach for these patients.
Collapse
Affiliation(s)
- Cecilia Jiang
- Emory University School of Medicine, Atlanta, Georgia
| | - David G Wallington
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| | - Christopher J Anker
- Division of Radiation Oncology, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - David H Lawson
- Winship Cancer Institute, Atlanta, Georgia.,Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia
| | - Melinda L Yushak
- Winship Cancer Institute, Atlanta, Georgia.,Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia
| | - Ragini R Kudchadkar
- Winship Cancer Institute, Atlanta, Georgia.,Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia
| | - Ahmad Tarhini
- H. Lee Moffitt Cancer Center, University of South Florida, Tampa, Florida
| | - Mohammad K Khan
- Winship Cancer Institute, Atlanta, Georgia.,H. Lee Moffitt Cancer Center, University of South Florida, Tampa, Florida.,Department of Radiation Oncology, Emory University, Atlanta, Georgia
| |
Collapse
|
15
|
Soffietti R, Ahluwalia M, Lin N, Rudà R. Management of brain metastases according to molecular subtypes. Nat Rev Neurol 2020; 16:557-574. [PMID: 32873927 DOI: 10.1038/s41582-020-0391-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 12/25/2022]
Abstract
The incidence of brain metastases has markedly increased in the past 20 years owing to progress in the treatment of malignant solid tumours, earlier diagnosis by MRI and an ageing population. Although local therapies remain the mainstay of treatment for many patients with brain metastases, a growing number of systemic options are now available and/or are under active investigation. HER2-targeted therapies (lapatinib, neratinib, tucatinib and trastuzumab emtansine), alone or in combination, yield a number of intracranial responses in patients with HER2-positive breast cancer brain metastases. New inhibitors are being investigated in brain metastases from ER-positive or triple-negative breast cancer. Several generations of EGFR and ALK inhibitors have shown activity on brain metastases from EGFR and ALK mutant non-small-cell lung cancer. Immune-checkpoint inhibitors (ICIs) hold promise in patients with non-small-cell lung cancer without druggable mutations and in patients with triple-negative breast cancer. The survival of patients with brain metastases from melanoma has substantially improved after the advent of BRAF inhibitors and ICIs (ipilimumab, nivolumab and pembrolizumab). The combination of targeted agents or ICIs with stereotactic radiosurgery could further improve the response rates and survival but the risk of radiation necrosis should be monitored. Advanced neuroimaging and liquid biopsy will hopefully improve response evaluation.
Collapse
Affiliation(s)
- Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy.
| | - Manmeet Ahluwalia
- Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Center Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nancy Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| |
Collapse
|
16
|
Becco P, Gallo S, Poletto S, Frascione MPM, Crotto L, Zaccagna A, Paruzzo L, Caravelli D, Carnevale-Schianca F, Aglietta M. Melanoma Brain Metastases in the Era of Target Therapies: An Overview. Cancers (Basel) 2020; 12:cancers12061640. [PMID: 32575838 PMCID: PMC7352598 DOI: 10.3390/cancers12061640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Malignant melanoma is the third most common type of tumor that causes brain metastases. Patients with cerebral involvement have a dismal prognosis and their treatment is an unmet medical need. Brain involvement is a multistep process involving several signaling pathways such as Janus kinase/signal Transducer and Activator of Transcription (JAK/STAT), Phosphoinositide 3-kinase/Protein Kinase B (PI3K/AKT), Vascular Endothelial Growth Factor and Phosphatase and Tensin Homolog (PTEN). Recently therapy that targets the MAPK signaling (BRAF/MEK inhibitors) and immunotherapy (anti-CTLA4 and anti-PD1 agents) have changed the therapeutic approaches to stage IV melanoma. In contrast, there are no solid data about patients with brain metastases, who are usually excluded from clinical trials. Retrospective data showed that BRAF-inhibitors, alone or in combination with MEK-inhibitors have interesting clinical activity in this setting. Prospective data about the combinations of BRAF/MEK inhibitors have been recently published, showing an improved overall response rate. Short intracranial disease control is still a challenge. Several attempts have been made in order to improve it with combinations between local and systemic therapies. Immunotherapy approaches seem to retain promising activity in the treatment of melanoma brain metastasis as showed by the results of clinical trials investigating the combination of anti-CTL4 (Ipilimumab) and anti-PD1(Nivolumab). Studies about the combination or the sequential approach of target therapy and immunotherapy are ongoing, with immature results. Several clinical trials are ongoing trying to explore new approaches in order to overcome tumor resistance. At this moment the correct therapeutic choices for melanoma with intracranial involvement is still a challenge and new strategies are needed.
Collapse
Affiliation(s)
- Paolo Becco
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
| | - Susanna Gallo
- Ospedale Mauriziano Umberto I-Largo Turati 62, 10128 Torino, Italy
- Correspondence:
| | - Stefano Poletto
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
- Department of Oncology, University of Turin, 10124 Torino, Italy
| | - Mirko Pio Manlio Frascione
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
- Department of Oncology, University of Turin, 10124 Torino, Italy
| | - Luca Crotto
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
| | - Alessandro Zaccagna
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
| | - Luca Paruzzo
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
- Department of Oncology, University of Turin, 10124 Torino, Italy
| | - Daniela Caravelli
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
| | - Fabrizio Carnevale-Schianca
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
| | - Massimo Aglietta
- Istituto di Candiolo, FPO - IRCCS - Str. Prov.le 142, km 3,95, 10060 Candiolo, Italy; (P.B.); (S.P.); (M.P.M.F.); (L.C.); (A.Z.); (L.P.); (D.C.); (F.C.-S.); (M.A.)
- Department of Oncology, University of Turin, 10124 Torino, Italy
| |
Collapse
|
17
|
Mastorakos P, Xu Z, Yu J, Hess J, Qian J, Chatrath A, Taylor DG, Kondziolka D, Warnick R, Chiang V, Sheehan J. BRAF V600 Mutation and BRAF Kinase Inhibitors in Conjunction With Stereotactic Radiosurgery for Intracranial Melanoma Metastases: A Multicenter Retrospective Study. Neurosurgery 2020; 84:868-880. [PMID: 29846702 DOI: 10.1093/neuros/nyy203] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The BRAF mutation has been identified as a potent target for the treatment of metastatic melanoma and BRAF inhibitors (BRAFi) have demonstrated promising results against melanoma brain metastases (BM). OBJECTIVE To further investigate the effectiveness of this combined treatment regimen. METHODS In this multicenter retrospective cohort study, 198 patients with known BRAF mutation status and treated with stereotactic radiosurgery (SRS) between 2011 and 2015 were identified. Kaplan-Meier methodology and multivariate regression analysis was then used to compare survival based on each parameter. RESULTS The median survival after the diagnosis of BM in patients with BRAF mutation who received BRAFi was increased compared to survival in patients with wild-type BRAF (BRAF wt). In multivariate analysis, the BRAF mutation was an independent, positive prognostic factor with a hazard ratio of 0.59. BRAF mutated Patients who received BRAFi following SRS had improved survival compared to patients who received it before (P < .001) or concurrently (P = .007). PD-1 inhibitors improved survival, with more pronounced effect in patients not carrying the BRAF mutation. Among the patients who were treated with BRAFi, 10.4% developed intracerebral hematoma (ICH), in comparison to 3% of patients who were not treated with BRAFi (P = .03). CONCLUSION In the setting of widespread use of BRAFi, the presence of a BRAF mutation is an independent predictor of better prognosis in patients with melanoma BM that underwent SRS. The effect of BRAFi is optimal when treatment is initiated at least 1 wk following SRS. BRAFi may increase the frequency of asymptomatic ICH.
Collapse
Affiliation(s)
- Panagiotis Mastorakos
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia.,Department of Neurological Surgery, National Institutes of Health, Bethesda, Maryland
| | - Zhiyuan Xu
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - James Yu
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut
| | - Judith Hess
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Jack Qian
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut
| | - Ajay Chatrath
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - Davis G Taylor
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | | | - Ronald Warnick
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio
| | - Veronica Chiang
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia.,Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
18
|
Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, Caron AL, Praça FG, Kravicz M, Bentley MVLB. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020; 153:109-136. [PMID: 32113956 DOI: 10.1016/j.addr.2020.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Skin cancer is a high burden disease with a high impact on global health. Conventional therapies have several drawbacks; thus, the development of effective therapies is required. In this context, nanotechnology approaches are an attractive strategy for cancer therapy because they enable the efficient delivery of drugs and other bioactive molecules to target tissues with low toxic effects. In this review, nanotechnological tools for skin cancer will be summarized and discussed. First, pathology and conventional therapies will be presented, followed by the challenges of skin cancer therapy. Then, the main features of developing efficient nanosystems will be discussed, and next, the most commonly used nanoparticles (NPs) described in the literature for skin cancer therapy will be presented. Subsequently, the use of NPs to deliver chemotherapeutics, immune and vaccine molecules and nucleic acids will be reviewed and discussed as will the combination of physical methods and NPs. Finally, multifunctional delivery systems to codeliver anticancer therapeutic agents containing or not surface functionalization will be summarized.
Collapse
|
19
|
van Opijnen MP, Dirven L, Coremans IEM, Taphoorn MJB, Kapiteijn EHW. The impact of current treatment modalities on the outcomes of patients with melanoma brain metastases: A systematic review. Int J Cancer 2019; 146:1479-1489. [PMID: 31583684 PMCID: PMC7004107 DOI: 10.1002/ijc.32696] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Patients with melanoma brain metastases (MBM) still have a very poor prognosis. Several treatment modalities have been investigated in an attempt to improve the management of MBM. This review aimed to evaluate the impact of current treatments for MBM on patient‐ and tumor‐related outcomes, and to provide treatment recommendations for this patient population. A literature search in the databases PubMed, Embase, Web of Science and Cochrane was conducted up to January 8, 2019. Original articles published since 2010 describing patient‐ and tumor‐related outcomes of adult MBM patients treated with clearly defined systemic therapy were included. Information on basic trial demographics, treatment under investigation and outcomes (overall and progression‐free survival, local and distant control and toxicity) were extracted. We identified 96 eligible articles, comprising 95 studies. A large variety of treatment options for MBM were investigated, either used alone or as combined modality therapy. Combined modality therapy was investigated in 71% of the studies and resulted in increased survival and better distant/local control than monotherapy, especially with targeted therapy or immunotherapy. However, neurotoxic side‐effects also occurred more frequently. Timing appeared to be an important determinant, with the best results when radiotherapy was given before or during systemic therapy. Improved tumor control and prolonged survival can be achieved by combining radiotherapy with immunotherapy or targeted therapy. However, more randomized controlled trials or prospective studies are warranted to generate proper evidence that can be used to change the standard of care for patients with MBM.
Collapse
Affiliation(s)
- Mark P van Opijnen
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands.,Department of Radiation Oncology, Leiden University Medical Center, The Netherlands
| | - Ida E M Coremans
- Department of Radiation Oncology, Leiden University Medical Center, The Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Ellen H W Kapiteijn
- Leiden University Medical Center, Department of Clinical Oncology, Leiden, The Netherlands
| |
Collapse
|
20
|
|
21
|
Krayem M, Sabbah M, Najem A, Wouters A, Lardon F, Simon S, Sales F, Journe F, Awada A, Ghanem GE, Van Gestel D. The Benefit of Reactivating p53 under MAPK Inhibition on the Efficacy of Radiotherapy in Melanoma. Cancers (Basel) 2019; 11:E1093. [PMID: 31374895 PMCID: PMC6721382 DOI: 10.3390/cancers11081093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy (RT) in patients with melanoma historically showed suboptimal results, because the disease is often radioresistant due to various mechanisms such as scavenging free radicals by thiols, pigmentary machinery, or enhanced DNA repair. However, radiotherapy has been utilized as adjuvant therapy after the complete excision of primary melanoma and lymph nodes to reduce the rate of nodal recurrences in high-risk patients. The resistance of melanoma cells to radiotherapy may also be in relation with the constitutive activation of the MAPK pathway and/or with the inactivation of p53 observed in about 90% of melanomas. In this study, we aimed to assess the potential benefit of adding RT to BRAF-mutated melanoma cells under a combined p53 reactivation and MAPK inhibition in vitro and in a preclinical animal model. We found that the combination of BRAF inhibition (vemurafenib, which completely shuts down the MAPK pathway), together with p53 reactivation (PRIMA-1Met) significantly enhanced the radiosensitivity of BRAF-mutant melanoma cells. This was accompanied by an increase in both p53 expression and activity. Of note, we found that radiation alone markedly promoted both ERK and AKT phosphorylation, thus contributing to radioresistance. The combination of vemurafenib and PRIMA-1Met caused the inactivation of both MAPK kinase and PI3K/AKT pathways. Furthermore, when combined with radiotherapy, it was able to significantly enhance melanoma cell radiosensitivity. Interestingly, in nude mice bearing melanoma xenografts, the latter triple combination had not only a synergistic effect on tumor growth inhibition, but also a potent control on tumor regrowth in all animals after finishing the triple combination therapy. RT alone had only a weak effect. In conclusion, we provide a basis for a strategy that may overcome the radioresistance of BRAF-mutated melanoma cells to radiotherapy. Whether this will translate into a rational to use radiotherapy in the curative setting in BRAF-mutated melanoma patients deserves consideration.
Collapse
Affiliation(s)
- Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium.
- Department of Radiation Oncology, Institut Jules Bordet, Université libre de Bruxelles, 1000 Brussels, Belgium.
| | - Malak Sabbah
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
| | - Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Stephane Simon
- Department of Radiation Oncology, Institut Jules Bordet, Université libre de Bruxelles, 1000 Brussels, Belgium
| | - François Sales
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
- Department of Human Anatomy and Experimental Oncology, Université de Mons (UMons), Research Institute for Health Sciences and Technology, 7000 Mons, Belgium
| | - Ahmad Awada
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
- Department of Internal Medicine, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Ghanem E Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Université libre de Bruxelles, 1000 Brussels, Belgium
| |
Collapse
|
22
|
Tyran M, Carbuccia N, Garnier S, Guille A, Adelaïde J, Finetti P, Toulzian J, Viens P, Tallet A, Goncalves A, Metellus P, Birnbaum D, Chaffanet M, Bertucci F. A Comparison of DNA Mutation and Copy Number Profiles of Primary Breast Cancers and Paired Brain Metastases for Identifying Clinically Relevant Genetic Alterations in Brain Metastases. Cancers (Basel) 2019; 11:cancers11050665. [PMID: 31086113 PMCID: PMC6562582 DOI: 10.3390/cancers11050665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 12/15/2022] Open
Abstract
Improving the systemic treatment of brain metastases (BM) in primary breast cancer (PBC) is impaired by the lack of genomic characterization of BM. To estimate the concordance of DNA copy-number-alterations (CNAs), mutations, and actionable genetic alterations (AGAs) between paired samples, we performed whole-genome array-comparative-genomic-hybridization, and targeted-next-generation-sequencing on 14 clinical PBC–BM pairs. We found more CNAs, more mutations, and higher tumor mutational burden, and more AGAs in BM than in PBC; 92% of the pairs harbored at least one AGA in the BM not observed in the paired PBC. This concerned various therapeutic classes, including tyrosine-kinase-receptor-inhibitors, phosphatidylinositol 3-kinase/AKT/ mammalian Target of Rapamycin (PI3K/AKT/MTOR)-inhibitors, poly ADP ribose polymerase (PARP)-inhibitors, or cyclin-dependent kinase (CDK)-inhibitors. With regards to the PARP-inhibitors, the homologous recombination defect score was positive in 79% of BM, compared to 43% of PBC, discordant in 7 out of 14 pairs, and positive in the BM in 5 out of 14 cases. CDK-inhibitors were associated with the largest percentage of discordant AGA appearing in the BM. When considering the AGA with the highest clinical-evidence level, for each sample, 50% of the pairs harbored an AGA in the BM not detected or not retained from the analysis of the paired PBC. Thus, the profiling of BM provided a more reliable opportunity, than that of PBC, for diagnostic decision-making based on genomic analysis. Patients with BM deserve an investigation of several targeted therapies.
Collapse
Affiliation(s)
- Marguerite Tyran
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
- Département de Radiothérapie, Institut Paoli-Calmettes, 13009 Marseille, France.
| | - Nadine Carbuccia
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Séverine Garnier
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Arnaud Guille
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - José Adelaïde
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Pascal Finetti
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Julien Toulzian
- Département d'Anatomopathologie, Institut Paoli-Calmettes, 13009 Marseille, France.
| | - Patrice Viens
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13005 Marseille, France.
| | - Agnès Tallet
- Département de Radiothérapie, Institut Paoli-Calmettes, 13009 Marseille, France.
| | - Anthony Goncalves
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13005 Marseille, France.
| | - Philippe Metellus
- Département de Neurochirurgie et de Neuro-oncologie, Hôpital Privé Clairval, Ramsay-Générale de Santé and Institut de Neurophysiopathologie Equipe 10, UMR0751, CNRS, 13009 Marseille, France.
| | - Daniel Birnbaum
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Max Chaffanet
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - François Bertucci
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13005 Marseille, France.
| |
Collapse
|
23
|
Couty E, Vallard A, Sotton S, Ouni S, Garcia MA, Espenel S, Rancoule C, Ben Mrad M, Biron AC, Perrot JL, Langrand-Escure J, Magné N. Safety assessment of anticancer drugs in association with radiotherapy in metastatic malignant melanoma: a real-life report : Radiation/systemic drug combo in metastatic melanoma. Cancer Chemother Pharmacol 2019; 83:881-892. [PMID: 30806760 DOI: 10.1007/s00280-019-03806-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/22/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE To assess the safety of the association of radiotherapy (RT) and systemic treatments for patients with metastatic malignant melanoma (mMM). METHODS A retrospective analysis included consecutive patients treated with palliative RT, and at least one line of systemic therapy for mMM between 2001 and 2016. Treatments were defined as sequential or concomitant when RT and the systemic drug were administered, respectively, at more or less than five half-lives from each other. RESULTS 92 patients were included. They had 110 palliative RT treatments. RT was delivered with a "conventional" chemotherapy (mainly fotemustine and/or dacarbazine) and a "modern" systemic therapy (BRAF inhibitors, association of BRAF and MEK inhibitors, immunotherapy), respectively, in 88 (80%) and 22 (20%) cases. Systemic treatments and RT were mainly concurrently performed (n = 61, 55.5%). Regarding acute grade ≥ 3 toxicity, no difference was reported between sequential and concomitant groups either in the whole cohort (p = 1) or in the subgroup of patients receiving "modern" systemic therapies (p = 1). Acute and late grade ≥ 3 toxicities only occurred with vemurafenib. BRAF inhibitors and RT produced more severe infield adverse events than other associations (p = 0.001) with two deaths. CONCLUSION In our series, compared to sequential administration, concomitant association of systemic anticancer drugs and palliative RT did not increase toxicity in mMM patients. BRAF inhibitors and RT produced severe infield toxicities. Prospective studies are needed to better characterize the toxicity of each association.
Collapse
Affiliation(s)
- Emmanuelle Couty
- Dermatology Department, University Hospital Nord Saint Etienne, 42270, St Priest en Jarez, France
| | - Alexis Vallard
- Institut de Cancérologie Lucien Neuwirth, 108 bis Avenue Albert Raimond, BP 60008, 42271, St Priest en Jarez cedex, France
| | - Sandrine Sotton
- Institut de Cancérologie Lucien Neuwirth, 108 bis Avenue Albert Raimond, BP 60008, 42271, St Priest en Jarez cedex, France
| | - Sarra Ouni
- Institut de Cancérologie Lucien Neuwirth, 108 bis Avenue Albert Raimond, BP 60008, 42271, St Priest en Jarez cedex, France
| | - Max-Adrien Garcia
- Public Health Department, Lucien Neuwirth Cancer Institute, 42270, St Priest en Jarez, France
| | - Sophie Espenel
- Institut de Cancérologie Lucien Neuwirth, 108 bis Avenue Albert Raimond, BP 60008, 42271, St Priest en Jarez cedex, France
- Cellular and Molecular Radiobiology Laboratory, CNRS UMR 5822, IPNL, 69622, Villeurbanne, France
| | - Chloe Rancoule
- Institut de Cancérologie Lucien Neuwirth, 108 bis Avenue Albert Raimond, BP 60008, 42271, St Priest en Jarez cedex, France
- Cellular and Molecular Radiobiology Laboratory, CNRS UMR 5822, IPNL, 69622, Villeurbanne, France
| | - Majed Ben Mrad
- Institut de Cancérologie Lucien Neuwirth, 108 bis Avenue Albert Raimond, BP 60008, 42271, St Priest en Jarez cedex, France
| | - Anne-Catherine Biron
- Dermatology Department, University Hospital Nord Saint Etienne, 42270, St Priest en Jarez, France
| | - Jean-Luc Perrot
- Dermatology Department, University Hospital Nord Saint Etienne, 42270, St Priest en Jarez, France
| | - Julien Langrand-Escure
- Institut de Cancérologie Lucien Neuwirth, 108 bis Avenue Albert Raimond, BP 60008, 42271, St Priest en Jarez cedex, France
| | - Nicolas Magné
- Institut de Cancérologie Lucien Neuwirth, 108 bis Avenue Albert Raimond, BP 60008, 42271, St Priest en Jarez cedex, France.
- Cellular and Molecular Radiobiology Laboratory, CNRS UMR 5822, IPNL, 69622, Villeurbanne, France.
| |
Collapse
|
24
|
Clinical and radiological response of BRAF inhibition and MEK inhibition in patients with brain metastases from BRAF-mutated melanoma. Melanoma Res 2019; 28:126-133. [PMID: 29356790 DOI: 10.1097/cmr.0000000000000429] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Patients with brain metastases (BM) from melanoma have an overall survival (OS) of 2-6 months after whole-brain radiotherapy. Targeted therapy (TT) is an effective treatment for BRAF-mutated metastatic melanoma. Moreover, recent studies indicate intracranial responses of TT in patients with BM. We analyzed 146 patients with BM from BRAF-mutated melanoma treated with vemurafenib, dabrafenib, or dabrafenib+trametinib between 2010 and 2016. We determined clinical and radiological response, progression-free survival (PFS), and OS. Median OS of patients treated with dabrafenib+trametinib was 11.2 months [n=30; 95% confidence interval (CI): 6.8-15.7], 8.8 months for dabrafenib alone (n=31; 95% CI: 3.9-13.7), and 5.7 months for vemurafenib (n=85; 95% CI: 4.6-6.8). A significantly longer OS was observed in the dabrafenib+trametinib group than in the vemurafenib group (hazard ratio for death, 0.52; 95% CI: 0.30-0.89; P=0.02). Median intracranial PFS of all patients was 4.1 months. Median intracranial PFS for patients treated with dabrafenib+trametinib was 5.8 months (95% CI: 3.2-8.5), 5.7 months (95% CI: 3.0-8.4) for dabrafenib, and 3.6 months (95% CI: 3.5-3.8) for vemurafenib (P=0.54). A total of 63 (43%) patients had symptomatic BM. Intracranial disease control rate at 8 weeks in these patients was 65 versus 70% extracranially. Neurological symptoms improved in 46% of patients with symptomatic BM, whereas in 21%, they remained stable. Median OS in patients with BM from BRAF-mutated melanoma treated with dabrafenib+trametinib was significantly longer than for vemurafenib. Improvement of neurological symptoms was seen in almost half of the patients with symptomatic BM treated with TT.
Collapse
|
25
|
Kakadia S, Yarlagadda N, Awad R, Kundranda M, Niu J, Naraev B, Mina L, Dragovich T, Gimbel M, Mahmoud F. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther 2018; 11:7095-7107. [PMID: 30410366 PMCID: PMC6200076 DOI: 10.2147/ott.s182721] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Approximately 50% of melanomas harbor an activating BRAF mutation. Combined BRAF and MEK inhibitors such as dabrafenib and trametinib, vemurafenib and cobimetinib, and encorafenib and binimetinib are US Food and Drug Administration (FDA)-approved to treat patients with BRAFV600-mutated advanced melanoma. Both genetic and epigenetic alterations play a major role in resistance to BRAF inhibitors by reactivation of the MAPK and/or the PI3K–Akt pathways. The role of BRAF inhibitors in modulating the immunomicroenvironment and perhaps enhancing the efficacy of checkpoint inhibitors is gaining interest. This article provides a comprehensive review of mechanisms of resistance to BRAF and MEK inhibitors in melanoma and summarizes landmark trials that led to the FDA approval of BRAF and MEK inhibitors in metastatic melanoma.
Collapse
Affiliation(s)
- Sunilkumar Kakadia
- Department of Internal Medicine, Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Naveen Yarlagadda
- Department of Internal Medicine, Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ramez Awad
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Madappa Kundranda
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Jiaxin Niu
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Boris Naraev
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Lida Mina
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Tomislav Dragovich
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Mark Gimbel
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Fade Mahmoud
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| |
Collapse
|
26
|
Barriers to Effective Drug Treatment for Brain Metastases: A Multifactorial Problem in the Delivery of Precision Medicine. Pharm Res 2018; 35:177. [PMID: 30003344 DOI: 10.1007/s11095-018-2455-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022]
Abstract
The treatment of metastatic lesions in the brain represents a serious unmet medical need in the field of neuro-oncology. Even though many effective compounds have demonstrated success in treating peripheral (non-CNS) tumors with targeted agents, one aspect of this lack of success in the brain may be related to poor delivery of otherwise effective compounds. Many factors can influence the brain delivery of these agents, but one key barrier is a heterogeneously "leaky" BBB that expresses efflux transporters that limit the BBB permeability for many targeted agents. Future success in therapeutics for brain metastases must take into account the adequate delivery of "active, free drug" to the target, and may include combinations of targeted drugs that are appropriate to address each individual patient's tumor type. This review discusses some issues that are pertinent to precision medicine for brain metastases, using specific examples of tumor types that have a high incidence of brain metastases.
Collapse
|
27
|
Franchino F, Rudà R, Soffietti R. Mechanisms and Therapy for Cancer Metastasis to the Brain. Front Oncol 2018; 8:161. [PMID: 29881714 PMCID: PMC5976742 DOI: 10.3389/fonc.2018.00161] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Advances in chemotherapy and targeted therapies have improved survival in cancer patients with an increase of the incidence of newly diagnosed brain metastases (BMs). Intracranial metastases are symptomatic in 60–70% of patients. Magnetic resonance imaging (MRI) with gadolinium is more sensitive than computed tomography and advanced neuroimaging techniques have been increasingly used in the detection, treatment planning, and follow-up of BM. Apart from the morphological analysis, the most effective tool for characterizing BM is immunohistochemistry. Molecular alterations not always reflect those of the primary tumor. More sophisticated methods of tumor analysis detecting circulating biomarkers in fluids (liquid biopsy), including circulating DNA, circulating tumor cells, and extracellular vesicles, containing tumor DNA and macromolecules (microRNA), have shown promise regarding tumor treatment response and progression. The choice of therapeutic approaches is guided by prognostic scores (Recursive Partitioning Analysis and diagnostic-specific Graded Prognostic Assessment-DS-GPA). The survival benefit of surgical resection seems limited to the subgroup of patients with controlled systemic disease and good performance status. Leptomeningeal disease (LMD) can be a complication, especially in posterior fossa metastases undergoing a “piecemeal” resection. Radiosurgery of the resection cavity may offer comparable survival and local control as postoperative whole-brain radiotherapy (WBRT). WBRT alone is now the treatment of choice only for patients with single or multiple BMs not amenable to surgery or radiosurgery, or with poor prognostic factors. To reduce the neurocognitive sequelae of WBRT intensity modulated radiotherapy with hippocampal sparing, and pharmacological approaches (memantine and donepezil) have been investigated. In the last decade, a multitude of molecular abnormalities have been discovered. Approximately 33% of patients with non-small cell lung cancer (NSCLC) tumors and epidermal growth factor receptor mutations develop BMs, which are targetable with different generations of tyrosine kinase inhibitors (TKIs: gefitinib, erlotinib, afatinib, icotinib, and osimertinib). Other “druggable” alterations seen in up to 5% of NSCLC patients are the rearrangements of the “anaplastic lymphoma kinase” gene TKI (crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib). In human epidermal growth factor receptor 2-positive, breast cancer targeted therapies have been widely used (trastuzumab, trastuzumab-emtansine, lapatinib-capecitabine, and neratinib). Novel targeted and immunotherapeutic agents have also revolutionized the systemic management of melanoma (ipilimumab, nivolumab, pembrolizumab, and BRAF inhibitors dabrafenib and vemurafenib).
Collapse
Affiliation(s)
- Federica Franchino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| |
Collapse
|
28
|
Tallet AV, Dhermain F, Le Rhun E, Noël G, Kirova YM. Combined irradiation and targeted therapy or immune checkpoint blockade in brain metastases: toxicities and efficacy. Ann Oncol 2018; 28:2962-2976. [PMID: 29045524 DOI: 10.1093/annonc/mdx408] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Targeted therapies (TT) and immune checkpoint inhibitors (ICI) are currently modifying the landscape of metastatic cancer management and are increasingly used over the course of many cancers treatment. They allow long-term survival with controlled extra-cerebral disease, contributing to the increasing incidence of brain metastases (BMs). Radiation therapy remains the cornerstone of BMs treatment (either whole brain irradiation or stereotactic radiosurgery), and investigating the safety profile of radiation therapy combined with TT or ICI is of high interest. Discontinuing an efficient systemic therapy, when BMs irradiation is considered, might allow systemic disease progression and, on the other hand, the mechanisms of action of these two therapeutic modalities might lead to unexpected toxicities and/or greater efficacy, when combined. Patients and methods We carried out a systematic literature review focusing on the safety profile and the efficacy of BMs radiation therapy combined with targeted agents or ICI, emphasizing on the role (if any) of the sequence of combination scheme (drug given before, during, and/or after radiation therapy). Results Whereas no relevant toxicity has been noticed with most of these drugs, the concomitant use of some other drugs with brain irradiation requires caution. Conclusion Most of available studies appear to advocate for TT or ICI combination with radiation therapy, without altering the clinical safety profiles, allowing the maintenance of systemic treatments when stereotactic radiation therapy is considered. Cognitive functions, health-related quality of life and radiation necrosis risk remain to be assessed. The results of prospective studies are awaited in order to complete and validate the above discussed retrospective data.
Collapse
Affiliation(s)
- A V Tallet
- Department of Radiation Oncology, Institut Paoli Calmettes, Marseille
| | - F Dhermain
- Department of Radiation Oncology, Gustave Roussy University Hospital, Cancer Campus Grand Paris, Villejuif
| | - E Le Rhun
- University U-1192, INSERM U-1192, Department of General and Stereotactic Neurosurgery, University Hospital, Department of Medical Oncology, Oscar Lambret center, Lille
| | - G Noël
- Department of Radiation Oncology, Centre Paul Strauss, Strasbourg
| | - Y M Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
| |
Collapse
|
29
|
Rose AM, Radia UK, Luo R, Kalirai H, Jayasena CN, Luthert P, Coupland SE, Rose GE. Multiple primary malignancies and prolonged survival in a patient with widespread metastatic cutaneous melanoma. Melanoma Res 2018; 28:163-166. [PMID: 29346178 PMCID: PMC5832011 DOI: 10.1097/cmr.0000000000000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Anna M. Rose
- UCL Institute of Ophthalmology, University College
- Department of Medicine, Imperial College
| | | | - Rong Luo
- Department of Medicine, Imperial College
| | - Helen Kalirai
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | | | - Sarah E. Coupland
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Geoffrey E. Rose
- UCL Institute of Ophthalmology, University College
- Orbital Service, Moorfields Eye Hospital, London
| |
Collapse
|
30
|
Nguyen NC, Yee MK, Tuchayi AM, Kirkwood JM, Tawbi H, Mountz JM. Targeted Therapy and Immunotherapy Response Assessment with F-18 Fluorothymidine Positron-Emission Tomography/Magnetic Resonance Imaging in Melanoma Brain Metastasis: A Pilot Study. Front Oncol 2018; 8:18. [PMID: 29520339 PMCID: PMC5827168 DOI: 10.3389/fonc.2018.00018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION This pilot study aimed at exploring the utility of the proliferation tracer F-18 fluorothymidine (FLT) and positron-emission tomography (PET)/magnetic resonance imaging (MRI) (FLT-PET/MRI) for early treatment monitoring in patients with melanoma brain metastasis (MBM) who undergo targeted therapy or immunotherapy. MATERIAL AND METHODS Patients with newly diagnosed MBM underwent baseline and follow-up FLT-PET/MRI scans at 3-4 weeks of targeted therapy or immunotherapy. Up to six measurable brain lesions ≥1.0 cm per subject, as identified on T1-weighted post-gadolinium images, were included for quantitative analyses. The maximum SUV of each lesion was divided by the mean SUV of the pons to obtain the SUV ratio (SUVR). RESULTS Five enrolled subjects underwent the baseline FLT-PET/MRI study in which the MBM showed a median size of 1.7 cm (range 1.0-2.9) and increased metabolic activity with SUVR of 9.9 (range 3.2-18.4). However, only two subjects (cases #1 and #2) returned for a follow-up scan. At baseline, a total of 22 lesions were analyzed in all five subjects, which showed a median size of 1.7 cm (range 1.0-2.9) and median SUVR of 9.9 (range 3.2-18.4). At follow-up, case #1 was a 55-year-old man who received targeted BRAF inhibitor and MEK inhibitor therapy with dabrafenib and trametinib. Fused PET/MRI data of six measured lesions demonstrated a significant reduction in MBM proliferative activity (median -68%; range -38 to -77%) and size (median -23%; range -4 to -55%) at three weeks of therapy. Nevertheless, the subject eventually progressed and died 13 months after therapy initiation. Case #2 was a 36-year-old man who received immunotherapy with nivolumab and ipilimumab. The five measured MBM lesions showed a mixed response at both proliferative and morphologic imaging at 1-month follow-up. Some lesions demonstrated interval decrease while others interval increase in proliferative activity with a median -44% (range -77 to +68%). On MRI, the size change was +7% (range -64 to +50%). The therapy was switched to dabrafenib and trametinib, which led to a partial response. The patient is still alive 16 months following therapy initiation. CONCLUSION The five cases presented show the potential benefit of hybrid FLT-PET/MRI for the diagnosis of MBM and treatment monitoring of targeted therapy and immunotherapy. However, further studies are required to assess their complementary role in distinguishing true progression from pseudoprogression.
Collapse
Affiliation(s)
- Nghi C. Nguyen
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Melissa K. Yee
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Abuzar M. Tuchayi
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - John M. Kirkwood
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Hussein Tawbi
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James M. Mountz
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
31
|
BRAF inhibitor and stereotactic radiosurgery is associated with an increased risk of radiation necrosis. Melanoma Res 2018; 26:387-94. [PMID: 27223498 DOI: 10.1097/cmr.0000000000000268] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We retrospectively compared the outcomes and toxicities of melanoma brain metastases (MBM) patients treated with BRAF inhibitors (BRAFi) and stereotactic radiosurgery (SRS) with SRS alone. We identified 87 patients with 157 MBM treated with SRS alone from 2005 to 2013. Of these, 15 (17.2%) patients with 32 MBM (21.4%) received BRAFi therapy: three (20.0%) before SRS, two (13.3%) concurrent, and 10 (66.7%) after SRS. Overall survival (OS) was compared between cohorts using the product limit method. Intracranial outcomes were compared using cumulative incidence with competing risk for death. Baseline patient characteristics were similar between groups, except for the SRS cohort, which had higher rates of chemotherapy and more recent year of diagnosis. Radiation characteristics, including dose per fraction, total dose, gross tumor volume size, and prescription isodose, were also similar between cohorts. One-year outcomes - OS (64.3 vs. 40.4%, P=0.205), local failure (3.3 vs. 9.6%, P=0.423), and distant intracranial failure (63.9 vs. 65.1%, P=0.450) were not statistically different between the SRS+BRAFi and SRS-alone groups, respectively. The SRS+BRAFi group showed higher rates of radiographic radiation necrosis (RN) (22.2 vs. 11.0% at 1 year, P<0.001) and symptomatic radiation necrosis (SRN) (28.2 vs. 11.1% at 1 year, P<0.001). Multivariable analysis showed that BRAFi predicted an increased risk of both radiographic and SRN. SRS and BRAFi predicted for an increased risk of radiographic and SRN compared with SRS alone. Approaches to mitigate RN for patients receiving SRS and BRAFi should be considered until the clinical trial (http//:www.clinicaltrials.gov: NCT01721603) evaluating this treatment regimen is completed.
Collapse
|
32
|
Passiglia F, Caglevic C, Giovannetti E, Pinto JA, Manca P, Taverna S, Listì A, Gil-Bazo I, Raez LE, Russo A, Rolfo C. Primary and metastatic brain cancer genomics and emerging biomarkers for immunomodulatory cancer treatment. Semin Cancer Biol 2018; 52:259-268. [PMID: 29391205 DOI: 10.1016/j.semcancer.2018.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Abstract
Recent studies with immunomodulatory agents targeting both cytotoxic T-lymphocyte protein 4 (CTLA4) and programmed cell death 1 (PD1)/programmed cell death ligand 1 (PDL1) have shown to be very effective in several cancers revealing an unexpected great activity in patients with both primary and metastatic brain tumors. Combining anti-CTLA4 and anti-PD1 agents as upfront systemic therapy has revealed to further increase the clinical benefit observed with single agent, even at cost of higher toxicity. Since the brain is an immunological specialized area it's crucial to establish the specific composition of the brain tumors' microenvironment in order to predict the potential activity of immunomodulatory agents. This review briefly summarizes the basis of the brain immunogenicity, providing the most updated clinical evidences in terms of immune-checkpoint inhibitors efficacy and toxicity in both primary and metastatic brain tumors with the final aim of defining potential biomarkers for immunomodulatory cancer treatment.
Collapse
Affiliation(s)
- F Passiglia
- Department of Surgical,Oncological and Stomatological Disciplines, University of Palermo, Italy
| | - C Caglevic
- Unit of Investigational Cancer Drugs, Instituto Oncologico Fundación Arturo López Pérez, Santiago, Chile
| | - E Giovannetti
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - J A Pinto
- Unit of Basic and Translational Research, Oncosalud-AUNA, Lima, Peru
| | - P Manca
- Medical Oncology Department, Campus Biomedico, University of Rome, Rome, Italy
| | - S Taverna
- Department of Surgical,Oncological and Stomatological Disciplines, University of Palermo, Italy
| | - A Listì
- Department of Surgical,Oncological and Stomatological Disciplines, University of Palermo, Italy
| | - I Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - L E Raez
- Thoracic Oncology Program, Memorial Cancer Institute, Memorial Health Care System, Florida International University, Miami, FL, USA
| | - A Russo
- Department of Surgical,Oncological and Stomatological Disciplines, University of Palermo, Italy
| | - C Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium.
| |
Collapse
|
33
|
Sloot S, Chen YA, Zhao X, Weber J, Benedict JJ, Mulé JJ, Smalley KS, Weber JS, Zager JS, Forsyth P, Sondak VK, Gibney GT. Improved survival of patients with melanoma brain metastases in the era of targeted BRAF and immune checkpoint therapies. Cancer 2018; 124:297-305. [PMID: 29023643 PMCID: PMC7771556 DOI: 10.1002/cncr.30946] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND The development of brain metastases is common for systemic treatment failure in patients with melanoma and has been associated with a poor prognosis. Recent advances with BRAF and immune checkpoint therapies have led to improved patient survival. Herein, the authors evaluated the risk of de novo brain metastases and survival among patients with melanoma brain metastases (MBM) since the introduction of more effective therapies. METHODS Patients with unresectable AJCC stage III/IV melanoma who received first-line systemic therapy at Moffitt Cancer Center between 2000 and 2012 were identified. Data were collected regarding patient characteristics, stage of disease, systemic therapies, MBM status/management, and overall survival (OS). The risk of de novo MBM was calculated using a generalized estimating equation model and survival comparisons were performed using Kaplan-Meier and Cox proportional analyses. RESULTS A total of 610 patients were included, 243 of whom were diagnosed with MBM (40%). Patients with MBM were younger, with a lower frequency of regional metastasis. No significant differences were noted with regard to sex, BRAF status, or therapeutic class. The risk of de novo MBM was found to be similar among patients treated with chemotherapy, biochemotherapy, BRAF-targeted therapy, ipilimumab, and anti-programmed cell death protein 1/programmed death-ligand 1 regimens. The median OS of patients with MBM was significantly shorter when determined from the time of first regional/distant metastasis but not when determined from the time of first systemic therapy. The median OS from the time of MBM diagnosis was 7.5 months, 8.5 months, and 22.7 months, respectively, for patients diagnosed from 2000 to 2008, 2009 to 2010, and 2011 to the time of last follow-up (P = .002). CONCLUSIONS Brain metastases remain a common source of systemic treatment failure. The OS for patients with MBM has improved significantly. Further research into MBM prevention is needed. Cancer 2018;124:297-305. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Sarah Sloot
- Department of General Surgery, Groningen University Medical Center, Groningen, The Netherlands
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Yian A. Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Xiuhua Zhao
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Jamie Weber
- University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Jacob J. Benedict
- University of South Florida Morsani College of Medicine, Tampa, Florida
| | - James J. Mulé
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | - Keiran S. Smalley
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, Florida
| | - Jeffrey S. Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Jonathan S. Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
- Departments of Oncologic Sciences and Surgery, University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Peter Forsyth
- Department of Neurooncology, Moffitt Cancer Center, Tampa, Florida
- Department of Neurooncology, Southern Alberta Cancer Research Institute, Calgary, Canada
| | - Vernon K. Sondak
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
- Departments of Oncologic Sciences and Surgery, University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Geoffrey T. Gibney
- Georgetown Lombardi Comprehensive Cancer Center, Medstar Georgetown University Hospital, Washington, District of Columbia
| |
Collapse
|
34
|
Nolan C, Deangelis LM. Overview of metastatic disease of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2018; 149:3-23. [PMID: 29307359 DOI: 10.1016/b978-0-12-811161-1.00001-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In 2016, the American Society of Clinical Oncology reported that 1.7 million Americans were diagnosed with cancer; this number will rise to 2.3 million in the United States and 22 million worldwide in 2030. This rising need is being met by an explosion of new cancer therapies, including: immune checkpoint inhibitors, T-cell therapies, tumor vaccines, antiangiogenic therapies, and various targeted therapies. This armamentarium of targeted therapies has led to better systemic control of disease and longer patient overall survival (OS). The incidence of metastatic disease to the central nervous system (CNS) is rising as patients are living longer with these more effective systemic therapies. Prolonged OS allows increased time to develop CNS metastases. The CNS is also a sanctuary for metastatic tumor cells that are protected from full exposure to therapeutic concentrations of most anticancer agents by the blood-brain barrier, the tumor microenvironment, and immune system. In addition, CNS metastases often develop late in the course of the disease, so patients are frequently heavily pretreated, resulting in drug resistance. Although genomic profiling has led to more effective therapies for systemic disease, the same therapy may not be effective in treating CNS disease, not only due to failure of blood-brain barrier penetration, but from discordance between the molecular profile in systemic and CNS tumor.
Collapse
Affiliation(s)
- Craig Nolan
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Lisa M Deangelis
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
35
|
Abstract
Stereotactic radiosurgery has revolutionized the management of brain metastases. It delivers focused, highly conformal, ionizing radiation to a tumor delineated using high-resolution imaging, with low toxicity to adjacent brain structures. Randomized controlled and prospective trials have demonstrated a survival advantage and high local control rates after stereotactic radiosurgery for metastatic disease to the central nervous system, including for up to 10 brain metastases. Its minimal-access nature makes it an attractive alternative to surgical resection. Furthermore, in addition to chemotherapy, newer targeted therapies and immunotherapies with improved side-effect profiles allow for the concurrent delivery of systemic therapy with radiosurgery, with possible additive or synergistic effects, expediting the treatment of both extracranial and intracranial disease. The modern management of brain metastasis patients should include consideration of routine staging and surveillance magnetic resonance imaging scans in patients with higher-stage cancer to detect intracranial metastases earlier and treat promptly with radiosurgery in order to prevent the development of neurologic symptoms and the need for surgical resection.
Collapse
Affiliation(s)
- Amparo Wolf
- Department of Neurosurgery, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, NY, United States
| | - Douglas Kondziolka
- Department of Neurosurgery, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, NY, United States.
| |
Collapse
|
36
|
Di Lorenzo R, Ahluwalia MS. Targeted therapy of brain metastases: latest evidence and clinical implications. Ther Adv Med Oncol 2017; 9:781-796. [PMID: 29449898 PMCID: PMC5808839 DOI: 10.1177/1758834017736252] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022] Open
Abstract
Brain metastases (BM) occur in 20-40% of patients with cancer and 60-75% of patients with BM become symptomatic. Due to an aging population and advances in the treatment of primary cancers, patients are living longer and are more likely to experience complications from BM. The diagnosis of BM drastically worsens long-term survival rates, with multiple metastases being a poor prognostic factor. Until recently, the mainstay of treatment consisted of stereotactic radiosurgery (SRS), surgical resection, whole brain radiation therapy (WBRT), or a combination of these modalities. Systemic chemotherapy has been felt largely ineffective in the treatment of BM due to the presence of the blood-brain barrier (BBB), which includes efflux pumps on brain capillaries. Over the past decade however, researchers have identified therapeutic agents that are able to cross the BBB. These findings could make a multimodality treatment approach possible, consisting of surgery, radiation, immunotherapy, and targeted therapy, which could lead to better disease control in this patient population and prolong survival. In this review, we discuss present evidence on available targeted therapies and their role in the treatment of BM from primary tumors with the highest prevalence of central nervous system (CNS) involvement, specifically non-small cell lung cancer (NSCLC), breast cancer melanoma, and renal cell carcinoma.
Collapse
Affiliation(s)
- Rodica Di Lorenzo
- Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Manmeet S Ahluwalia
- Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, 9500 Euclid Avenue, CA-51, Cleveland, OH 44195, USA
| |
Collapse
|
37
|
Ipilimumab and Stereotactic Radiosurgery Versus Stereotactic Radiosurgery Alone for Newly Diagnosed Melanoma Brain Metastases. Am J Clin Oncol 2017; 40:444-450. [PMID: 26017484 DOI: 10.1097/coc.0000000000000199] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND We compared the safety and efficacy of ipilimumab and stereotactic radiosurgery (SRS) to SRS alone for newly diagnosed melanoma brain metastases (MBM). MATERIALS AND METHODS We reviewed records of newly diagnosed MBM patients treated with SRS from 2009 to 2013. The primary endpoint of overall survival (OS), and secondary endpoints of local control, distant intracranial failure, and radiation necrosis were compared using Kaplan-Meier method. Univariate and multivariate analysis were performed using the Cox proportional hazards method. RESULTS Fifty-four consecutive MBM patients were identified, with 20 (37.0%) receiving ipilimumab within 4 months of SRS. Ipilimumab-treated and non-ipilimumab-treated patients had similar baseline characteristics. No difference in symptomatic radiation necrosis or hemorrhage was identified between cohorts. Compared with patients in the nonipilimumab group, 1 year local control (71.4% vs. 92.3%, P=0.40) and intracranial control (12.7% vs. 29.1%, P=0.59) were also statistically similar. The ipilimumab cohort also had no difference in 1-year OS (37.1% vs. 38.5%, P=0.84). Patients administered ipilimumab within 14 days of SRS had higher 1-year (42.9%) and 2-year OS (42.9%) relative to ipilimumab delivered >14 days (33.8%, 16.9%) and SRS alone (38.5%, 25.7%) but these difference were not statistically significant. Univariate analysis and multivariate analysis both confirmed single brain metastasis, controlled primary, and active systemic disease as predictors for OS. CONCLUSIONS Use of ipilimumab within 4 months of SRS seems to be safe, with no increase in radiation necrosis or hemorrhage; however, our retrospective institutional experience with this treatment regimen was not associated with improved outcomes.
Collapse
|
38
|
Bohn JP, Pall G, Stockhammer G, Steurer M. Targeted Therapies for the Treatment of Brain Metastases in Solid Tumors. Target Oncol 2017; 11:263-75. [PMID: 26822319 DOI: 10.1007/s11523-015-0414-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain metastases are a major cause of morbidity and mortality in cancer patients. While the mainstay treatment comprises surgery and radiation therapy, the role of systemic agents remains controversial. In general, it has been presumed that poor blood-brain barrier (BBB) penetration and inherently more resistant metastatic brain disease preclude a favorable systemic treatment approach. However, a better understanding of tumor biology and the subsequent development of targeted drugs have reawakened interest in systemic therapy. Despite still limited brain distribution, a variety of targeted drugs have demonstrated activity in brain metastases in early clinical trials. Nevertheless, disease progression commonly occurs, and it remains to be elucidated whether limited CNS drug distribution or the acquisition of resistant metastatic clones must be held responsible for this prognosis. Moreover, micrometastatic brain disease beyond an intact BBB-and ultimately prevention of brain metastasis formation-may generally remain inaccessible for first-generation targeted agents with poor CNS penetration. To overcome limited brain distribution and possibly emerging acquired resistance, highly potent next-generation targeted drugs with enhanced CNS distribution have been developed. In view of this emerging but yet undefined role of targeted therapies in the treatment of brain metastases from solid tumors, this review aims to summarize the current knowledge from clinical trials and discusses clinically relevant obstacles to overcome.
Collapse
Affiliation(s)
- Jan-Paul Bohn
- Department of Internal Medicine V, Medical University of Innsbruck, Anichstrasse 35, A-6020, Innsbruck, Austria.
| | - Georg Pall
- Department of Internal Medicine V, Medical University of Innsbruck, Anichstrasse 35, A-6020, Innsbruck, Austria
| | - Guenther Stockhammer
- Department of Neurology and Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Steurer
- Department of Internal Medicine V, Medical University of Innsbruck, Anichstrasse 35, A-6020, Innsbruck, Austria
| |
Collapse
|
39
|
Nam JY, O’Brien BJ. Current chemotherapeutic regimens for brain metastases treatment. Clin Exp Metastasis 2017; 34:391-399. [DOI: 10.1007/s10585-017-9861-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/06/2017] [Indexed: 01/19/2023]
|
40
|
Abstract
Melanoma is the malignancy with the highest rate of dissemination to the central nervous system once it metastasizes. Until recently, the prognosis of patients with melanoma brain metastases (MBM) was poor. In recent years, however, the prognosis has improved due to high-resolution imaging that facilitates early detection of small asymptomatic brain metastases and early intervention with local modalities such as stereotactic radiosurgery. More recently, a number of systemic therapies have been approved by the Food and Drug Administration for metastatic melanoma, resulting in improved survival for many MBM patients. Registration trials for these newer therapies excluded patients with untreated brain metastases, and a number of studies specifically tailored to this population of patients have been conducted or are underway. Herein, we review contemporary locoregional and systemic therapies and describe the unique challenges posed by treatment of brain metastases, such as radionecrosis, cerebral edema, and pseudoprogression. Since the number of systemic and combined modality clinical trials has increased, we expect that the treatment landscape for patients with melanoma brain metastasis will change dramatically. In addition to ongoing clinical trials, which show great promise, we conclude that our understanding of intracranial metastasis remains quite limited. In addition to inter-disciplinary, multi-modality studies, bench-side work to better understand the process of cerebrotropism is needed to fuel more drug development and further improve outcomes.
Collapse
|
41
|
Abstract
Brain metastases are a major clinical challenge occurring in up to 60% of patients suffering from metastatic melanoma. They cause significant clinical symptoms and impair the overall survival prognosis. The introduction of targeted therapies including BRAF and MEK inhibitors as well as CTLA-4 and PD-1 axis targeting immune checkpoint inhibitors have dramatically improved the treatment and prognosis of patients with extracranial metastatic melanoma. Although, similar response rates for extra- and intracranial metastases have been reported, only few data from brain metastasis specific trails are available so far. The following review will provide an overview on the currently available data on targeted therapies, remaining questions and the most important side effects in the special clinical situation of melanoma brain metastases.
Collapse
Affiliation(s)
- Anna S Berghoff
- Department of Medicine I and Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Matthias Preusser
- Department of Medicine I and Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
42
|
Trino E, Mantovani C, Badellino S, Ricardi U, Filippi AR. Radiosurgery/stereotactic radiotherapy in combination with immunotherapy and targeted agents for melanoma brain metastases. Expert Rev Anticancer Ther 2017; 17:347-356. [PMID: 28277101 DOI: 10.1080/14737140.2017.1296764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The clinical landscape of advanced melanoma drastically changed after the introduction of both targeted therapies and immunotherapy. This rapid development in systemic therapies led to a change in the management of patients with brain metastases, with the subsequent need to re-assess the role of local therapies, in particular stereotactic radiosurgery (SRS). Areas covered: In this non-systematic review, we report on the current knowledge on the use of SRS in combination with immunotherapy and BRAF/MEK inhibitors for patients with melanoma brain metastases, as well as ongoing trials in this field. Expert commentary: It is now more common to observe patients with melanoma brain metastases with better performance status and prolonged life expectancy. A combination of targeted therapy and immunotherapy, in different sequences, has been shown to be feasible and well tolerable, on the basis of retrospective reports. Additional data from ongoing prospective trials are however needed to confirm or not these findings and better explore the efficacy of the combination.
Collapse
Affiliation(s)
- Elisabetta Trino
- a Department of Oncology , University of Torino , Torino , Italy
| | - Cristina Mantovani
- b Radiation Oncology , Città della Salute e della Scienza University Hospital , Torino , Italy
| | - Serena Badellino
- b Radiation Oncology , Città della Salute e della Scienza University Hospital , Torino , Italy
| | - Umberto Ricardi
- a Department of Oncology , University of Torino , Torino , Italy
- b Radiation Oncology , Città della Salute e della Scienza University Hospital , Torino , Italy
| | - Andrea Riccardo Filippi
- a Department of Oncology , University of Torino , Torino , Italy
- c Radiation Oncology , San Luigi Gonzaga University Hospital , Orbassano , Italy
| |
Collapse
|
43
|
Verduin M, Zindler JD, Martinussen HMA, Jansen RLH, Croes S, Hendriks LEL, Eekers DBP, Hoeben A. Use of Systemic Therapy Concurrent With Cranial Radiotherapy for Cerebral Metastases of Solid Tumors. Oncologist 2017; 22:222-235. [PMID: 28167569 PMCID: PMC5330699 DOI: 10.1634/theoncologist.2016-0117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 09/02/2016] [Indexed: 12/25/2022] Open
Abstract
The incidence of brain metastases of solid tumors is increasing. Local treatment of brain metastases is generally straightforward: cranial radiotherapy (e.g., whole-brain radiotherapy or stereotactic radiosurgery) or resection when feasible. However, treatment becomes more complex when brain metastases occur while other metastases, outside of the central nervous system, are being controlled with systemic therapy (chemotherapeutics, molecular targeted agents, or monoclonal antibodies). It is known that some anticancer agents can increase the risk for neurotoxicity when used concurrently with radiotherapy. Increased neurotoxicity decreases quality of life, which is undesirable in this predominantly palliative patient group. Therefore, it is of utmost importance to identify the compounds that should be temporarily discontinued when cranial radiotherapy is needed.This review summarizes the (neuro)toxicity data for combining systemic therapy (chemotherapeutics, molecular targeted agents, or monoclonal antibodies) with concurrent radiotherapy of brain metastases. Because only a limited amount of high-level data has been published, a risk assessment of each agent was done, taking into account the characteristics of each compound (e.g., lipophilicity) and the microenvironment of brain metastasis. The available trials suggest that only gemcitabine, erlotinib, and vemurafenib induce significant neurotoxicity when used concurrently with cranial radiotherapy. We conclude that for most systemic therapies, the currently available literature does not show an increase in neurotoxicity when these therapies are used concurrently with cranial radiotherapy. However, further studies are needed to confirm safety because there is no high-level evidence to permit definitive conclusions. The Oncologist 2017;22:222-235Implications for Practice: The treatment of symptomatic brain metastases diagnosed while patients are receiving systemic therapy continues to pose a dilemma to clinicians. Will concurrent treatment with cranial radiotherapy and systemic therapy (chemotherapeutics, molecular targeted agents, and monoclonal antibodies), used to control intra- and extracranial tumor load, increase the risk for neurotoxicity? This review addresses this clinically relevant question and evaluates the toxicity of combining systemic therapies with cranial radiotherapy, based on currently available literature, in order to determine the need to and interval to interrupt systemic treatment.
Collapse
Affiliation(s)
- Maikel Verduin
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jaap D Zindler
- Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Hanneke M A Martinussen
- Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rob L H Jansen
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sander Croes
- Department of Clinical Pharmacy & Toxicology, CAPHRI-School for Public Health and Primary Care, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Danielle B P Eekers
- Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
44
|
Chamberlain MC, Baik CS, Gadi VK, Bhatia S, Chow LQM. Systemic therapy of brain metastases: non-small cell lung cancer, breast cancer, and melanoma. Neuro Oncol 2017; 19:i1-i24. [PMID: 28031389 PMCID: PMC5193029 DOI: 10.1093/neuonc/now197] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain metastases (BM) occur frequently in many cancers, particularly non-small cell lung cancer (NSCLC), breast cancer, and melanoma. The development of BM is associated with poor prognosis and has an adverse impact on survival and quality of life. Commonly used therapies for BM such as surgery or radiotherapy are associated with only modest benefits. However, recent advances in systemic therapy of many cancers have generated considerable interest in exploration of those therapies for treatment of intracranial metastases.This review discusses the epidemiology of BM from the aforementioned primary tumors and the challenges of using systemic therapies for metastatic disease located within the central nervous system. Cumulative data from several retrospective and small prospective studies suggest that molecularly targeted systemic therapies may be an effective option for the treatment of BM from NSCLC, breast cancer, and melanoma, either as monotherapy or in conjunction with other therapies. Larger prospective studies are warranted to further characterize the efficacy and safety profiles of these targeted agents for the treatment of BM.
Collapse
Affiliation(s)
- Marc C Chamberlain
- Seattle Cancer Center Alliance, Seattle, Washington (M.C.C., C.S.B., V.K.G., S.B., L.Q.M.C.); Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (C.S.B., V.K.G., L.Q.M.C.); Departments of Neurology and Neurological Surgery, University of Washington, Seattle, Washington (M.C.C.); Division of Medical Oncology, University of Washington, Seattle, Washington (C.S.B., V.K.G., S.B., L.Q.M.C)
| | - Christina S Baik
- Seattle Cancer Center Alliance, Seattle, Washington (M.C.C., C.S.B., V.K.G., S.B., L.Q.M.C.); Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (C.S.B., V.K.G., L.Q.M.C.); Departments of Neurology and Neurological Surgery, University of Washington, Seattle, Washington (M.C.C.); Division of Medical Oncology, University of Washington, Seattle, Washington (C.S.B., V.K.G., S.B., L.Q.M.C)
| | - Vijayakrishna K Gadi
- Seattle Cancer Center Alliance, Seattle, Washington (M.C.C., C.S.B., V.K.G., S.B., L.Q.M.C.); Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (C.S.B., V.K.G., L.Q.M.C.); Departments of Neurology and Neurological Surgery, University of Washington, Seattle, Washington (M.C.C.); Division of Medical Oncology, University of Washington, Seattle, Washington (C.S.B., V.K.G., S.B., L.Q.M.C)
| | - Shailender Bhatia
- Seattle Cancer Center Alliance, Seattle, Washington (M.C.C., C.S.B., V.K.G., S.B., L.Q.M.C.); Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (C.S.B., V.K.G., L.Q.M.C.); Departments of Neurology and Neurological Surgery, University of Washington, Seattle, Washington (M.C.C.); Division of Medical Oncology, University of Washington, Seattle, Washington (C.S.B., V.K.G., S.B., L.Q.M.C)
| | - Laura Q M Chow
- Seattle Cancer Center Alliance, Seattle, Washington (M.C.C., C.S.B., V.K.G., S.B., L.Q.M.C.); Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (C.S.B., V.K.G., L.Q.M.C.); Departments of Neurology and Neurological Surgery, University of Washington, Seattle, Washington (M.C.C.); Division of Medical Oncology, University of Washington, Seattle, Washington (C.S.B., V.K.G., S.B., L.Q.M.C)
| |
Collapse
|
45
|
Kroeze SGC, Fritz C, Hoyer M, Lo SS, Ricardi U, Sahgal A, Stahel R, Stupp R, Guckenberger M. Toxicity of concurrent stereotactic radiotherapy and targeted therapy or immunotherapy: A systematic review. Cancer Treat Rev 2016; 53:25-37. [PMID: 28056412 DOI: 10.1016/j.ctrv.2016.11.013] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND PURPOSE Both stereotactic radiotherapy (SRT) and immune- or targeted therapy play an increasingly important role in personalized treatment of metastatic disease. Concurrent application of both therapies is rapidly expanding in daily clinical practice. In this systematic review we summarize severe toxicity observed after concurrent treatment. MATERIAL AND METHODS PubMed and EMBASE databases were searched for English literature published up to April 2016 using keywords "radiosurgery", "local ablative therapy", "gamma knife" and "stereotactic", combined with "bevacizumab", "cetuximab", "crizotinib", "erlotinib", "gefitinib", "ipilimumab", "lapatinib", "sorafenib", "sunitinib", "trastuzumab", "vemurafenib", "PLX4032", "panitumumab", "nivolumab", "pembrolizumab", "alectinib", "ceritinib", "dabrafenib", "trametinib", "BRAF", "TKI", "MEK", "PD1", "EGFR", "CTLA-4" or "ALK". Studies performing SRT during or within 30days of targeted/immunotherapy, reporting severe (⩾Grade 3) toxicity were included. RESULTS Concurrent treatment is mostly well tolerated in cranial SRT, but high rates of severe toxicity were observed for the combination with BRAF-inhibitors. The relatively scarce literature on extra-cranial SRT shows a potential risk of increased toxicity when SRT is combined with EGFR-targeting tyrosine kinase inhibitors and bevacizumab, which was not observed for cranial SRT. CONCLUSIONS This review gives a best-possible overview of current knowledge and its limitations and underlines the need for a timely generation of stronger evidence in this rapidly expanding field.
Collapse
Affiliation(s)
- Stephanie G C Kroeze
- Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Corinna Fritz
- Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Morten Hoyer
- Danish Center for Particle Therapy, Aarhus University, Palle Juul-Jensens Boulevard, 8200 Aarhus, Denmark
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 N.E. Pacific Street, Box 356043, Seattle, USA
| | - Umberto Ricardi
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Arjun Sahgal
- Department of Radiation Oncology, University of Toronto, 27 King's College Circle Toronto, Ontario M5S 1A1, Canada
| | - Rolf Stahel
- Department of Oncology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Roger Stupp
- Department of Oncology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
46
|
Chowdhary M, Patel KR, Danish HH, Lawson DH, Khan MK. BRAF inhibitors and radiotherapy for melanoma brain metastases: potential advantages and disadvantages of combination therapy. Onco Targets Ther 2016; 9:7149-7159. [PMID: 28003758 PMCID: PMC5161425 DOI: 10.2147/ott.s119428] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Melanoma is an aggressive malignancy that frequently spreads to the brain, resulting in rapid deterioration in both quality and quantity of life. Historically, treatment options for melanoma brain metastases (MBM) have predominantly consisted of surgery and radiotherapy. While these options can help provide local control, the majority of patients still develop intracranial progression. Indeed, novel therapeutic options, including molecularly targeted agents and immunotherapy, have improved outcomes and are now changing the role of radiotherapy. Up to 50% of melanomas contain an activating BRAF mutation, resulting in hyperactive cellular proliferation and survival. Drugs that target BRAF have been introduced for the treatment of metastatic melanoma and offer hope in improving disease outcomes; however, many of these trials either excluded or had a limited amount of patients with MBM. Recent studies have revealed that melanoma cell lines become more radiosensitive following BRAF inhibition, thus providing a potential synergistic mechanism when combining BRAF inhibitor (BRAFi) and radiotherapy. However, neurotoxicity concerns also exist with this combination. This article reviews the efficacy and limitations of BRAFi therapy for MBM, describes current evidence for combining BRAFis with radiation, discusses the rationale and evidence for combination modalities, and highlights emerging clinical trials specifically investigating this combination in MBM.
Collapse
Affiliation(s)
- Mudit Chowdhary
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL
| | - Kirtesh R Patel
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Hasan H Danish
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - David H Lawson
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mohammad K Khan
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
47
|
Ahmed KA, Abuodeh YA, Echevarria MI, Arrington JA, Stallworth DG, Hogue C, Naghavi AO, Kim S, Kim Y, Patel BG, Sarangkasiri S, Johnstone PAS, Sahebjam S, Khushalani NI, Forsyth PA, Harrison LB, Yu M, Etame AB, Caudell JJ. Clinical outcomes of melanoma brain metastases treated with stereotactic radiosurgery and anti-PD-1 therapy, anti-CTLA-4 therapy, BRAF/MEK inhibitors, BRAF inhibitor, or conventional chemotherapy. Ann Oncol 2016; 27:2288-2294. [PMID: 27637745 DOI: 10.1093/annonc/mdw417] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/30/2016] [Accepted: 08/22/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The effect of immunologic and targeted agents on intracranial response rates in patients with melanoma brain metastases (MBMs) is not yet clearly understood. This report analyzes outcomes of intact MBMs treated with single-session stereotactic radiosurgery (SRS) and anti-PD-1 therapy, anti-CTLA-4 therapy, BRAF/MEK inhibitors(i), BRAFi, or conventional chemotherapy. PATIENTS AND METHODS Patients were included if MBMs were treated with single-session SRS within 3 months of receiving systemic therapy. The primary end point of this study was distant MBM control. Secondary end points were local MBM control defined as a >20% volume increase on follow-up MRI, systemic progression-free survival, overall survival (OS) from both SRS and cranial metastases diagnosis, and neurotoxicity. Images were reviewed alongside two neuro-radiologists at our institution. RESULTS Ninety-six patients were treated to 314 MBMs over 119 SRS treatment sessions between January 2007 and August 2015. No significant differences were noted in age (P = 0.27), gender (P = 0.85), treated gross tumor volume (P = 0.26), or the diagnosis-specific graded prognostic assessment (P = 0.51) between the treatment cohorts. Twelve-month Kaplan-Meier (KM) distant MBM control rates were 38%, 21%, 20%, 8%, and 5% (P = 0.008) for SRS with anti-PD-1 therapies, anti-CTLA-4 therapy, BRAF/MEKi, BRAFi, and conventional chemotherapy, respectively. No significant differences were noted in the KM local MBM control rates among treatment groups (P = 0.25). Treatment with anti-PD-1 therapy, anti-CTLA-4 therapy, or BRAF/MEKi significantly improved OS on both univariate and multivariate analyses when compared with conventional chemotherapy. CONCLUSION In our institutional analysis of patients treated with SRS and various systemic immunologic and targeted melanoma agents, significant differences in distant MBM control and OS are noted. Prospective evaluation of the potential synergistic effect between these agents and SRS is warranted.
Collapse
Affiliation(s)
| | | | | | - J A Arrington
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa
| | - D G Stallworth
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa
| | - C Hogue
- Department of School of Medicine, University of Louisville, Louisville
| | | | - S Kim
- Department of Radiation Oncology
| | - Y Kim
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa
| | - B G Patel
- Department of Morsani College of Medicine, University of South Florida, Tampa
| | | | | | - S Sahebjam
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa
| | - N I Khushalani
- Department of Cutaneous-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - P A Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa
| | | | - M Yu
- Department of Radiation Oncology
| | - A B Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa
| | | |
Collapse
|
48
|
Initial experience with combined BRAF and MEK inhibition with stereotactic radiosurgery for BRAF mutant melanoma brain metastases. Melanoma Res 2016; 26:382-6. [DOI: 10.1097/cmr.0000000000000250] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Anker CJ, Grossmann KF, Atkins MB, Suneja G, Tarhini AA, Kirkwood JM. Avoiding Severe Toxicity From Combined BRAF Inhibitor and Radiation Treatment: Consensus Guidelines from the Eastern Cooperative Oncology Group (ECOG). Int J Radiat Oncol Biol Phys 2016; 95:632-46. [PMID: 27131079 PMCID: PMC5102246 DOI: 10.1016/j.ijrobp.2016.01.038] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/12/2016] [Accepted: 01/20/2016] [Indexed: 12/25/2022]
Abstract
BRAF kinase gene V600 point mutations drive approximately 40% to 50% of all melanomas, and BRAF inhibitors (BRAFi) have been found to significantly improve survival outcomes. Although radiation therapy (RT) provides effective symptom palliation, there is a lack of toxicity and efficacy data when RT is combined with BRAFi, including vemurafenib and dabrafenib. This literature review provides a detailed analysis of potential increased dermatologic, pulmonary, neurologic, hepatic, esophageal, and bowel toxicity from the combination of BRAFi and RT for melanoma patients described in 27 publications. Despite 7 publications noting potential intracranial neurotoxicity, the rates of radionecrosis and hemorrhage from whole brain RT (WBRT), stereotactic radiosurgery (SRS), or both do not appear increased with concurrent or sequential administration of BRAFis. Almost all grade 3 dermatitis reactions occurred when RT and BRAFi were administered concurrently. Painful, disfiguring nondermatitis cutaneous reactions have been described from concurrent or sequential RT and BRAFi administration, which improved with topical steroids and time. Visceral toxicity has been reported with RT and BRAFi, with deaths possibly related to bowel perforation and liver hemorrhage. Increased severity of radiation pneumonitis with BRAFi is rare, but more concerning was a potentially related fatal pulmonary hemorrhage. Conversely, encouraging reports have described patients with leptomeningeal spread and unresectable lymphadenopathy rendered disease free from combined RT and BRAFi. Based on our review, the authors recommend holding BRAFi and/or MEK inhibitors ≥3 days before and after fractionated RT and ≥1 day before and after SRS. No fatal reactions have been described with a dose <4 Gy per fraction, and time off systemic treatment should be minimized. Future prospective data will serve to refine these recommendations.
Collapse
Affiliation(s)
- Christopher J Anker
- Division of Radiation Oncology, University of Vermont Cancer Center, Burlington, Vermont.
| | - Kenneth F Grossmann
- Division of Medical Oncology, Department of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Michael B Atkins
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia
| | - Gita Suneja
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Ahmad A Tarhini
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - John M Kirkwood
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Vemurafenib in leptomeningeal carcinomatosis from melanoma: a case report of near-complete response and prolonged survival. Melanoma Res 2016; 26:312-5. [DOI: 10.1097/cmr.0000000000000257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|