1
|
Zhu W, Zhang F, Wang M, Meng S, Ren F. Temozolomide alleviates breast carcinoma via the inhibition of EGFR/ERK/ MMP-1 pathway with induction of apoptotic events. Acta Cir Bras 2024; 39:e391624. [PMID: 38808816 PMCID: PMC11126306 DOI: 10.1590/acb391624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/26/2024] [Indexed: 05/30/2024] Open
Abstract
PURPOSE To evaluate the chemotherapeutic activity of temozolomide counter to mammary carcinoma. METHODS In-vitro anticancer activity has been conducted on MCF7 cells, and mammary carcinoma has been induced in Wistar rats by introduction of 7, 12-Dimethylbenz(a)anthracene (DMBA), which was sustained for 24 weeks. Histopathology, immunohistochemistry, cell proliferation study and apoptosis assay via TUNEL method was conducted to evaluate an antineoplastic activity of temozolomide in rat breast tissue. RESULTS IC50 value of temozolomide in MCF7 cell has been obtained as 103 μM, which demonstrated an initiation of apoptosis. The temozolomide treatment facilitated cell cycle arrest in G2/M and S phase dose dependently. The treatment with temozolomide suggested decrease of the hyperplastic abrasions and renovation of the typical histological features of mammary tissue. Moreover, temozolomide therapy caused the downregulation of epidermal growth factor receptor, extracellular signal-regulated kinase, and metalloproteinase-1 expression and upstream of p53 and caspase-3 proliferation to indicate an initiation of apoptotic events. CONCLUSIONS The occurrence of mammary carcinoma has been significantly decreased by activation of apoptotic pathway and abrogation of cellular propagation that allowable for developing a suitable mechanistic pathway of temozolomide in order to facilitate chemotherapeutic approach.
Collapse
Affiliation(s)
- Weijun Zhu
- Taizhou Municipal Hospital – Department of Pathology – Zhejiang Province, Taizhou Zhejiang, China
| | - Fengjun Zhang
- The 940th Hospital of Joint Logistics Support Force of PLA – Department of Mammary Gland – Lanzhou, Gansu, China
| | - Maoyun Wang
- First Medical Center of PLA General Hospital – Department of Traditional Chinese Medicine – Beijing, China
| | - Shuai Meng
- First Medical Center of PLA General Hospital – Department of Traditional Chinese Medicine – Beijing, China
| | - Fang Ren
- First Medical Center of PLA General Hospital – Department of Traditional Chinese Medicine – Beijing, China
| |
Collapse
|
2
|
Yuhan L, Khaleghi Ghadiri M, Gorji A. Impact of NQO1 dysregulation in CNS disorders. J Transl Med 2024; 22:4. [PMID: 38167027 PMCID: PMC10762857 DOI: 10.1186/s12967-023-04802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
NAD(P)H Quinone Dehydrogenase 1 (NQO1) plays a pivotal role in the regulation of neuronal function and synaptic plasticity, cellular adaptation to oxidative stress, neuroinflammatory and degenerative processes, and tumorigenesis in the central nervous system (CNS). Impairment of the NQO1 activity in the CNS can result in abnormal neurotransmitter release and clearance, increased oxidative stress, and aggravated cellular injury/death. Furthermore, it can cause disturbances in neural circuit function and synaptic neurotransmission. The abnormalities of NQO1 enzyme activity have been linked to the pathophysiological mechanisms of multiple neurological disorders, including Parkinson's disease, Alzheimer's disease, epilepsy, multiple sclerosis, cerebrovascular disease, traumatic brain injury, and brain malignancy. NQO1 contributes to various dimensions of tumorigenesis and treatment response in various brain tumors. The precise mechanisms through which abnormalities in NQO1 function contribute to these neurological disorders continue to be a subject of ongoing research. Building upon the existing knowledge, the present study reviews current investigations describing the role of NQO1 dysregulations in various neurological disorders. This study emphasizes the potential of NQO1 as a biomarker in diagnostic and prognostic approaches, as well as its suitability as a target for drug development strategies in neurological disorders.
Collapse
Affiliation(s)
- Li Yuhan
- Epilepsy Research Center, Münster University, Münster, Germany
- Department of Breast Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Ali Gorji
- Epilepsy Research Center, Münster University, Münster, Germany.
- Department of Neurosurgery, Münster University, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Kusaczuk M, Ambel ET, Naumowicz M, Velasco G. Cellular stress responses as modulators of drug cytotoxicity in pharmacotherapy of glioblastoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189054. [PMID: 38103622 DOI: 10.1016/j.bbcan.2023.189054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Despite the extensive efforts to find effective therapeutic strategies, glioblastoma (GBM) remains a therapeutic challenge with dismal prognosis of survival. Over the last decade the role of stress responses in GBM therapy has gained a great deal of attention, since depending on the duration and intensity of these cellular programs they can be cytoprotective or promote cancer cell death. As such, initiation of the UPR, autophagy or oxidative stress may either impede or facilitate drug-mediated cell killing. In this review, we summarize the mechanisms that regulate ER stress, autophagy, and oxidative stress during GBM development and progression to later discuss the involvement of these stress pathways in the response to different treatments. We also discuss how a precise understanding of the molecular mechanisms regulating stress responses evoked by different pharmacological agents could decisively contribute to the design of novel and more effective combinational treatments against brain malignancies.
Collapse
Affiliation(s)
- Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland.
| | - Elena Tovar Ambel
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Instituto de Investigación Sanitaria San Carlos IdISSC, 28040 Madrid, Spain
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Instituto de Investigación Sanitaria San Carlos IdISSC, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Yang YC, Zhu Y, Sun SJ, Zhao CJ, Bai Y, Wang J, Ma LT. ROS regulation in gliomas: implications for treatment strategies. Front Immunol 2023; 14:1259797. [PMID: 38130720 PMCID: PMC10733468 DOI: 10.3389/fimmu.2023.1259797] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Gliomas are one of the most common primary malignant tumours of the central nervous system (CNS), of which glioblastomas (GBMs) are the most common and destructive type. The glioma tumour microenvironment (TME) has unique characteristics, such as hypoxia, the blood-brain barrier (BBB), reactive oxygen species (ROS) and tumour neovascularization. Therefore, the traditional treatment effect is limited. As cellular oxidative metabolites, ROS not only promote the occurrence and development of gliomas but also affect immune cells in the immune microenvironment. In contrast, either too high or too low ROS levels are detrimental to the survival of glioma cells, which indicates the threshold of ROS. Therefore, an in-depth understanding of the mechanisms of ROS production and scavenging, the threshold of ROS, and the role of ROS in the glioma TME can provide new methods and strategies for glioma treatment. Current methods to increase ROS include photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT), etc., and methods to eliminate ROS include the ingestion of antioxidants. Increasing/scavenging ROS is potentially applicable treatment, and further studies will help to provide more effective strategies for glioma treatment.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yu Zhu
- College of Health, Dongguan Polytechnic, Dongguan, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si-Jia Sun
- Department of Postgraduate Work, Xi’an Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Jin Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Shaanxi Key Laboratory of Free Radical and Medicine, Xi’an, China
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| |
Collapse
|
5
|
Jin M, Fang J, Wang JJ, Shao X, Xu SW, Liu PQ, Ye WC, Liu ZP. Regulation of toll-like receptor (TLR) signaling pathways in atherosclerosis: from mechanisms to targeted therapeutics. Acta Pharmacol Sin 2023; 44:2358-2375. [PMID: 37550526 PMCID: PMC10692204 DOI: 10.1038/s41401-023-01123-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/04/2023] [Indexed: 08/09/2023] Open
Abstract
Atherosclerosis, one of the life-threatening cardiovascular diseases (CVDs), has been demonstrated to be a chronic inflammatory disease, and inflammatory and immune processes are involved in the origin and development of the disease. Toll-like receptors (TLRs), a class of pattern recognition receptors that trigger innate immune responses by identifying pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), regulate numerous acute and chronic inflammatory diseases. Recent studies reveal that TLRs have a vital role in the occurrence and development of atherosclerosis, including the initiation of endothelial dysfunction, interaction of various immune cells, and activation of a number of other inflammatory pathways. We herein summarize some other inflammatory signaling pathways, protein molecules, and cellular responses associated with TLRs, such as NLRP3, Nrf2, PCSK9, autophagy, pyroptosis and necroptosis, which are also involved in the development of AS. Targeting TLRs and their regulated inflammatory events could be a promising new strategy for the treatment of atherosclerotic CVDs. Novel drugs that exert therapeutic effects on AS through TLRs and their related pathways are increasingly being developed. In this article, we comprehensively review the current knowledge of TLR signaling pathways in atherosclerosis and actively seek potential therapeutic strategies using TLRs as a breakthrough point in the prevention and therapy of atherosclerosis.
Collapse
Affiliation(s)
- Mei Jin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jian Fang
- Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, 510800, China
| | - Jiao-Jiao Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Xin Shao
- Department of Food Science and Engineering, Jinan University, Guangzhou, 511436, China
| | - Suo-Wen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Pei-Qing Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
| | - Zhi-Ping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
| |
Collapse
|
6
|
Jiang Y, Huang C, Huang Y, Long L, Wu G, Guo F, Huang C, Liu S, Zhu Z, Wu S, Li Z, Zhang J, Wan S. A Novel and Highly Selective Epidermal Growth Factor Receptor Inhibitor, SMUZ106, for the Treatment of Glioblastoma. Pharmaceutics 2023; 15:pharmaceutics15051501. [PMID: 37242743 DOI: 10.3390/pharmaceutics15051501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Targeting the epidermal growth factor receptor (EGFR) is one of the potential ways to treat glioblastoma (GBM). In this study, we investigate the anti-GBM tumor effects of the EGFR inhibitor SMUZ106 in both in vitro and in vivo conditions. The effects of SMUZ106 on the growth and proliferation of GBM cells were explored through MTT and clone formation experiments. Additionally, flow cytometry experiments were conducted to study the effects of SMUZ106 on the cell cycle and apoptosis of GBM cells. The inhibitory activity and selectivity of SMUZ106 to the EGFR protein were proved by Western blotting, molecular docking, and kinase spectrum screening methods. We also conducted a pharmacokinetic analysis of SMUZ106 hydrochloride following i.v. or p.o. administration to mice and assessed the acute toxicity level of SMUZ106 hydrochloride following p.o. administration to mice. Subcutaneous and orthotopic xenograft models of U87MG-EGFRvIII cells were established to assess the antitumor activity of SMUZ106 hydrochloride in vivo. SMUZ106 could inhibit the growth and proliferation of GBM cells, especially for the U87MG-EGFRvIII cells with a mean IC50 value of 4.36 μM. Western blotting analyses showed that compound SMUZ106 inhibits the level of EGFR phosphorylation in GBM cells. It was also shown that SMUZ106 targets EGFR and presents high selectivity. In vivo, the absolute bioavailability of SMUZ106 hydrochloride was 51.97%, and its LD50 exceeded 5000 mg/kg. SMUZ106 hydrochloride significantly inhibited GBM growth in vivo. Furthermore, SMUZ106 inhibited the activity of U87MG-resistant cells induced by temozolomide (TMZ) (IC50: 7.86 μM). These results suggest that SMUZ106 hydrochloride has the potential to be used as a treatment method for GBM as an EGFR inhibitor.
Collapse
Affiliation(s)
- Ying Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Chunhui Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Yaqi Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Lifan Long
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Guowu Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Fengqiu Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Chuan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Siming Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Zhengguang Zhu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Shaoyu Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Zhonghuang Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Almeida Lima K, Osawa IYA, Ramalho MCC, de Souza I, Guedes CB, Souza Filho CHDD, Monteiro LKS, Latancia MT, Rocha CRR. Temozolomide Resistance in Glioblastoma by NRF2: Protecting the Evil. Biomedicines 2023; 11:biomedicines11041081. [PMID: 37189700 DOI: 10.3390/biomedicines11041081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
The transcription factor NRF2 is constitutively active in glioblastoma, a highly aggressive brain tumor subtype with poor prognosis. Temozolomide (TMZ) is the primary chemotherapeutic agent for this type of tumor treatment, but resistance to this drug is often observed. This review highlights the research that is demonstrating how NRF2 hyperactivation creates an environment that favors the survival of malignant cells and protects against oxidative stress and TMZ. Mechanistically, NRF2 increases drug detoxification, autophagy, DNA repair, and decreases drug accumulation and apoptotic signaling. Our review also presents potential strategies for targeting NRF2 as an adjuvant therapy to overcome TMZ chemoresistance in glioblastoma. Specific molecular pathways, including MAPKs, GSK3β, βTRCP, PI3K, AKT, and GBP, that modulate NRF2 expression leading to TMZ resistance are discussed, along with the importance of identifying NRF2 modulators to reverse TMZ resistance and develop new therapeutic targets. Despite the significant progress in understanding the role of NRF2 in GBM, there are still unanswered questions regarding its regulation and downstream effects. Future research should focus on elucidating the precise mechanisms by which NRF2 mediates resistance to TMZ, and identifying potential novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Karoline Almeida Lima
- Department of Clinical and Experimental Oncology, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04037-003, Brazil
| | - Isabeli Yumi Araújo Osawa
- Department of Clinical and Experimental Oncology, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04037-003, Brazil
| | - Maria Carolina Clares Ramalho
- Department of Clinical and Experimental Oncology, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04037-003, Brazil
| | - Izadora de Souza
- Department of Clinical and Experimental Oncology, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04037-003, Brazil
| | - Camila Banca Guedes
- Department of Clinical and Experimental Oncology, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04037-003, Brazil
| | | | | | - Marcela Teatin Latancia
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Clarissa Ribeiro Reily Rocha
- Department of Clinical and Experimental Oncology, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04037-003, Brazil
| |
Collapse
|
8
|
Choo M, Mai VH, Kim HS, Kim DH, Ku JL, Lee SK, Park CK, An YJ, Park S. Involvement of cell shape and lipid metabolism in glioblastoma resistance to temozolomide. Acta Pharmacol Sin 2023; 44:670-679. [PMID: 36100765 PMCID: PMC9958008 DOI: 10.1038/s41401-022-00984-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Temozolomide (TMZ) has been used as standard-of-care for glioblastoma multiforme (GBM), but the resistance to TMZ develops quickly and frequently. Thus, more studies are needed to elucidate the resistance mechanisms. In the current study, we investigated the relationship among the three important phenotypes, namely TMZ-resistance, cell shape and lipid metabolism, in GBM cells. We first observed the distinct difference in cell shapes between TMZ-sensitive (U87) and resistant (U87R) GBM cells. We then conducted NMR-based lipid metabolomics, which revealed a significant increase in cholesterol and fatty acid synthesis as well as lower lipid unsaturation in U87R cells. Consistent with the lipid changes, U87R cells exhibited significantly lower membrane fluidity. The transcriptomic analysis demonstrated that lipid synthesis pathways through SREBP were upregulated in U87R cells, which was confirmed at the protein level. Fatostatin, an SREBP inhibitor, and other lipid pathway inhibitors (C75, TOFA) exhibited similar or more potent inhibition on U87R cells compared to sensitive U87 cells. The lower lipid unsaturation ratio, membrane fluidity and higher fatostatin sensitivity were all recapitulated in patient-derived TMZ-resistant primary cells. The observed ternary relationship among cell shape, lipid composition, and TMZ-resistance may be applicable to other drug-resistance cases. SREBP and fatostatin are suggested as a promising target-therapeutic agent pair for drug-resistant glioblastoma.
Collapse
Affiliation(s)
- Munki Choo
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Van-Hieu Mai
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Han Sun Kim
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Dong-Hwa Kim
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Sang Kook Lee
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Yong Jin An
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea.
| | - Sunghyouk Park
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
9
|
Ion Channels in Gliomas-From Molecular Basis to Treatment. Int J Mol Sci 2023; 24:ijms24032530. [PMID: 36768856 PMCID: PMC9916861 DOI: 10.3390/ijms24032530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.
Collapse
|
10
|
Afjei R, Sadeghipour N, Kumar SU, Pandrala M, Kumar V, Malhotra SV, Massoud TF, Paulmurugan R. A New Nrf2 Inhibitor Enhances Chemotherapeutic Effects in Glioblastoma Cells Carrying p53 Mutations. Cancers (Basel) 2022; 14:cancers14246120. [PMID: 36551609 PMCID: PMC9775980 DOI: 10.3390/cancers14246120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/23/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
TP53 tumor suppressor gene is a commonly mutated gene in cancer. p53 mediated senescence is critical in preventing oncogenesis in normal cells. Since p53 is a transcription factor, mutations in its DNA binding domain result in the functional loss of p53-mediated cellular pathways. Similarly, nuclear factor erythroid 2-related factor 2 (Nrf2) is another transcription factor that maintains cellular homeostasis by regulating redox and detoxification mechanisms. In glioblastoma (GBM), Nrf2-mediated antioxidant activity is upregulated while p53-mediated senescence is lost, both rendering GBM cells resistant to treatment. To address this, we identified novel Nrf2 inhibitors from bioactive compounds using a molecular imaging biosensor-based screening approach. We further evaluated the identified compounds for their in vitro and in vivo chemotherapy enhancement capabilities in GBM cells carrying different p53 mutations. We thus identified an Nrf2 inhibitor that is effective in GBM cells carrying the p53 (R175H) mutation, a frequent clinically observed hotspot structural mutation responsible for chemotherapeutic resistance in GBM. Combining this drug with low-dose chemotherapies can potentially reduce their toxicity and increase their efficacy by transiently suppressing Nrf2-mediated detoxification function in GBM cells carrying this important p53 missense mutation.
Collapse
Affiliation(s)
- Rayhaneh Afjei
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
| | - Negar Sadeghipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
| | - Sukumar Uday Kumar
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
| | - Mallesh Pandrala
- Department of Radiation Oncology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Vineet Kumar
- Department of Radiation Oncology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
| | - Sanjay V. Malhotra
- Department of Radiation Oncology, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Tarik F. Massoud
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
- Correspondence: (T.F.M.); (R.P.); Tel.: +1-650-725-6097 (R.P.); Fax: +1-650-721-6921 (R.P.)
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94305, USA
- Correspondence: (T.F.M.); (R.P.); Tel.: +1-650-725-6097 (R.P.); Fax: +1-650-721-6921 (R.P.)
| |
Collapse
|
11
|
Awuah WA, Toufik AR, Yarlagadda R, Mikhailova T, Mehta A, Huang H, Kundu M, Lopes L, Benson S, Mykola L, Vladyslav S, Alexiou A, Alghamdi BS, Hashem AM, Md Ashraf G. Exploring the role of Nrf2 signaling in glioblastoma multiforme. Discov Oncol 2022; 13:94. [PMID: 36169772 PMCID: PMC9519816 DOI: 10.1007/s12672-022-00556-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive glial cell tumors in adults. Although current treatment options for GBM offer some therapeutic benefit, median survival remains poor and does not generally exceed 14 months. Several genes, such as isocitrate dehydrogenase (IDH) enzyme and O6-methylguanine-DNA methyltransferase (MGMT), have been implicated in pathogenesis of the disease. Treatment is often adapted based on the presence of IDH mutations and MGMT promoter methylation status. Recent GBM cell line studies have associated Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) expression with high-grade tumors. Increased Nrf2 expression is often found in tumors with IDH-1 mutations. Nrf2 is an important transcription factor with anti-apoptotic, antioxidative, anti-inflammatory, and proliferative properties due to its complex interactions with multiple regulatory pathways. In addition, evidence suggests that Nrf2 promotes GBM cell survival in hypoxic environment,by up-regulating hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Downregulation of Nrf2 has been shown to improve GBM sensitivity to chemotherapy drugs such as Temozolomide. Thus, Nrf2 could be a key regulator of GBM pathways and potential therapeutic target. Further research efforts exploring an interplay between Nrf2 and major molecular signaling mechanisms could offer novel GBM drug candidates with a potential to significantly improve patients prognosis.
Collapse
Affiliation(s)
| | | | - Rohan Yarlagadda
- Rowan University School of Osteopathic Medicine, Stratford, NJ USA
| | | | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, 4032 Hungary
| | - Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Leilani Lopes
- College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR USA
| | | | | | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
12
|
Li S, Xie X, Peng F, Du J, Peng C. Regulation of temozolomide resistance via lncRNAs: Clinical and biological properties of lncRNAs in gliomas (Review). Int J Oncol 2022; 61:101. [PMID: 35796022 PMCID: PMC9291250 DOI: 10.3892/ijo.2022.5391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022] Open
Abstract
Gliomas are a primary types of intracranial malignancies and are characterized by a poor prognosis due to aggressive recurrence profiles. Temozolomide (TMZ) is an auxiliary alkylating agent that is extensively used in conjunction with surgical resection and forms the mainstay of clinical treatment strategies for gliomas. However, the frequent occurrence of TMZ resistance in clinical practice limits its therapeutic efficacy. Accumulating evidence has demonstrated that long non‑coding RNAs (lncRNAs) can play key and varied roles in glioma progression. lncRNAs have been reported to inhibit glioma progression by targeting various signaling pathways. In addition, the differential expression of lncRNAs has also been found to mediate the resistance of glioma to several chemotherapeutic agents, particularly to TMZ. The present review article therefore summarizes the findings of previous studies in an aim to report the significance and function of lncRNAs in regulating the chemoresistance of gliomas. The present review may provide further insight into the clinical treatment of gliomas.
Collapse
Affiliation(s)
- Sui Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Correspondence to: Dr Fu Peng or Professor Junrong Du, Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Renmin South Road, Chengdu, Sichuan 610041, P.R. China, E-mail: , E-mail:
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Correspondence to: Dr Fu Peng or Professor Junrong Du, Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Renmin South Road, Chengdu, Sichuan 610041, P.R. China, E-mail: , E-mail:
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
13
|
Heurtaux T, Bouvier DS, Benani A, Helgueta Romero S, Frauenknecht KBM, Mittelbronn M, Sinkkonen L. Normal and Pathological NRF2 Signalling in the Central Nervous System. Antioxidants (Basel) 2022; 11:1426. [PMID: 35892629 PMCID: PMC9394413 DOI: 10.3390/antiox11081426] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields.
Collapse
Affiliation(s)
- Tony Heurtaux
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - David S. Bouvier
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Sergio Helgueta Romero
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - Katrin B. M. Frauenknecht
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
- Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
| |
Collapse
|
14
|
Xu H, Jin J, Chen Y, Wu G, Zhu H, Wang Q, Wang J, Li S, Grigore FN, Ma J, Chen CC, Lan Q, Li M. GBP3 promotes glioblastoma resistance to temozolomide by enhancing DNA damage repair. Oncogene 2022; 41:3876-3885. [PMID: 35780181 DOI: 10.1038/s41388-022-02397-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022]
Abstract
Glioblastoma is the most common malignant brain cancer with dismal survival and prognosis. Temozolomide (TMZ) is a first-line chemotherapeutic agent for glioblastoma, but the emergence of drug resistance limits its anti-tumor activity. We previously discovered that the interferon inducible guanylate binding protein 3 (GBP3) is highly elevated and promotes tumorigenicity of glioblastoma. Here, we show that TMZ treatment significantly upregulates the expression of GBP3 and stimulator of interferon genes (STING), both of which increase TMZ-induced DNA damage repair and reduce cell apoptosis of glioblastoma cells. Mechanistically, relying on its N-terminal GTPase domain, GBP3 physically interacts with STING to stabilize STING protein levels, which in turn induces expression of p62 (Sequestosome 1), nuclear factor erythroid 2 like 2 (NFE2L2, NRF2), and O6-methlyguanine-DNA-methyltransferase (MGMT), leading to the resistance to TMZ treatment. Reducing GBP3 levels by RNA interference in glioblastoma cells markedly increases the sensitivity to TMZ treatment in vitro and in murine glioblastoma models. Clinically, GBP3 expression is high and positively correlated with STING, NRF2, p62, and MGMT expression in human glioblastoma tumors, and is associated with poor outcomes. These findings provide novel insight into TMZ resistance and suggest that GBP3 may represent a novel potential target for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Hui Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China.,Jiangsu Key Laboratory of Neuropsychiatric Disease, Institute of Neuroscience, Soochow University, Suzhou, 215004, Jiangsu, China
| | - Jing Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China
| | - Ying Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China
| | - Guoqing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China
| | - Hua Zhu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, 110122, Liaoning, China
| | - Qing Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China
| | - Ji Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China
| | - Shenggang Li
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China
| | | | - Jun Ma
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China. .,Jiangsu Key Laboratory of Neuropsychiatric Disease, Institute of Neuroscience, Soochow University, Suzhou, 215004, Jiangsu, China.
| | - Ming Li
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
15
|
Zhang L, Dong R, Wang Y, Wang L, Zhou T, Jia D, Meng Z. The anti-breast cancer property of physcion via oxidative stress-mediated mitochondrial apoptosis and immune response. PHARMACEUTICAL BIOLOGY 2021; 59:303-310. [PMID: 33715588 PMCID: PMC7971271 DOI: 10.1080/13880209.2021.1889002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Physcion (Phy) exerts several pharmacological effects including anti-inflammatory, antioxidant, and antitumor properties. OBJECTIVE This study investigates the cytotoxicity and its underlying mechanisms of Phy on breast cancer. MATERIALS AND METHODS Human breast cancer cell MCF-7 was treated with 5-400 µM Phy for 24 h, MCF-7-xenografted BALB/c nude mice and immunosuppressive mice model induced by cyclophosphamide were intraperitoneally injected with 0.1 mL/mouse normal saline (control group) and 30 mg/kg Phy every other day for 14 or 28 days, and pathological examination, ELISA and western blot were employed to investigate the Phy anti-breast cancer property in vitro and in vivo. RESULTS In MCF-7 cells, Phy 24 h treatment significantly reduced the cell viability at dose of 50-400 µM and 24 h, with an IC50 of 203.1 µM, and 200 µM Phy induced 56.9, 46.9, 36.9, and 46.9% increment on LDH and caspase-3, -8 and -9. In MCF-7-xenograft tumour nude mice and immunosuppressive mice, 30 mg/kg Phy treatment inhibited tumour growth from the 8th day, and reduced Bcl-2 and Bcl-xL >50%, HO-1 and SOD-1 > 70% in tumour tissues of immunosuppressive mice. In addition, Phy reduced nuclear factor erythroid 2-related factor 2 > 30% and its downstream proteins, and enhanced the phosphorylation of nuclear factor-kappa B > 110% and inhibitor of NF-кB α > 80% in the tumour tissues of BALB/c mice. DISCUSSION AND CONCLUSIONS This research demonstrated that Phy has an anti-breast cancer property via the modulation of oxidative stress-mediated mitochondrial apoptosis and immune response, which provides a scientific basis for further research on its clinical applications.
Collapse
Affiliation(s)
- Luping Zhang
- The Gastroenterology & Endoscopy Center, First Hospital, Jilin University, Changchun, Jilin, China
| | - Ruitao Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Wang
- The Gastroenterology & Endoscopy Center, First Hospital, Jilin University, Changchun, Jilin, China
| | - Longxiang Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Tian Zhou
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
| | - Dongxu Jia
- School of Life Sciences, Jilin University, Changchun, China
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
- CONTACT Dongxu Jia School of Life Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
- Zhaoli Meng Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun City, Jilin Province, P. R. China
| |
Collapse
|
16
|
Xia Q, Liu L, Li Y, Zhang P, Han D, Dong L. Therapeutic Perspective of Temozolomide Resistance in Glioblastoma Treatment. Cancer Invest 2021; 39:627-644. [PMID: 34254870 DOI: 10.1080/07357907.2021.1952595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glioblastoma (GB) is the most lethal form of primary brain neoplasm. TMZ is the first-line standard treatment, but the strong resistance constrains the efficacy in clinical use. GB contains glioma stem cells (GSCs), which contribute to TMZ resistance, promote cell survival evolvement, and repopulate the tumor mass. This review summarizes the TMZ-resistance mechanisms and discusses several potential therapies from the conservative opinion of GSC-targeted therapy orientation to the current view of TMZ resistance-aimed efficacy, which will provide an understanding of the role of heterogeneity in drug resistance and improve therapeutic efficacy in general.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Da Han
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
17
|
Campos-Sandoval JA, Gómez-García MC, Santos-Jiménez JDL, Matés JM, Alonso FJ, Márquez J. Antioxidant responses related to temozolomide resistance in glioblastoma. Neurochem Int 2021; 149:105136. [PMID: 34274381 DOI: 10.1016/j.neuint.2021.105136] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Glioblastoma remains one of the most challenging and devastating cancers, with only a very small proportion of patients achieving 5-year survival. The current standard of care consists of surgery, followed by radiation therapy with concurrent and maintenance chemotherapy with the alkylating agent temozolomide. To date, this drug is the only one that provides a significant survival benefit, albeit modest, as patients end up acquiring resistance to this drug. As a result, tumor progression and recurrence inevitably occur, leading to death. Several factors have been proposed to explain this resistance, including an upregulated antioxidant system to keep the elevated intracellular ROS levels, a hallmark of cancer cells, under control. In this review, we discuss the mechanisms of chemoresistance -including the important role of glioblastoma stem cells-with emphasis on antioxidant defenses and how agents that impair redox balance (i.e.: sulfasalazine, erastin, CB-839, withaferin, resveratrol, curcumin, chloroquine, and hydroxychloroquine) might be advantageous in combined therapies against this type of cancer.
Collapse
Affiliation(s)
- José A Campos-Sandoval
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | - María C Gómez-García
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Juan de Los Santos-Jiménez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - José M Matés
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Francisco J Alonso
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Javier Márquez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
18
|
Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The Taming of Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) Deglycation by Fructosamine-3-Kinase (FN3K)-Inhibitors-A Novel Strategy to Combat Cancers. Cancers (Basel) 2021; 13:cancers13020281. [PMID: 33466626 PMCID: PMC7828646 DOI: 10.3390/cancers13020281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Aim of this review is to provide an overview on (a) Fructosamine-3-Kinase (FN3K) and its role in regulating Nuclear Factor Erythorid-2-Related Factor-2 (Nrf2); (b) the role of glycation and deglycation mechanisms in modulating the functional properties of proteins, in particular, the Nrf2; (c) the dual role of Nrf2 in the prevention and treatment of cancers. Since controlling the glycation of Nrf2 is one of the key mechanisms determining the fate of a cell; whether to get transformed into a cancerous one or to stay as a normal one, it is important to regulate Nrf2 and deglycating FN3K using pharmacological agents. Inhibitors of FN3K are being explored currently to modulate Nrf2 activity thereby control the cancers. Abstract Glycated stress is mediated by the advanced glycation end products (AGE) and the binding of AGEs to the receptors for advanced glycation end products (RAGEs) in cancer cells. RAGEs are involved in mediating tumorigenesis of multiple cancers through the modulation of several downstream signaling cascades. Glycated stress modulates various signaling pathways that include p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa–B (NF-κB), tumor necrosis factor (TNF)-α, etc., which further foster the uncontrolled proliferation, growth, metastasis, angiogenesis, drug resistance, and evasion of apoptosis in several cancers. In this review, a balanced overview on the role of glycation and deglycation in modulating several signaling cascades that are involved in the progression of cancers was discussed. Further, we have highlighted the functional role of deglycating enzyme fructosamine-3-kinase (FN3K) on Nrf2-driven cancers. The activity of FN3K is attributed to its ability to deglycate Nrf2, a master regulator of oxidative stress in cells. FN3K is a unique protein that mediates deglycation by phosphorylating basic amino acids lysine and arginine in various proteins such as Nrf2. Deglycated Nrf2 is stable and binds to small musculoaponeurotic fibrosarcoma (sMAF) proteins, thereby activating cellular antioxidant mechanisms to protect cells from oxidative stress. This cellular protection offered by Nrf2 activation, in one way, prevents the transformation of a normal cell into a cancer cell; however, in the other way, it helps a cancer cell not only to survive under hypoxic conditions but also, to stay protected from various chemo- and radio-therapeutic treatments. Therefore, the activation of Nrf2 is similar to a double-edged sword and, if not controlled properly, can lead to the development of many solid tumors. Hence, there is a need to develop novel small molecule modulators/phytochemicals that can regulate FN3K activity, thereby maintaining Nrf2 in a controlled activation state.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Venugopal R. Bovilla
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Public Health Research Institute of India (PHRII), Mysuru, Karnataka 570020, India
| | - Shalini H. Doreswamy
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Sujatha Puttalingaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Asha Srinivasan
- Division of Nanoscience and Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India;
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Special Interest Group in Cancer Biology and Cancer Stem Cells, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India
- Correspondence: ; Tel.: +91-810-527-8621
| |
Collapse
|
19
|
Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal 2020; 33:966-997. [PMID: 31989830 PMCID: PMC7533893 DOI: 10.1089/ars.2020.8024] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alberto Leguina-Ruzzi
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
20
|
Godoy PRDV, Pour Khavari A, Rizzo M, Sakamoto-Hojo ET, Haghdoost S. Targeting NRF2, Regulator of Antioxidant System, to Sensitize Glioblastoma Neurosphere Cells to Radiation-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2534643. [PMID: 32617133 PMCID: PMC7315280 DOI: 10.1155/2020/2534643] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
The presence of glioma stem cells (GSCs), which are enriched in neurospheres, may be connected to the radioresistance of glioblastoma (GBM) due to their enhanced antioxidant defense and elevated DNA repair capacity. The aim was to evaluate the responses to different radiation qualities and to reduce radioresistance of U87MG cells, a GBM cell line. U87MG cells were cultured in a 3D model and irradiated with low (24 mGy/h) and high (0.39 Gy/min) dose rates of low LET gamma and high LET carbon ions (1-2 Gy/min). Thereafter, expression of proteins related to oxidative stress response, extracellular 8-oxo-dG, and neurospheres were determined. LD50 for carbon ions was significantly lower compared to LD50 of high and low dose rate gamma radiation. A significantly higher level of 8-oxo-dG was detected in the media of cells exposed to a low dose rate as compared to a high dose rate of gamma or carbon ions. A downregulation of oxidative stress proteins was also observed (NRF2, hMTH1, and SOD1). The NRF2 gene was knocked down by CRISPR/Cas9 in neurosphere cells, resulting in less self-renewal, more differentiated cells, and less proliferation capacity after irradiation with low and high dose rate gamma rays. Overall, U87MG glioma neurospheres presented differential responses to distinct radiation qualities and NRF2 plays an important role in cellular sensitivity to radiation.
Collapse
Affiliation(s)
- Paulo R. D. V. Godoy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, Zip Code: 106 91 Stockholm, Sweden
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Zip Code: 14040-901 Ribeirão Preto, SP, Brazil
| | - Ali Pour Khavari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, Zip Code: 106 91 Stockholm, Sweden
| | - Marzia Rizzo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, Zip Code: 106 91 Stockholm, Sweden
| | - Elza T. Sakamoto-Hojo
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Zip Code: 14040-901 Ribeirão Preto, SP, Brazil
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, Av. Bandeirantes 3900, Zip Code: 14049-900 Ribeirão Preto, SP, Brazil
| | - Siamak Haghdoost
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, Zip Code: 106 91 Stockholm, Sweden
- University of Caen Normandy, UMR6252 CIMAP/LARIA team, Zip Code: 14076 Caen, France
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), Zip Code: 14000 Caen, France
| |
Collapse
|
21
|
Cores Á, Piquero M, Villacampa M, León R, Menéndez JC. NRF2 Regulation Processes as a Source of Potential Drug Targets against Neurodegenerative Diseases. Biomolecules 2020; 10:E904. [PMID: 32545924 PMCID: PMC7356958 DOI: 10.3390/biom10060904] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
NRF2 acts by controlling gene expression, being the master regulator of the Phase II antioxidant response, and also being key to the control of neuroinflammation. NRF2 activity is regulated at several levels, including protein degradation by the proteasome, transcription, and post-transcription. The purpose of this review is to offer a concise and critical overview of the main mechanisms of NRF2 regulation and their actual or potential use as targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Marta Piquero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| |
Collapse
|
22
|
The Role of Nrf2 Activity in Cancer Development and Progression. Cancers (Basel) 2019; 11:cancers11111755. [PMID: 31717324 PMCID: PMC6896028 DOI: 10.3390/cancers11111755] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Nrf2 is a transcription factor that stimulates the expression of genes which have antioxidant response element-like sequences in their promoter. Nrf2 is a cellular protector, and this principle applies to both normal cells and malignant cells. While healthy cells are protected from DNA damage induced by reactive oxygen species, malignant cells are defended against chemo- or radiotherapy. Through our literature search, we found that Nrf2 activates several oncogenes unrelated to the antioxidant activity, such as Matrix metallopeptidase 9 (MMP-9), B-cell lymphoma 2 (BCL-2), B-cell lymphoma-extra large (BCL-xL), Tumour Necrosis Factor α (TNF-α), and Vascular endothelial growth factor A (VEGF-A). We also did a brief analysis of The Cancer Genome Atlas (TCGA) data of lung adenocarcinoma concerning the effects of radiation therapy and found that the therapy-induced Nrf2 activation is not universal. For instance, in the case of recurrent disease and radiotherapy, we observed that, for the majority of Nrf2-targeted genes, there is no change in expression level. This proves that the universal, axiomatic rationale that Nrf2 is activated as a response to chemo- and radiation therapy is wrong, and that each scenario should be carefully evaluated with the help of Nrf2-targeted genes. Moreover, there were nine genes involved in lipid peroxidation, which showed underexpression in the case of new radiation therapy: ADH1A, ALDH3A1, ALDH3A2, ADH1B, GPX2, ADH1C, ALDH6A1, AKR1C3, and NQO1. This may relate to the fact that, while some studies reported the co-activation of Nrf2 and other oncogenic signaling pathways such as Phosphoinositide 3-kinases (PI3K), mitogen-activated protein kinase (MAPK), and Notch1, other reported the inverse correlation between Nrf2 and the tumor-promoter Transcription Factor (TF), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Lastly, Nrf2 establishes its activity through interactions at multiple levels with various microRNAs. MiR-155, miR-144, miR-28, miR-365-1, miR-93, miR-153, miR-27a, miR-142, miR-29-b1, miR-340, and miR-34a, either through direct repression of Nrf2 messenger RNA (mRNA) in a Kelch-like ECH-associated protein 1 (Keap1)-independent manner or by enhancing the Keap1 cellular level, inhibit the Nrf2 activity. Keap1–Nrf2 interaction leads to the repression of miR-181c, which is involved in the Nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling pathway. Nrf2’s role in cancer prevention, diagnosis, prognosis, and therapy is still in its infancy, and the future strategic planning of Nrf2-based oncological approaches should also consider the complex interaction between Nrf2 and its various activators and inhibitors.
Collapse
|
23
|
Rajesh Y, Biswas A, Kumar U, Das S, Banerjee I, Banik P, Bharti R, Nayak S, Ghosh SK, Mandal M. Targeting NFE2L2, a transcription factor upstream of MMP-2: A potential therapeutic strategy for temozolomide resistant glioblastoma. Biochem Pharmacol 2019; 164:1-16. [DOI: 10.1016/j.bcp.2019.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/14/2019] [Indexed: 12/30/2022]
|
24
|
The Selective Acetamidine-Based iNOS Inhibitor CM544 Reduces Glioma Cell Proliferation by Enhancing PARP-1 Cleavage In Vitro. Int J Mol Sci 2019; 20:ijms20030495. [PMID: 30678338 PMCID: PMC6387310 DOI: 10.3390/ijms20030495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/31/2023] Open
Abstract
Gliomas are the most aggressive adult primary brain tumors. Expression of inducible Nitric Oxide Synthase has been reported as a hallmark of chemoresistance in gliomas and several studies have reported that inhibition of inducible Nitric Oxide Synthase could be related to a decreased proliferation of glioma cells. The present work was to analyze the molecular effects of the acetamidine derivative compound 39 (formally CM544, N-(3-{[(1-iminioethyl)amino]methyl}benzyl) prolinamide dihydrochloride), a newly synthetized iNOS inhibitor, in a C6 rat glioma cell model. There is evidence of CM544 selective binding to the iNOS, an event that triggers the accumulation of ROS/RNS, the expression of Nrf-2 and the phosphorylation of MAPKs after 3 h of treatment. In the long run, CM544 leads to the dephosphorylation of p38 and to a massive cleavage of PARP-1, confirming the block of C6 rat glioma cell proliferation in the G1/S checkpoint and the occurrence of necrotic cell death.
Collapse
|
25
|
Signal transduction pathways and resistance to targeted therapies in glioma. Semin Cancer Biol 2019; 58:118-129. [PMID: 30685341 DOI: 10.1016/j.semcancer.2019.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Although surgical techniques and adjuvant therapies have undergone progressive development for decades, the therapeutic outcomes for treating glioblastoma (GBM) remain poor. The main reasons for the poor prognosis of gliomas are that limited tumor tissue that can be resected (to preserve brain functions) and that residual tumors are often resistant to irradiation and chemotherapy. Therefore, overcoming the resistance of residual tumors against adjuvant therapy is urgently needed for glioma treatment. Recent large cohort studies of genetic alterations in GBM demonstrated that both genetic information and intracellular molecular signaling are networked in gliomas and that such information may help clarify which molecules or signals serve essential roles in resistance against radiation or chemotherapy, highlighting them as potential novel therapeutic targets against refractory gliomas. In this review, we summarize the current understanding of molecular networks that govern glioma biology, mainly based on cohort studies or recent evidence, with a focus on how intracellular signaling molecules in gliomas associate with each other and regulate refractoriness against current therapy.
Collapse
|
26
|
Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomed Pharmacother 2018; 108:1866-1878. [PMID: 30372892 DOI: 10.1016/j.biopha.2018.10.019] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/09/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Inflammation as a second line of defense of innate immunity plays a crucial role in eliminating invading pathogens (bacteria, viruses, fungi as well as other parasites). The inflammatory response may also activate adaptive immune system involving lymphocytes to mount either antibody dependent or cell-mediated immune responses to clear pathogenic insult. However, if continued, the inflammatory processes may become uncontrolled culminating in cellular injury and tissue destruction, thereby manifesting itself in chronic form. The chronic inflammation has been associated with numerous human pathological conditions like allergies and autoimmune diseases, atherosclerosis, arthritis, Alzheimer's disease, cancer, obesity, type 2 diabetes, schizophrenia, neuro-degenerative diseases and numerous others. The dysregulated inflammatory process is associated with overproduction of free radicals leading to oxidative stress and activation of different cell signaling pathways. The regulation of inflammation by TLR signaling as well as Nrf2 pathways separately is widely documented. Since both these major signaling pathways modulate inflammation, they may crosstalk to bring about coordinated inflammatory responses. The linkage between TLR signaling and Nrf2-Keap1 pathway may serve as a bridge between immune regulation and oxidative stress responses through regulation of inflammation. Also, inflammation is reportedly responsible for the plethora of diseased conditions; a study of its regulation by targeting the TLR-Nrf2 cross-talks may also be beneficial for the development of therapeutic therapies or prophylactic treatments. Hence, present review focuses on the crosstalk between TLR signaling and Nrf2 pathway with respect to their role in modulation of inflammation in normal as well as pathologic conditions.
Collapse
|
27
|
Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the Hallmarks of Cancer. Cancer Cell 2018; 34:21-43. [PMID: 29731393 PMCID: PMC6039250 DOI: 10.1016/j.ccell.2018.03.022] [Citation(s) in RCA: 1086] [Impact Index Per Article: 155.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/11/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Abstract
The transcription factor NRF2 is the master regulator of the cellular antioxidant response. Though recognized originally as a target of chemopreventive compounds that help prevent cancer and other maladies, accumulating evidence has established the NRF2 pathway as a driver of cancer progression, metastasis, and resistance to therapy. Recent studies have identified new functions for NRF2 in the regulation of metabolism and other essential cellular functions, establishing NRF2 as a truly pleiotropic transcription factor. In this review, we explore the roles of NRF2 in the hallmarks of cancer, indicating both tumor suppressive and tumor-promoting effects.
Collapse
Affiliation(s)
- Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
28
|
Zhang L, Wang H. FTY720 inhibits the Nrf2/ARE pathway in human glioblastoma cell lines and sensitizes glioblastoma cells to temozolomide. Pharmacol Rep 2017; 69:1186-1193. [DOI: 10.1016/j.pharep.2017.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/16/2017] [Accepted: 07/03/2017] [Indexed: 12/30/2022]
|
29
|
Valproic Acid Sensitizes Hepatocellular Carcinoma Cells to Proton Therapy by Suppressing NRF2 Activation. Sci Rep 2017; 7:14986. [PMID: 29118323 PMCID: PMC5678087 DOI: 10.1038/s41598-017-15165-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023] Open
Abstract
Although efficacy of combined histone deacetylase (HDAC) inhibitors and conventional photon radiotherapy is being tested in clinical trials, their combined effect with proton beam radiotherapy has yet to be determined. Here, we compared combined effect of valproic acid (VPA), a class I and II HDAC inhibitor and antiepileptic drug with proton and photon irradiation in hepatocellular carcinoma (HCC) cells in vitro and in vivo. We found that VPA sensitized more Hep3B cells to proton than to photon irradiation. VPA prolonged proton-induced DNA damage and augmented proton-induced apoptosis. In addition, VPA further increased proton-induced production of intracellular reactive oxygen species and suppressed expression of nuclear factor erythroid-2-related factor 2 (NRF2), a key transcription factor regulating antioxidant response. Downregulation of NRF2 by siRNA transfection increased proton-induced apoptotic cell death, supporting NRF2 as a target of VPA in radiosensitization. In Hep3B tumor xenograft models, VPA significantly enhanced proton-induced tumor growth delay with increased apoptosis and decreased NRF2 expression in vivo. Collectively, our study highlights a proton radiosensitizing effect of VPA in HCC cells. As NRF2 is an emerging prognostic marker contributing to radioresistance in HCC, targeting NRF2 pathway may impact clinical outcome of proton beam radiotherapy.
Collapse
|
30
|
Sekhar KR, Freeman ML. Nrf2 promotes survival following exposure to ionizing radiation. Free Radic Biol Med 2015; 88:268-274. [PMID: 25975985 PMCID: PMC4628893 DOI: 10.1016/j.freeradbiomed.2015.04.035] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/30/2022]
Abstract
Nrf2 is a transcription factor that promotes antioxidant and drug-metabolizing gene expression. It also regulates the transcription of genes involved in carbohydrate and lipid metabolism, NADPH regeneration, and heme and iron metabolism, as well as proteasome metabolism. Emerging research has identified Nrf2 as a critical factor for promoting survival of mammalian cells subjected to ionizing radiation. At a mechanistic level, Nrf2 promotes the repair of DNA damage and drives detoxification of superoxide that is generated hours to days after irradiation. This review summarizes research in these areas and discusses targeting of Nrf2 in radiation-resistant cancer and Nrf2׳s role in mitigating acute radiation syndrome.
Collapse
Affiliation(s)
- Konjeti R Sekhar
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael L Freeman
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
31
|
Sukumari-Ramesh S, Prasad N, Alleyne CH, Vender JR, Dhandapani KM. Overexpression of Nrf2 attenuates Carmustine-induced cytotoxicity in U87MG human glioma cells. BMC Cancer 2015; 15:118. [PMID: 25851054 PMCID: PMC4365816 DOI: 10.1186/s12885-015-1134-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/24/2015] [Indexed: 01/07/2023] Open
Abstract
Background Malignant glioma is one of the most devastating tumors in adults with poor patient prognosis. Notably, glioma often exhibits resistance to conventional chemotherapeutic approaches, complicating patient treatments. However, the molecular mediators involved in tumor chemoresistance remain poorly defined, creating a barrier to the successful management of glioma. In the present study, we hypothesized that the antioxidant transcription factor, Nrf2 (nuclear factor erythroid-derived 2 like 2), attenuates glioma cytotoxicity to Carmustine (BCNU), a widely used chemotherapeutic agent known to modulate cellular oxidative balance. Methods To test the hypothesis, we employed human malignant glioma cell line, U87MG and overexpression of Nrf2 in glioma cells was achieved using both pharmacological and genetic approaches. Results Notably, induction of Nrf2 was associated with increased expression of heme oxygenase-1 (HO-1), a stress inducible enzyme involved in anti-oxidant defense. In addition, over expression of Nrf2 in U87MG cells significantly attenuated the cytotoxicity of Carmustine as evidenced by both cellular viability assay and flow cytometry analysis. Consistent with this, antioxidants such as glutathione and N-acetyl cysteine significantly reduced Carmustine mediated glioma cytotoxicity. Conclusions Taken together, these data strongly implicate an unexplored role of Nrf2 in glioma resistance to Carmustine and raise the possible use of Nrf2 inhibitors as adjunct to Carmustine for the treatment of malignant glioma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1134-z) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Ma L, Liu J, Zhang X, Qi J, Yu W, Gu Y. p38 MAPK-dependent Nrf2 induction enhances the resistance of glioma cells against TMZ. Med Oncol 2015; 32:69. [PMID: 25691294 DOI: 10.1007/s12032-015-0517-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/13/2015] [Indexed: 01/06/2023]
Abstract
Temozolomide (TMZ) is an effective agent for clinical glioma treatment, but the innate and acquired resistance of glioma always limits its application. Although some advances have been achieved to elucidate the molecular mechanism underlying TMZ resistance, the role of Nrf2 (a principle regulator of cellular defense against drugs and oxidative stress) has not been well established in the acquisition of this phenotype. Our data showed that TMZ treatment induces the activation of Nrf2 and p38 MAPK signaling in glioma cells, while p38 inhibition abolished the effect of TMZ on Nrf2. Further study revealed that Nrf2 silencing was able to enhance the response of glioma cells to TMZ. Additionally, Nrf2 overexpression overrides the effect of p38 MAPK activation on Temozolomide resistance. In conclusions, we identified a p38 MAPK/Nrf2 signaling as a key molecular network contributing to TMZ resistance of glioma, and provided evidence that suppressing this signaling may be a promising strategy to improve TMZ's therapeutic efficiency.
Collapse
Affiliation(s)
- Leina Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; Key Laboratory of Glycoscience and Glycotechnology of Shandong Province; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | | | | | | | | | | |
Collapse
|
33
|
Zhu J, Wang H, Fan Y, Lin Y, Zhang L, Ji X, Zhou M. Targeting the NF-E2-related factor 2 pathway: a novel strategy for glioblastoma (review). Oncol Rep 2014; 32:443-50. [PMID: 24926991 DOI: 10.3892/or.2014.3259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/26/2014] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most common and malignant subtype among all brain tumors. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component of cellular defense against a variety of endogenous and exogenous stresses. A marked increase in research over the past few decades focusing on Nrf2 and its role in regulating glioblastoma has revealed the potential value of Nrf2 in the treatment of glioblastoma. In the present review, we discuss a novel framework of Nrf2 in the regulation of glioblastoma and the mechanisms regarding the downregulation of Nrf2 in treating glioblastoma. The candidate mechanisms include direct and indirect means. Direct mechanisms target tumor molecular pathways in order to overcome resistance to chemotherapy and radiotherapy, to inhibit proliferation, to block invasion and migration, to induce apoptosis, to promote differentiation, to enhance autophagy and to target glioblastoma stem cells. Indirect mechanisms target the reaction between glioblastoma cells and the surrounding microenvironment. Overall, the value of the Nrf2 pathway in glioblastoma provides a promising opportunity for new approaches by which to treat glioblastoma.
Collapse
Affiliation(s)
- Jianhong Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Youwu Fan
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiangjun Ji
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|