1
|
Zhang Y, Wang F, Huang Y. PDZK1 is correlated with DCE-MRI perfusion parameters in high-grade glioma. Clinics (Sao Paulo) 2024; 79:100367. [PMID: 38692010 PMCID: PMC11070665 DOI: 10.1016/j.clinsp.2024.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVE This study investigated the relationship between PDZK1 expression and Dynamic Contrast-Enhanced MRI (DCE-MRI) perfusion parameters in High-Grade Glioma (HGG). METHODS Preoperative DCE-MRI scanning was performed on 80 patients with HGG to obtain DCE perfusion transfer coefficient (Ktrans), vascular plasma volume fraction (vp), extracellular volume fraction (ve), and reverse transfer constant (kep). PDZK1 in HGG patients was detected, and its correlation with DCE-MRI perfusion parameters was assessed by the Pearson method. An analysis of Cox regression was performed to determine the risk factors affecting survival, while Kaplan-Meier and log-rank tests to evaluate PDZK1's prognostic significance, and ROC curve analysis to assess its diagnostic value. RESULTS PDZK1 was upregulated in HGG patients and predicted poor overall survival and progression-free survival. Moreover, PDZK1 expression distinguished grade III from grade IV HGG. PDZK1 expression was positively correlated with Ktrans 90, and ve_90, and negatively correlated with kep_max, and kep_90. CONCLUSION PDZK1 is upregulated in HGG, predicts poor survival, and differentiates tumor grading in HGG patients. PDZK1 expression is correlated with DCE-MRI perfusion parameters.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiology, The First People's Hospital of Shuangliu District, (West China Airport Hospital of Sichuan University), Chengdu City, Sichuan Province, China.
| | - Feng Wang
- Department of Radiology, The First People's Hospital of Shuangliu District, (West China Airport Hospital of Sichuan University), Chengdu City, Sichuan Province, China
| | - YongLi Huang
- Department of Radiology, The First People's Hospital of Shuangliu District, (West China Airport Hospital of Sichuan University), Chengdu City, Sichuan Province, China
| |
Collapse
|
2
|
Lambrecht S, Liu D, Dzaye O, Kamson DO, Reis J, Liebig T, Holdhoff M, Van Zijl P, Qin Q, Lin DDM. Velocity-Selective Arterial Spin Labeling Perfusion in Monitoring High Grade Gliomas Following Therapy: Clinical Feasibility at 1.5T and Comparison with Dynamic Susceptibility Contrast Perfusion. Brain Sci 2024; 14:126. [PMID: 38391701 PMCID: PMC10886779 DOI: 10.3390/brainsci14020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
MR perfusion imaging is important in the clinical evaluation of primary brain tumors, particularly in differentiating between true progression and treatment-induced change. The utility of velocity-selective ASL (VSASL) compared to the more commonly utilized DSC perfusion technique was assessed in routine clinical surveillance MR exams of 28 patients with high-grade gliomas at 1.5T. Using RANO criteria, patients were assigned to two groups, one with detectable residual/recurrent tumor ("RT", n = 9), and the other with no detectable residual/recurrent tumor ("NRT", n = 19). An ROI was drawn to encompass the largest dimension of the lesion with measures normalized against normal gray matter to yield rCBF and tSNR from VSASL, as well as rCBF and leakage-corrected relative CBV (lc-rCBV) from DSC. VSASL (rCBF and tSNR) and DSC (rCBF and lc-rCBV) metrics were significantly higher in the RT group than the NRT group allowing adequate discrimination (p < 0.05, Mann-Whitney test). Lin's concordance analyses showed moderate to excellent concordance between the two methods, with a stronger, moderate correlation between VSASL rCBF and DSC lc-rCBV (r = 0.57, p = 0.002; Pearson's correlation). These results suggest that VSASL is clinically feasible at 1.5T and has the potential to offer a noninvasive alternative to DSC perfusion in monitoring high-grade gliomas following therapy.
Collapse
Affiliation(s)
- Sebastian Lambrecht
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute of Neuroradiology, University Hospital LMU Munich, 81377 Munich, Germany
| | - Dapeng Liu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Omar Dzaye
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David O Kamson
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonas Reis
- Institute of Neuroradiology, University Hospital LMU Munich, 81377 Munich, Germany
| | - Thomas Liebig
- Institute of Neuroradiology, University Hospital LMU Munich, 81377 Munich, Germany
| | - Matthias Holdhoff
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Peter Van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Qin Qin
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Doris D M Lin
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Young JR, Ressler JA, Shiroishi MS, Mortimer JE, Schmolze D, Fitzgibbons M, Chen BT. Association of Relative Cerebral Blood Volume from Dynamic Susceptibility Contrast-Enhanced Perfusion MR with HER2 Status in Breast Cancer Brain Metastases. Acad Radiol 2023; 30:1816-1822. [PMID: 36549990 DOI: 10.1016/j.acra.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
RATIONALE AND OBJECTIVES With the development of HER2-directed therapies, identifying non-invasive imaging biomarkers of HER2 expression in breast cancer brain metastases has become increasingly important. The purpose of this study was to investigate whether relative cerebral blood volume (rCBV) from dynamic susceptibility contrast-enhanced (DSC) perfusion MR could help identify the HER2 status of breast cancer brain metastases. MATERIALS AND METHODS With IRB approval for this HIPAA-compliant cross-sectional study and a waiver of informed consent, we queried our institution's electronic medical record to derive a cohort of 14 histologically proven breast cancer brain metastases with preoperative DSC perfusion MR and HER2 analyses of the resected/biopsied brain specimens from 2011-2021. The rCBV of the lesions was measured and compared using Mann-Whitney tests. Receiver operating characteristic analyses were performed to evaluate the performance of rCBV in identifying HER2 status. RESULTS The study cohort was comprised of 14 women with a mean age of 56 years (range: 32-81 years) with a total of 14 distinct lesions. The rCBV of HER2-positive breast cancer brain metastases was significantly greater than the rCBV of HER2-negative lesions (8.02 vs 3.97, U=48.00, p=0.001). rCBV differentiated HER2-positive lesions from HER2-negative lesions with an area under the curve of 0.98 (standard error=0.032, p<0.001). The accuracy-maximizing rCBV threshold (4.8) was associated with an accuracy of 93% (13/14), a sensitivity of 100% (7/7), and a specificity of 86% (6/7). CONCLUSION rCBV may assist in identifying the HER2 status of breast cancer brain metastases, if validated in a large prospective trial.
Collapse
Affiliation(s)
- Jonathan R Young
- Division of Neuroradiology, Department of Radiology, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, California, 91010.
| | - Julie A Ressler
- Division of Neuroradiology, Department of Radiology, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, California, 91010
| | - Mark S Shiroishi
- Division of Neuroradiology, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joanne E Mortimer
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Daniel Schmolze
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Mariko Fitzgibbons
- Division of Neuroradiology, Department of Radiology, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, California, 91010
| | - Bihong T Chen
- Division of Neuroradiology, Department of Radiology, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, California, 91010
| |
Collapse
|
4
|
Grading of IDH-mutant astrocytoma using diffusion, susceptibility and perfusion-weighted imaging. BMC Med Imaging 2022; 22:105. [PMID: 35644621 PMCID: PMC9150301 DOI: 10.1186/s12880-022-00832-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/24/2022] [Indexed: 01/16/2023] Open
Abstract
Background The accurate grading of IDH-mutant astrocytoma is essential to make therapeutic strategies and assess the prognosis of patients. The purpose of this study was to investigate the usefulness of DWI, SWI and DSC-PWI in grading IDH-mutant astrocytoma. Methods One hundred and seven patients with IDH-mutant astrocytoma who underwent DWI, SWI and DSC-PWI were retrospectively reviewed. Minimum apparent diffusion coefficient (ADCmin), intratumoral susceptibility signal intensity(ITSS) and maximum relative cerebral blood volume (rCBVmax) values were assessed. ADCmin, ITSS and rCBVmax values were compared between grade 2 vs. grade 3, grade 3 vs. grade 4 and grade 2 + 3 vs. grade 4 tumors. Logistic regression, tenfold cross-validation,and receiver operating characteristic (ROC) curve analyses were used to assess their diagnostic performances. Results Grade 4 IDH-mutant astrocytomas showed significantly lower ADCmin and higher rCBVmax as compared to grade 3 tumors (adjusted P < 0.001). IDH-mutant grade 3 astrocytomas showed significantly lower ITSS levels as compared with grade 4 tumors (adjusted P < 0.001). ITSS levels between IDH-mutant grade 2 and grade 3 astrocytomas were significantly different (adjusted P = 0.002). Combined the ADCmin, ITSS and rCBVmax resulted in the highest AUC for differentiation grade 2 and grade 3 tumors from grade 4 tumors. Conclusion ADCmin, rCBVmax and ITSS can be used for grading the IDH-mutant astrocytomas. The combination of ADCmin, ITSS and rCBVmax could improve the diagnostic performance in grading of IDH-mutant astrocytoma.
Collapse
|
5
|
Stumpo V, Guida L, Bellomo J, Van Niftrik CHB, Sebök M, Berhouma M, Bink A, Weller M, Kulcsar Z, Regli L, Fierstra J. Hemodynamic Imaging in Cerebral Diffuse Glioma-Part B: Molecular Correlates, Treatment Effect Monitoring, Prognosis, and Future Directions. Cancers (Basel) 2022; 14:1342. [PMID: 35267650 PMCID: PMC8909110 DOI: 10.3390/cancers14051342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Gliomas, and glioblastoma in particular, exhibit an extensive intra- and inter-tumoral molecular heterogeneity which represents complex biological features correlating to the efficacy of treatment response and survival. From a neuroimaging point of view, these specific molecular and histopathological features may be used to yield imaging biomarkers as surrogates for distinct tumor genotypes and phenotypes. The development of comprehensive glioma imaging markers has potential for improved glioma characterization that would assist in the clinical work-up of preoperative treatment planning and treatment effect monitoring. In particular, the differentiation of tumor recurrence or true progression from pseudoprogression, pseudoresponse, and radiation-induced necrosis can still not reliably be made through standard neuroimaging only. Given the abundant vascular and hemodynamic alterations present in diffuse glioma, advanced hemodynamic imaging approaches constitute an attractive area of clinical imaging development. In this context, the inclusion of objective measurable glioma imaging features may have the potential to enhance the individualized care of diffuse glioma patients, better informing of standard-of-care treatment efficacy and of novel therapies, such as the immunotherapies that are currently increasingly investigated. In Part B of this two-review series, we assess the available evidence pertaining to hemodynamic imaging for molecular feature prediction, in particular focusing on isocitrate dehydrogenase (IDH) mutation status, MGMT promoter methylation, 1p19q codeletion, and EGFR alterations. The results for the differentiation of tumor progression/recurrence from treatment effects have also been the focus of active research and are presented together with the prognostic correlations identified by advanced hemodynamic imaging studies. Finally, the state-of-the-art concepts and advancements of hemodynamic imaging modalities are reviewed together with the advantages derived from the implementation of radiomics and machine learning analyses pipelines.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Lelio Guida
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jacopo Bellomo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Christiaan Hendrik Bas Van Niftrik
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, 69500 Lyon, France;
| | - Andrea Bink
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Zsolt Kulcsar
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| |
Collapse
|
6
|
Zhu L, Wu J, Zhang H, Niu H, Wang L. The value of intravoxel incoherent motion imaging in predicting the survival of patients with astrocytoma. Acta Radiol 2021; 62:423-429. [PMID: 32551800 DOI: 10.1177/0284185120926907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND The evaluation of the prognosis of gliomas may have great value in individualized treatment. PURPOSE To evaluate the value of intravoxel incoherent motion (IVIM) in predicting the survival of patients with astrocytoma and comparing it to apparent diffusion coefficients (ADC). MATERIAL AND METHODS Sixty patients with pathologically confirmed cerebral astrocytomas underwent IVIM scans before any treatment was performed. Patients were divided into death group and survival group according to a two-year follow-up. ADC and quantitative parameters of IVIM including D, D*, and f were measured. Independent sample t test was used to compare the two groups of parameters. The accuracy of each parameter for two-year survival rate was analyzed by receiver operating characteristic (ROC) curve and Kaplan-Meier survival curves. The correlation between quantitative parameters and survival days was analyzed by Pearson correlation analysis. RESULTS The ADC, D*, and f values were statistically significant different between the death and the survival groups (P < 0.05). The AUC of the ADC, D*, and f were 0.811, 0.858, and 0.892, respectively. The ADC cut-off value of 0.668 × 10-3 mm2/s corresponded to 82.6% sensitivity and 73% specificity. The D* cut-off value of 3.913 × 10-3 mm2/s corresponded to 78.4% sensitivity and 87% specificity. The f cut-off value of 0.487 corresponded to 83.8% sensitivity and 87% specificity. Significant log rank test was performed for each parameter to predict overall survival (P < 0.05). There was a correlation between ADC (r = 0.625, P = 0.023), D* (r = -0.655, P = 0.012), f (r = -0.725, P = 0.000) and survival days. CONCLUSION The D* and f values demonstrated great potential in predicting the two-year survival rate for patients with astrocytoma.
Collapse
Affiliation(s)
- Lina Zhu
- Department of Magnetic Resonance, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, PR China
| | - Jiang Wu
- Department of Magnetic Resonance, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, PR China
| | - Hui Zhang
- Department of Magnetic Resonance, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Heng Niu
- Department of Magnetic Resonance, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, PR China
| | - Le Wang
- Department of Magnetic Resonance, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
7
|
Brendle C, Klose U, Hempel JM, Schittenhelm J, Skardelly M, Tabatabai G, Ernemann U, Bender B. Association of dynamic susceptibility magnetic resonance imaging at initial tumor diagnosis with the prognosis of different molecular glioma subtypes. Neurol Sci 2020; 41:3625-3632. [PMID: 32462389 PMCID: PMC8203510 DOI: 10.1007/s10072-020-04474-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Purpose The updated 2016 CNS World Health Organization classification differentiates three main groups of diffuse glioma according to their molecular characteristics: astrocytic tumors with and without isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deleted oligodendrogliomas. The present study aimed to determine whether dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) is an independent prognostic marker within the molecular subgroups of diffuse glioma. Methods Fifty-six patients with treatment-naive gliomas and advanced preoperative MRI examination were assessed retrospectively. The mean and maximal normalized cerebral blood volume values from DSC-MRI within the tumors were measured. Optimal cutoff values for the 1-year progression-free survival (PFS) were defined, and Kaplan-Meier analyses were performed separately for the three glioma subgroups. Results IDH wild-type astrocytic tumors had a higher mean and maximal perfusion than IDH-mutant astrocytic tumors and oligodendrogliomas. Patients with IDH wild-type astrocytic tumors and a low mean or maximal perfusion had a significantly shorter PFS than patients of the same group with high perfusion (p = 0.0159/0.0112). Furthermore, they had a significantly higher risk for early progression (hazard ratio = 5.6/5.1). This finding was independent of the methylation status of O6-methylguanin-DNA-methyltransferase and variations of the therapy. Within the groups of IDH-mutant astrocytic tumors and oligodendrogliomas, the PFS of low and highly perfused tumors did not differ. Conclusion High perfusion upon initial diagnosis is not compellingly associated with worse short-term prognosis within the different molecular subgroups of diffuse glioma. Particularly, the overall highly perfused group of IDH wild-type astrocytic tumors contains tumors with low perfusion but unfavorable prognosis.
Collapse
Affiliation(s)
- Cornelia Brendle
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany.
| | - Uwe Klose
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Johann-Martin Hempel
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Jens Schittenhelm
- Neuropathology, Department of Pathology and Neuropathology, Eberhard Karls University, Calwerstr. 3, 72076, Tuebingen, Germany
| | - Marco Skardelly
- University Hospital for Neurosurgery, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Ghazaleh Tabatabai
- Interdisciplinary Section of Neurooncology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Ulrike Ernemann
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Benjamin Bender
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| |
Collapse
|
8
|
Using Magnetic Resonance Perfusion to Stratify Overall Survival in Treated High-Grade Gliomas. Can J Neurol Sci 2019; 46:533-539. [PMID: 31284880 DOI: 10.1017/cjn.2019.225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND MR perfusion imaging is a relatively new technique that may aid in identifying recurrent tumor (RT) in those with radically treated high-grade gliomas (HGG). We aim to assess the relationship between dynamic susceptibility contrast-enhanced MR perfusion (DSC-MRP) and overall survival to establish a baseline for future research and to determine the utility of DSC-MRP as a clinical decision-making and prognostic tool. METHODS We conducted a retrospective cohort study. Adults with pathologically confirmed HGG at the Juravinski Cancer Centre, Ontario between January 2011 and April 2014 with at least one post-treatment DSC-MRP were included. DSC-MRP was interpreted as positive or negative for tumor recurrence by experienced radiologists. The primary outcome was overall survival. RESULTS Sixty-one patients were enrolled. Median survival for patients with a positive DSC-MRP scan was 4.5 months compared with 10.2 months for those with a negative DSC-MRP scan (hazard ratio [unadjusted] = 2.51; 95% confidence interval = 1.10-5.67; p-value = 0.03). Multivariable modeling (adjusted) that included all pre-selected variables showed similar results. CONCLUSION Survival time in patients with HGG is generally low, and almost all patients will demonstrate RT. Our data suggest a positive DSC-MRP correlates with lower overall survival and may signify the presence of highly active RT. These results generate a hypothesis that there may be a prognostic role for the use of serial DSC-MRP for tumor surveillance. More importantly, this biomarker may aid in decision making for treatment plans and palliation.
Collapse
|
9
|
Survival Associations Using Perfusion and Diffusion Magnetic Resonance Imaging in Patients With Histologic and Genetic Defined Diffuse Glioma World Health Organization Grades II and III. J Comput Assist Tomogr 2018; 42:807-815. [PMID: 29901512 DOI: 10.1097/rct.0000000000000742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE According to the new World Health Organization 2016 classification for tumors of the central nervous system, 1p/19q codeletion defines the genetic hallmark that differentiates oligodendrogliomas from diffuse astrocytomas. The aim of our study was to evaluate whether relative cerebral blood volume (rCBV) and apparent diffusion coefficient (ADC) histogram analysis can stratify survival in adult patients with genetic defined diffuse glioma grades II and III. METHODS Sixty-seven patients with untreated diffuse gliomas World Health Organization grades II and III and known 1p/19q codeletion status were included retrospectively and analyzed using ADC and rCBV maps based on whole-tumor volume histograms. Overall survival and progression-free survival (PFS) were analyzed by using Kaplan-Meier and Cox survival analyses adjusted for known survival predictors. RESULTS Significant longer PFS was associated with homogeneous rCBV distribution-higher rCBVpeak (median, 37 vs 26 months; hazard ratio [HR], 3.2; P = 0.02) in patients with astrocytomas, and heterogeneous rCBV distribution-lower rCBVpeak (median, 46 vs 37 months; HR, 5.3; P < 0.001) and higher rCBVmean (median, 44 vs 39 months; HR, 7.9; P = 0.003) in patients with oligodendrogliomas. Apparent diffusion coefficient parameters (ADCpeak, ADCmean) did not stratify PFS and overall survival. CONCLUSIONS Tumors with heterogeneous perfusion signatures and high average values were associated with longer PFS in patients with oligodendrogliomas. On the contrary, heterogeneous perfusion distribution was associated with poor outcome in patients with diffuse astrocytomas.
Collapse
|
10
|
Qin L, Li X, Li A, Cheng S, Qu J, Reinshagen K, Hu J, Himes N, Lu G, Xu X, Young GS. Clinical Validation of Automatable Gaussian Normalized CBV in Brain Tumor Analysis: Superior Reproducibility and Slightly Better Association with Survival than Current Standard Manual Normal Appearing White Matter Normalization. Transl Oncol 2018; 11:1398-1405. [PMID: 30216765 PMCID: PMC6138997 DOI: 10.1016/j.tranon.2018.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To validate Gaussian normalized cerebral blood volume (GN-nCBV) by association with overall survival (OS) in newly diagnosed glioblastoma patients and compare this association with current standard white matter normalized cerebral blood volume (WN-nCBV). METHODS We retrieved spin-echo echo-planar dynamic susceptibility contrast MRI acquired after maximal resection and prior to radiation therapy between 2006 and 2011 in 51 adult patients (28 male, 23 female; age 23-87 years) with newly diagnosed glioblastoma. Software code was developed in house to perform Gaussian normalization of CBV to the standard deviation of the whole brain CBV. Three expert readers manually selected regions of interest in tumor and normal-appearing white matter on CBV maps. Receiver operating characteristics (ROC) curves associating nCBV with 15-month OS were calculated for both GN-nCBV and WN-nCBV. Reproducibility and interoperator variability were compared using within-subject coefficient of variation (wCV) and intraclass correlation coefficients (ICCs). RESULTS GN-nCBV ICC (≥0.82) and wCV (≤21%) were superior to WN-nCBV ICC (0.54-0.55) and wCV (≥46%). The area under the ROC curve analysis demonstrated both GN-nCBV and WN-nCBV to be good predictors of OS, but GN-nCBV was consistently superior, although the difference was not statistically significant. CONCLUSION GN-nCBV has a slightly better association with clinical gold standard OS than conventional WM-nCBV in our glioblastoma patient cohort. This equivalent or superior validity, combined with the advantages of higher reproducibility, lower interoperator variability, and easier automation, makes GN-nCBV superior to WM-nCBV for clinical and research use in glioma patients. We recommend widespread adoption and incorporation of GN-nCBV into commercial dynamic susceptibility contrast processing software.
Collapse
Affiliation(s)
- Lei Qin
- Dana-Farber Cancer Institute, Department of Imaging, Boston, MA, USA; Harvard Medical School, Department of Radiology, Boston, MA, USA
| | - Xiang Li
- Brigham and Women's Hospital, Department of Radiology, Boston, MA, USA; Affiliated Cancer Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, Henan, China
| | - Angie Li
- Brigham and Women's Hospital, Department of Radiology, Boston, MA, USA; The Robert Larner, M.D. College of Medicine at the University of Vermont, Burlington, VT, USA
| | - Suchun Cheng
- Dana-Farber Cancer Institute, Department of Biostatistics and Computational Biology, Boston, MA, USA
| | - Jinrong Qu
- Brigham and Women's Hospital, Department of Radiology, Boston, MA, USA; Affiliated Cancer Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, Henan, China
| | - Katherine Reinshagen
- Harvard Medical School, Department of Radiology, Boston, MA, USA; Brigham and Women's Hospital, Department of Radiology, Boston, MA, USA; Massachusetts Eye and Ear Infirmary, Department of Radiology, Boston, MA, USA
| | - Jiani Hu
- Dana-Farber Cancer Institute, Department of Biostatistics and Computational Biology, Boston, MA, USA
| | - Nathan Himes
- Brigham and Women's Hospital, Department of Radiology, Boston, MA, USA; Medical Imaging of Lehigh Valley, Lehigh Valley Hospital, Allentown, PA, USA
| | - Gao Lu
- Brigham and Women's Hospital, Department of Radiology, Boston, MA, USA; Peking Union Medical College Hospital, Department of Neurosurgery, Beijing, China
| | - Xiaoyin Xu
- Peking Union Medical College Hospital, Department of Neurosurgery, Beijing, China; Peking Union Medical College Hospital, Department of Neurosurgery, Beijing, China
| | - Geoffrey S Young
- Dana-Farber Cancer Institute, Department of Imaging, Boston, MA, USA; Harvard Medical School, Department of Radiology, Boston, MA, USA; Brigham and Women's Hospital, Department of Radiology, Boston, MA, USA.
| |
Collapse
|
11
|
Komatsu K, Wanibuchi M, Mikami T, Akiyama Y, Iihoshi S, Miyata K, Sugino T, Suzuki K, Kanno A, Noshiro S, Ohtaki S, Mikuni N. Arterial Spin Labeling Method as a Supplemental Predictor to Distinguish Between High- and Low-Grade Gliomas. World Neurosurg 2018. [DOI: 10.1016/j.wneu.2018.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
McCullough BJ, Ader V, Aguedan B, Feng X, Susanto D, Benkers TL, Henson JW, Mayberg M, Cobbs CS, Gwinn RP, Monteith SJ, Newell DW, Delashaw J, Fouke SJ, Rostad S, Keogh BP. Preoperative relative cerebral blood volume analysis in gliomas predicts survival and mitigates risk of biopsy sampling error. J Neurooncol 2017; 136:181-188. [PMID: 29098571 DOI: 10.1007/s11060-017-2642-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022]
Abstract
Appropriate management of adult gliomas requires an accurate histopathological diagnosis. However, the heterogeneity of gliomas can lead to misdiagnosis and undergrading, especially with biopsy. We evaluated the role of preoperative relative cerebral blood volume (rCBV) analysis in conjunction with histopathological analysis as a predictor of overall survival and risk of undergrading. We retrospectively identified 146 patients with newly diagnosed gliomas (WHO grade II-IV) that had undergone preoperative MRI with rCBV analysis. We compared overall survival by histopathologically determined WHO tumor grade and by rCBV using Kaplan-Meier survival curves and the Cox proportional hazards model. We also compared preoperative imaging findings and initial histopathological diagnosis in 13 patients who underwent biopsy followed by subsequent resection. Survival curves by WHO grade and rCBV tier similarly separated patients into low, intermediate, and high-risk groups with shorter survival corresponding to higher grade or rCBV tier. The hazard ratio for WHO grade III versus II was 3.91 (p = 0.018) and for grade IV versus II was 11.26 (p < 0.0001) and the hazard ratio for each increase in 1.0 rCBV units was 1.12 (p < 0.002). Additionally, 3 of 13 (23%) patients initially diagnosed by biopsy were upgraded on subsequent resection. Preoperative rCBV was elevated at least one standard deviation above the mean in the 3 upgraded patients, suggestive of undergrading, but not in the ten concordant diagnoses. In conclusion, rCBV can predict overall survival similarly to pathologically determined WHO grade in patients with gliomas. Discordant rCBV analysis and histopathology may help identify patients at higher risk for undergrading.
Collapse
Affiliation(s)
- Brendan J McCullough
- Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA.
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, 550 17th Avenue, Seattle, WA, 98122, USA.
- Radia, Inc., 19020 33rd Avenue West, Suite 210, Lynwood, WA, 98036, USA.
- Department of Health Services, University of Washington, 4333 Brooklyn Avenue NE, Box 359455, Seattle, WA, 98195, USA.
| | - Valerie Ader
- Radia, Inc., 19020 33rd Avenue West, Suite 210, Lynwood, WA, 98036, USA
| | - Brian Aguedan
- Radia, Inc., 19020 33rd Avenue West, Suite 210, Lynwood, WA, 98036, USA
| | - Xu Feng
- Radia, Inc., 19020 33rd Avenue West, Suite 210, Lynwood, WA, 98036, USA
| | - Daniel Susanto
- Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
- Radia, Inc., 19020 33rd Avenue West, Suite 210, Lynwood, WA, 98036, USA
| | - Tara L Benkers
- Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
| | - John W Henson
- Piedmont Brain Tumor Center, 2001 Peachtree Road, Suite 645, Atlanta, GA, 30309, USA
| | - Marc Mayberg
- Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
| | - Charles S Cobbs
- Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
| | - Ryder P Gwinn
- Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
| | - Stephen J Monteith
- Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
| | - David W Newell
- Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
| | - Johnny Delashaw
- Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
| | - Sarah J Fouke
- Brain and Spine Center, St. Luke's Hospital, 232 South Woods Mill Road, St. Louis, MO, 63117, USA
| | - Steven Rostad
- Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
- Cellnetix Pathology, 1124 Columbia Street, Suite 200, Seattle, WA, 98104, USA
| | - Bart P Keogh
- Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
- Radia, Inc., 19020 33rd Avenue West, Suite 210, Lynwood, WA, 98036, USA
| |
Collapse
|
13
|
Liu X, Mangla R, Tian W, Qiu X, Li D, Walter KA, Ekholm S, Johnson MD. The preliminary radiogenomics association between MR perfusion imaging parameters and genomic biomarkers, and their predictive performance of overall survival in patients with glioblastoma. J Neurooncol 2017; 135:553-560. [PMID: 28889246 DOI: 10.1007/s11060-017-2602-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/20/2017] [Indexed: 12/20/2022]
Abstract
The radiogenomics association of neovascularization is important for overall survival (OS) in glioblastoma patients and remains unclear. The purpose of this study is to assess the association between MR perfusion imaging derived parameters and genomic biomarkers of glioblastoma, and to evaluate their prognostic value. This retrospective study enrolled 41 patients with newly diagnosed glioblastoma. The mean and maximal relative cerebral blood volume (rCBV) ratio (rCBVmean and rCBVmax), derived from MR perfusion weighted imaging, of the enhancing tumor, as well as maximal rCBV ratio of peri-enhancing tumor area (rCBVperi-tumor) were measured. The ki-67 labeling index, mammalian target of rapamycin (mTOR) activation, epidermal growth factor receptor (EGFR) amplification, isocitrate dehydrogenase (IDH) mutation and TP53 were assessed. There was a significant correlation between rCBVmax and mTOR based on Pearson's correlations with Benjamini-Hochberg adjustment for controlling false discovery rate, p = 0.047. The rCBVperi-tumor showed significant correlation with mTOR (p = 0.0183) after adjustment of gender and EGFR status. The mean rCBVperi-tumor value of the patients with OS shorter than 14 months was significantly higher than patients with OS longer than 14 months, p = 0.002. The rCBVperi-tumor and age were the two strongest predictors of OS (hazard ratio = 1.29 and 1.063 respectively) by Cox regression analysis. This study showed that hemodynamic abnormalities of glioblastoma were associated with genomics activation status of mTOR-EGFR pathway, however, the radiogenomics associations are different in enhancing and peri-enhancing area of glioblastoma. The rCBVperi-tumor has better prognostic value than genomic biomarkers alone.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, PO Box 648, Rochester, NY, 14642-8638, USA.
| | - Rajiv Mangla
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, PO Box 648, Rochester, NY, 14642-8638, USA
| | - Wei Tian
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, PO Box 648, Rochester, NY, 14642-8638, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Dongmei Li
- Clinical and Translational Research and Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Kevin A Walter
- Department of Neurosurgey, University of Rochester Medical Center, Rochester, NY, USA
| | - Sven Ekholm
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, PO Box 648, Rochester, NY, 14642-8638, USA
| | - Mahlon D Johnson
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
14
|
Xing Z, Yang X, She D, Lin Y, Zhang Y, Cao D. Noninvasive Assessment of IDH Mutational Status in World Health Organization Grade II and III Astrocytomas Using DWI and DSC-PWI Combined with Conventional MR Imaging. AJNR Am J Neuroradiol 2017; 38:1138-1144. [PMID: 28450436 DOI: 10.3174/ajnr.a5171] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/06/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Isocitrate dehydrogenase (IDH) has been shown to have both diagnostic and prognostic implications in gliomas. The purpose of this study was to examine whether DWI and DSC-PWI combined with conventional MR imaging could noninvasively predict IDH mutational status in World Health Organization grade II and III astrocytomas. MATERIALS AND METHODS We retrospectively reviewed DWI, DSC-PWI, and conventional MR imaging in 42 patients with World Health Organization grade II and III astrocytomas. Minimum ADC, relative ADC, and relative maximum CBV values were compared between IDH-mutant and wild-type tumors by using the Mann-Whitney U test. Receiver operating characteristic curve and logistic regression were used to assess their diagnostic performances. RESULTS Minimum ADC and relative ADC were significantly higher in IDH-mutated grade II and III astrocytomas than in IDH wild-type tumors (P < .05). Minimum ADC with the cutoff value of ≥1.01 × 10-3 mm2/s could differentiate the mutational status with a sensitivity, specificity, positive predictive value, and negative predictive value of 76.9%, 82.6%, 91.2%, and 60.5%, respectively. The threshold value of <2.35 for relative maximum CBV in the prediction of IDH mutation provided a sensitivity, specificity, positive predictive value, and negative predictive value of 100.0%, 60.9%, 85.6%, and 100.0%, respectively. A combination of DWI, DSC-PWI, and conventional MR imaging for the identification of IDH mutations resulted in a sensitivity, specificity, positive predictive value, and negative predictive value of 92.3%, 91.3%, 96.1%, and 83.6%. CONCLUSIONS A combination of conventional MR imaging, DWI, and DSC-PWI techniques produces a high sensitivity, specificity, positive predictive value, and negative predictive value for predicting IDH mutations in grade II and III astrocytomas. The strategy of using advanced, semiquantitative MR imaging techniques may provide an important, noninvasive, surrogate marker that should be studied further in larger, prospective trials.
Collapse
Affiliation(s)
- Z Xing
- From the Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - X Yang
- From the Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - D She
- From the Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Y Lin
- From the Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Y Zhang
- From the Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - D Cao
- From the Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China.
| |
Collapse
|
15
|
Hiremath SB, Muraleedharan A, Kumar S, Nagesh C, Kesavadas C, Abraham M, Kapilamoorthy TR, Thomas B. Combining Diffusion Tensor Metrics and DSC Perfusion Imaging: Can It Improve the Diagnostic Accuracy in Differentiating Tumefactive Demyelination from High-Grade Glioma? AJNR Am J Neuroradiol 2017; 38:685-690. [PMID: 28209583 DOI: 10.3174/ajnr.a5089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/04/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Tumefactive demyelinating lesions with atypical features can mimic high-grade gliomas on conventional imaging sequences. The aim of this study was to assess the role of conventional imaging, DTI metrics (p:q tensor decomposition), and DSC perfusion in differentiating tumefactive demyelinating lesions and high-grade gliomas. MATERIALS AND METHODS Fourteen patients with tumefactive demyelinating lesions and 21 patients with high-grade gliomas underwent brain MR imaging with conventional, DTI, and DSC perfusion imaging. Imaging sequences were assessed for differentiation of the lesions. DTI metrics in the enhancing areas and perilesional hyperintensity were obtained by ROI analysis, and the relative CBV values in enhancing areas were calculated on DSC perfusion imaging. RESULTS Conventional imaging sequences had a sensitivity of 80.9% and specificity of 57.1% in differentiating high-grade gliomas (P = .049) from tumefactive demyelinating lesions. DTI metrics (p:q tensor decomposition) and DSC perfusion demonstrated a statistically significant difference in the mean values of ADC, the isotropic component of the diffusion tensor, the anisotropic component of the diffusion tensor, the total magnitude of the diffusion tensor, and rCBV among enhancing portions in tumefactive demyelinating lesions and high-grade gliomas (P ≤ .02), with the highest specificity for ADC, the anisotropic component of the diffusion tensor, and relative CBV (92.9%). Mean fractional anisotropy values showed no significant statistical difference between tumefactive demyelinating lesions and high-grade gliomas. The combination of DTI and DSC parameters improved the diagnostic accuracy (area under the curve = 0.901). Addition of a heterogeneous enhancement pattern to DTI and DSC parameters improved it further (area under the curve = 0.966). The sensitivity increased from 71.4% to 85.7% after the addition of the enhancement pattern. CONCLUSIONS DTI and DSC perfusion add profoundly to conventional imaging in differentiating tumefactive demyelinating lesions and high-grade gliomas. The combination of DTI metrics and DSC perfusion markedly improved diagnostic accuracy.
Collapse
Affiliation(s)
- S B Hiremath
- From the Departments of Imaging Sciences and Interventional Radiology (S.B.H., A.M., S.K., C.N., C.K., T.R.K., B.T.)
| | - A Muraleedharan
- From the Departments of Imaging Sciences and Interventional Radiology (S.B.H., A.M., S.K., C.N., C.K., T.R.K., B.T.)
| | - S Kumar
- From the Departments of Imaging Sciences and Interventional Radiology (S.B.H., A.M., S.K., C.N., C.K., T.R.K., B.T.)
| | - C Nagesh
- From the Departments of Imaging Sciences and Interventional Radiology (S.B.H., A.M., S.K., C.N., C.K., T.R.K., B.T.)
| | - C Kesavadas
- From the Departments of Imaging Sciences and Interventional Radiology (S.B.H., A.M., S.K., C.N., C.K., T.R.K., B.T.)
| | - M Abraham
- Neurosurgery (M.A.), Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - T R Kapilamoorthy
- From the Departments of Imaging Sciences and Interventional Radiology (S.B.H., A.M., S.K., C.N., C.K., T.R.K., B.T.)
| | - B Thomas
- From the Departments of Imaging Sciences and Interventional Radiology (S.B.H., A.M., S.K., C.N., C.K., T.R.K., B.T.)
| |
Collapse
|
16
|
Ulyte A, Katsaros VK, Liouta E, Stranjalis G, Boskos C, Papanikolaou N, Usinskiene J, Bisdas S. Prognostic value of preoperative dynamic contrast-enhanced MRI perfusion parameters for high-grade glioma patients. Neuroradiology 2016; 58:1197-1208. [PMID: 27796446 PMCID: PMC5153415 DOI: 10.1007/s00234-016-1741-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/16/2016] [Indexed: 12/22/2022]
Abstract
Introduction The prognostic value of the dynamic contrast-enhanced (DCE) MRI perfusion and its histogram analysis-derived metrics is not well established for high-grade glioma (HGG) patients. The aim of this prospective study was to investigate DCE perfusion transfer coefficient (Ktrans), vascular plasma volume fraction (vp), extracellular volume fraction (ve), reverse transfer constant (kep), and initial area under gadolinium concentration time curve (IAUGC) as predictors of progression-free (PFS) and overall survival (OS) in HGG patients. Methods Sixty-nine patients with suspected anaplastic astrocytoma or glioblastoma underwent preoperative DCE-MRI scans. DCE perfusion whole tumor region histogram parameters, clinical details, and PFS and OS data were obtained. Univariate, multivariate, and Kaplan–Meier survival analyses were conducted. Receiver operating characteristic (ROC) curve analysis was employed to identify perfusion parameters with the best differentiation performance. Results On univariate analysis, ve and skewness of vp had significant negative impacts, while kep had significant positive impact on OS (P < 0.05). ve was also a negative predictor of PFS (P < 0.05). Patients with lower ve and IAUGC had longer median PFS and OS on Kaplan–Meier analysis (P < 0.05). Ktrans and ve could also differentiate grade III from IV gliomas (area under the curve 0.819 and 0.791, respectively). Conclusions High ve is a consistent predictor of worse PFS and OS in HGG glioma patients. vp skewness and kep are also predictive for OS. Ktrans and ve demonstrated the best diagnostic performance for differentiating grade III from IV gliomas.
Collapse
Affiliation(s)
- Agne Ulyte
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vasileios K Katsaros
- Department of Advanced Imaging Modalities - CT and MRI, General Anticancer and Oncological Hospital "St. Savvas", Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, University of Athens, Athens, Greece
| | - Evangelia Liouta
- Department of Neurosurgery, Evangelismos Hospital, University of Athens, Athens, Greece
| | - Georgios Stranjalis
- Department of Neurosurgery, Evangelismos Hospital, University of Athens, Athens, Greece
| | - Christos Boskos
- Department of Neurosurgery, Evangelismos Hospital, University of Athens, Athens, Greece.,Department of Radiation Oncology, General Anticancer and Oncological Hospital "St. Savvas", Athens, Greece
| | - Nickolas Papanikolaou
- Department of Radiology, Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - Jurgita Usinskiene
- National Cancer Institute, Vilnius, Lithuania.,Affidea Lietuva, Vilnius, Lithuania
| | - Sotirios Bisdas
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, Box 65, Queen Square 8-11, London, WC1N 3BG, UK.
| |
Collapse
|
17
|
Identifying the association between contrast enhancement pattern, surgical resection, and prognosis in anaplastic glioma patients. Neuroradiology 2016; 58:367-74. [PMID: 26795126 DOI: 10.1007/s00234-016-1640-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Contrast enhancement observable on magnetic resonance (MR) images reflects the destructive features of malignant gliomas. This study aimed to investigate the relationship between radiologic patterns of tumor enhancement, extent of resection, and prognosis in patients with anaplastic gliomas (AGs). METHODS Clinical data from 268 patients with histologically confirmed AGs were retrospectively analyzed. Contrast enhancement patterns were classified based on preoperative T1-contrast MR images. Univariate and multivariate analyses were performed to evaluate the prognostic value of MR enhancement patterns on progression-free survival (PFS) and overall survival (OS). RESULTS The pattern of tumor contrast enhancement was associated with the extent of surgical resection in AGs. A gross total resection was more likely to be achieved for AGs with focal enhancement than those with diffuse (p = 0.001) or ring-like (p = 0.024) enhancement. Additionally, patients with focal-enhanced AGs had a significantly longer PFS and OS than those with diffuse (log-rank, p = 0.025 and p = 0.031, respectively) or ring-like (log-rank, p = 0.008 and p = 0.011, respectively) enhanced AGs. Furthermore, multivariate analysis identified the pattern of tumor enhancement as a significant predictor of PFS (p = 0.016, hazard ratio [HR] = 1.485) and OS (p = 0.030, HR = 1.446). CONCLUSION Our results suggested that the contrast enhancement pattern on preoperative MR images was associated with the extent of resection and predictive of survival outcomes in AG patients.
Collapse
|
18
|
Chakravorty A, Steel T, Chaganti J. Accuracy of percentage of signal intensity recovery and relative cerebral blood volume derived from dynamic susceptibility-weighted, contrast-enhanced MRI in the preoperative diagnosis of cerebral tumours. Neuroradiol J 2015; 28:574-83. [PMID: 26475485 DOI: 10.1177/1971400915611916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Conventional magnetic resonance imaging (MRI) is the technique of choice for diagnosis of cerebral tumours, and has become an increasingly powerful tool for their evaluation; however, the diagnosis of common contrast-enhancing lesions can be challenging, as it is sometimes impossible to differentiate them using conventional imaging. Histopathological analysis of biopsy specimens is the gold standard for diagnosis; however, there are significant risks associated with the invasive procedure and definitive diagnosis is not always achieved. Early accurate diagnosis is important, as management differs accordingly. Advanced MRI techniques have increasing utility for aiding diagnosis in a variety of clinical scenarios. Dynamic susceptibility-weighted contrast-enhanced (DSC) MRI is a perfusion imaging technique and a potentially important tool for the characterisation of cerebral tumours. The percentage of signal intensity recovery (PSR) and relative cerebral blood volume (rCBV) derived from DSC MRI provide information about tumour capillary permeability and neoangiogenesis, which can be used to characterise tumour type and grade, and distinguish tumour recurrence from treatment-related effects. Therefore, PSR and rCBV potentially represent a non-invasive means of diagnosis; however, the clinical utility of these parameters has yet to be established. We present a review of the literature to date.
Collapse
Affiliation(s)
- Ananya Chakravorty
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Timothy Steel
- Department of Neurosurgery, St Vincent's Hospital, Sydney, Australia
| | - Joga Chaganti
- Department of Radiology, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
19
|
Wang YY, Wang K, Li SW, Wang JF, Ma J, Jiang T, Dai JP. Patterns of Tumor Contrast Enhancement Predict the Prognosis of Anaplastic Gliomas with IDH1 Mutation. AJNR Am J Neuroradiol 2015; 36:2023-9. [PMID: 26316565 DOI: 10.3174/ajnr.a4407] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/21/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE It is proposed that isocitrate dehydrogenase 1 (IDH1) mutation predicts the outcome in patients with high-grade glioma. In addition, contrast enhancement on preoperative MR imaging reflects tumor biologic features. Patients with anaplastic glioma with the IDH1 mutation were evaluated by using MR imaging to determine whether tumor enhancement is a prognostic factor and can be used to predict survival. MATERIALS AND METHODS A cohort of 216 patients with histologically confirmed anaplastic glioma was reviewed retrospectively. Tumor contrast-enhancement patterns were classified on the basis of preoperative T1 contrast MR images. Tumor IDH1 status was examined by using RNA sequencing. We used univariate analysis and the multivariate Cox model to evaluate the prognostic value of the IDH1 mutation and tumor contrast-enhancement pattern for progression-free survival and overall survival. RESULTS In all 216 patients, IDH1 mutation was associated with longer progression-free survival (P = .004, hazard ratio = 0.439) and overall survival (P = .002, hazard ratio = 0.406). For patients with IDH1 mutant anaplastic glioma, the absence of contrast enhancement was associated with longer progression-free survival (P = .038, hazard ratio = 0.473) and overall survival (P = .043, hazard ratio = 0.436). Furthermore, we were able to stratify the progression-free survival and overall survival of patients with IDH1 mutation by using the tumor contrast-enhancement patterns (P = .022 and 0.029, respectively; log-rank). CONCLUSIONS Tumor enhancement on postcontrast MR imaging is a valuable prognostic factor for patients with anaplastic glioma and IDH1 mutation. Furthermore, the contrast-enhancement patterns could potentially be used to stratify the survival outcome of such patients.
Collapse
Affiliation(s)
- Y Y Wang
- From the Departments of Neurosurgery (Y.Y.W., J.F.W., T.J.) Beijing Neurosurgical Institute (Y.Y.W., T.J., J.P.D.), Capital Medical University, Beijing, China
| | - K Wang
- Neuroradiology (K.W., S.W.L., J.M., J.P.D.), Beijing Tian Tan Hospital
| | - S W Li
- Neuroradiology (K.W., S.W.L., J.M., J.P.D.), Beijing Tian Tan Hospital
| | - J F Wang
- From the Departments of Neurosurgery (Y.Y.W., J.F.W., T.J.)
| | - J Ma
- Neuroradiology (K.W., S.W.L., J.M., J.P.D.), Beijing Tian Tan Hospital
| | - T Jiang
- From the Departments of Neurosurgery (Y.Y.W., J.F.W., T.J.) Beijing Neurosurgical Institute (Y.Y.W., T.J., J.P.D.), Capital Medical University, Beijing, China Center for Brain Tumor (T.J.), Beijing Institute for Brain Disorders, Beijing, China.
| | - J P Dai
- Neuroradiology (K.W., S.W.L., J.M., J.P.D.), Beijing Tian Tan Hospital Beijing Neurosurgical Institute (Y.Y.W., T.J., J.P.D.), Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Simonetti G, Gaviani P, Botturi A, Innocenti A, Lamperti E, Silvani A. Clinical management of grade III oligodendroglioma. Cancer Manag Res 2015; 7:213-23. [PMID: 26251628 PMCID: PMC4524382 DOI: 10.2147/cmar.s56975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oligodendrogliomas represent the third most common type of glioma, comprising 4%-15% of all gliomas and can be classified by degree of malignancy into grade II and grade III, according to WHO classification. Only 30% of oligodendroglial tumors have anaplastic characteristics. Anaplastic oligodendroglioma (AO) is often localized as a single lesion in the white matter and in the cortex, rarely in brainstem or spinal cord. The management of AO is deeply changed in the recent years. Maximal safe surgical resection followed by radiotherapy (RT) was considered as the standard of care since paramount findings regarding molecular aspects, in particular co-deletion of the short arm of chromosome 1 and the long arm of chromosome 19, revealed that these subsets of AO, benefit in terms of overall survival (OS) and progression-free survival (PFS), from the addition of chemotherapy to RT. Allelic losses of chromosomes 1p and 19q occur in 50%-70% of both low-grade and anaplastic tumors, representing a strong prognostic factor and a powerful predictor of prolonged survival. Several other molecular markers have potential clinical significance as IDH1 mutations, confirming the strong prognostic role for OS. Malignant brain tumors negatively impacts on patients' quality of life. Seizures, visual impairment, headache, and cognitive disorders can be present. Moreover, chemotherapy and RT have important side effects. For these reasons, "health-related quality of life" is becoming a topic of growing interest, investigating on physical, mental, emotional, and social well-being. Understanding the impact of medical treatment on health-related quality of life will probably have a growing effect both on health care strategies and on patients.
Collapse
Affiliation(s)
- G Simonetti
- Neurooncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - P Gaviani
- Neurooncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A Botturi
- Neurooncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A Innocenti
- Neurooncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - E Lamperti
- Neurooncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A Silvani
- Neurooncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
21
|
Çoban G, Mohan S, Kural F, Wang S, O'Rourke DM, Poptani H. Prognostic Value of Dynamic Susceptibility Contrast-Enhanced and Diffusion-Weighted MR Imaging in Patients with Glioblastomas. AJNR Am J Neuroradiol 2015; 36:1247-52. [PMID: 25836728 DOI: 10.3174/ajnr.a4284] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/14/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Prediction of survival in patients with glioblastomas is important for individualized treatment planning. This study aimed to assess the prognostic utility of presurgical dynamic susceptibility contrast and diffusion-weighted imaging for overall survival in patients with glioblastoma. MATERIALS AND METHODS MR imaging data from pathologically proved glioblastomas between June 2006 to December 2013 in 58 patients (mean age, 62.7 years; age range, 22-89 years) were included in this retrospective study. Patients were divided into long survival (≥15 months) and short survival (<15 months) groups, depending on overall survival time. Patients underwent dynamic susceptibility contrast perfusion and DWI before surgery and were treated with chemotherapy and radiation therapy. The maximum relative cerebral blood volume and minimum mean diffusivity values were measured from the enhancing part of the tumor. RESULTS Maximum relative cerebral blood volume values in patients with short survival were significantly higher compared with those who demonstrated long survival (P < .05). No significant difference was observed in the minimum mean diffusivity between short and long survivors. Receiver operator curve analysis demonstrated that a maximum relative cerebral blood volume cutoff value of 5.79 differentiated patients with low and high survival with an area under the curve of 0.93, sensitivity of 0.89, and specificity of 0.90 (P < .001), while a minimum mean diffusivity cutoff value of 8.35 × 10(-4)mm(2)/s had an area under the curve of 0.55, sensitivity of 0.71, and specificity of 0.47 (P > .05) in separating the 2 groups. CONCLUSIONS Maximum relative cerebral blood volume may be used as a prognostic marker of overall survival in patients with glioblastomas.
Collapse
Affiliation(s)
- G Çoban
- From the Department of Radiology (G.Ç., F.K.), Baskent University School of Medicine, Ankara, Turkey Departments of Radiology (G.Ç., S.M., F.K., S.W., H.P.)
| | - S Mohan
- Departments of Radiology (G.Ç., S.M., F.K., S.W., H.P.)
| | - F Kural
- From the Department of Radiology (G.Ç., F.K.), Baskent University School of Medicine, Ankara, Turkey Departments of Radiology (G.Ç., S.M., F.K., S.W., H.P.)
| | - S Wang
- Departments of Radiology (G.Ç., S.M., F.K., S.W., H.P.)
| | - D M O'Rourke
- Neurosurgery (D.M.O.), University of Pennsylvania, Philadelphia, Pennsylvania
| | - H Poptani
- Departments of Radiology (G.Ç., S.M., F.K., S.W., H.P.)
| |
Collapse
|
22
|
Shan S, Hui G, Hou F, Shi H, Zhou G, Yan H, Wang L, Liu J. Expression of metastasis-associated protein 3 in human brain glioma related to tumor prognosis. Neurol Sci 2015; 36:1799-804. [PMID: 26002011 DOI: 10.1007/s10072-015-2252-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/13/2015] [Indexed: 11/28/2022]
Abstract
Glioma represents a disparate group of tumors characterized by high invasion ability, and therefore it is of clinical significance to identify molecular markers and therapeutic targets for better clinical management. Previously, metastasis-associated protein family (MTA) is considered to promote tumor cell invasion and metastasis of human malignancies. Recently, the newly identified MTA3 has been shown to play conflicting roles in human malignancies, while the expression pattern and potential clinical significance of MTA3 in human glioma have not been addressed yet. In the present study, we investigated the protein expression of MTA3 by immunohistochemistry assay and analyzed its association with glioma prognosis in 186 cases of patients. Results showed that MTA3 expression was decreased in glioma compared with that in normal brain (P < 0.05). In addition, tumors with high MTA3 expression were more likely to be of low WHO grade (P = 0.005) and reserve of body function (P = 0.014). Survival analysis showed that decreased MTA3 expression was independently associated with unfavorable overall survival of patients (P < 0.001). These results provide the first evidence that MTA3 expression was decreased in human glioma and negatively associated with prognosis of patients, suggesting that MTA3 may play a tumor suppressor role in glioma.
Collapse
Affiliation(s)
- Shouqin Shan
- Qingdao First Sanatorium of Jinan Military Region, Qingdao, 266071, Shandong, People's Republic of China.
| | - Guangyan Hui
- Qingdao First Sanatorium of Jinan Military Region, Qingdao, 266071, Shandong, People's Republic of China
| | - Fanggao Hou
- Qingdao Second Sanatorium of Jinan Military Region, Qingdao, 266071, Shandong, People's Republic of China
| | - Hua Shi
- Qingdao First Sanatorium of Jinan Military Region, Qingdao, 266071, Shandong, People's Republic of China
| | - Guoqing Zhou
- Qingdao First Sanatorium of Jinan Military Region, Qingdao, 266071, Shandong, People's Republic of China
| | - Han Yan
- Qingdao First Sanatorium of Jinan Military Region, Qingdao, 266071, Shandong, People's Republic of China
| | - Lu Wang
- Qingdao First Sanatorium of Jinan Military Region, Qingdao, 266071, Shandong, People's Republic of China
| | - Jinfeng Liu
- Qingdao First Sanatorium of Jinan Military Region, Qingdao, 266071, Shandong, People's Republic of China
| |
Collapse
|
23
|
Qiao XJ, Ellingson BM, Kim HJ, Wang DJJ, Salamon N, Linetsky M, Sepahdari AR, Jiang B, Tian JJ, Esswein SR, Cloughesy TF, Lai A, Nghiemphu L, Pope WB. Arterial spin-labeling perfusion MRI stratifies progression-free survival and correlates with epidermal growth factor receptor status in glioblastoma. AJNR Am J Neuroradiol 2014; 36:672-7. [PMID: 25542879 DOI: 10.3174/ajnr.a4196] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/27/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Glioblastoma is a common primary brain tumor with a poor but variable prognosis. Our aim was to investigate the feasibility of MR perfusion imaging by using arterial spin-labeling for determining the prognosis of patients with glioblastoma. MATERIALS AND METHODS Pseudocontinuous arterial spin-labeling with 3D background-suppressed gradient and spin-echo was acquired before surgery on 53 patients subsequently diagnosed with glioblastoma. The calculated CBF color maps were visually evaluated by 3 independent readers blinded to patient history. Pathologic and survival data were correlated with CBF map findings. Arterial spin-labeling values in tumor tissue were also quantified by using manual fixed-size ROIs. RESULTS Two perfusion patterns were characterized by visual evaluation of CBF maps on the basis of either the presence (pattern 1) or absence (pattern 2) of substantial hyperperfused tumor tissue. Evaluation of the perfusion patterns was highly concordant among the 3 readers (κ = 0.898, P < .001). Pattern 1 (versus pattern 2) was associated with significantly shorter progression-free survival by Kaplan-Meier analysis (median progression-free survival of 182 days versus 485 days, P < .01) and trended with shorter overall survival (P = .079). There was a significant association between pattern 1 and epidermal growth factor receptor variant III expression (P < .01). CONCLUSIONS Qualitative evaluation of arterial spin-labeling CBF maps can be used to stratify survival and predict epidermal growth factor receptor variant III expression in patients with glioblastoma.
Collapse
Affiliation(s)
- X J Qiao
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - B M Ellingson
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - H J Kim
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - D J J Wang
- Neurology (D.J.J.W., T.F.C., A.L., L.N.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - N Salamon
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - M Linetsky
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - A R Sepahdari
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - B Jiang
- Department of Radiology (B.J.), Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J J Tian
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - S R Esswein
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| | - T F Cloughesy
- Neurology (D.J.J.W., T.F.C., A.L., L.N.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - A Lai
- Neurology (D.J.J.W., T.F.C., A.L., L.N.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - L Nghiemphu
- Neurology (D.J.J.W., T.F.C., A.L., L.N.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - W B Pope
- From the Departments of Radiological Sciences (X.J.Q., B.M.E., H.J.K., N.S., M.L., A.R.S., J.J.T., S.R.E., W.B.P.)
| |
Collapse
|
24
|
Ginat DT, Rajiv M. Tumor blood volume: a prognostic biomarker for anaplastic astrocytomas? CNS Oncol 2014; 3:97-8. [PMID: 25055013 DOI: 10.2217/cns.14.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Daniel Thomas Ginat
- Department of Radiology, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | |
Collapse
|
25
|
Furtner J, Bender B, Braun C, Schittenhelm J, Skardelly M, Ernemann U, Bisdas S. Prognostic value of blood flow measurements using arterial spin labeling in gliomas. PLoS One 2014; 9:e99616. [PMID: 24911025 PMCID: PMC4049763 DOI: 10.1371/journal.pone.0099616] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/16/2014] [Indexed: 11/18/2022] Open
Abstract
The period of event-free survival (EFS) within the same histopathological glioma grades may have high variability, mainly without a known cause. The purpose of this study was to reveal the prognostic value of quantified tumor blood flow (TBF) values obtained by arterial spin labeling (ASL) for EFS in patients with histopathologically proven astrocytomas independent of WHO (World Health Organization) grade. Twenty-four patients with untreated gliomas underwent tumor perfusion quantification by means of pulsed ASL in 3T. The clinical history of the patients was retrospectively extracted from the local database. Six patients had to be excluded due to insufficent follow-up data for further evaluation or histopathologically verified oligodendroglioma tumor components. Receiver operating characteristic (ROC) curves were used to define an optimal cut-off value of maximum TBF (mTBF) values for subgrouping in low-perfused and high-perfused gliomas. Kaplan-Meier curves and Cox proportional hazard regression model were used to determine the prognostic value of mTBF for EFS. An optimal mTBF cut-off value of 182 ml/100 g/min (sensitivity = 83%, specificity = 100%) was determined. Patients with low-perfused gliomas had significantly longer EFS compared to patients with high-perfused gliomas (p = 0.0012) independent of the WHO glioma grade. Quantified mTBF values obtained by ASL offer a new and totally non-invasive marker to prognosticate the EFS, independently on histopathological tumor grading, in patients with gliomas.
Collapse
Affiliation(s)
- Julia Furtner
- Department of Biomedical Imaging und Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Neuroradiology, Eberhard Karls University, Tübingen, Germany
| | - Benjamin Bender
- Department of Neuroradiology, Eberhard Karls University, Tübingen, Germany
| | - Christian Braun
- Department of Neurology, Eberhard Karls University, Tübingen, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Eberhard Karls University, Tübingen, Germany
| | - Marco Skardelly
- Department of Neurosurgery, Eberhard Karls University, Tübingen, Germany
| | - Ulrike Ernemann
- Department of Neuroradiology, Eberhard Karls University, Tübingen, Germany
| | - Sotirios Bisdas
- Department of Neuroradiology, Eberhard Karls University, Tübingen, Germany
- * E-mail:
| |
Collapse
|