1
|
Kahl KH, Krauss PE, Neu M, Maurer CJ, Schill-Reiner S, Roushan Z, Laukmanis E, Dobner C, Janzen T, Balagiannis N, Sommer B, Stüben G, Shiban E. Intraoperative radiotherapy after neurosurgical resection of brain metastases as institutional standard treatment- update of the oncological outcome form a single center cohort after 117 procedures. J Neurooncol 2024; 169:187-193. [PMID: 38963657 PMCID: PMC11269407 DOI: 10.1007/s11060-024-04691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/18/2024] [Indexed: 07/05/2024]
Abstract
PURPOSE Stereotactic radiotherapy (SRT) is the predominant method for the irradiation of resection cavities after resection of brain metastases (BM). Intraoperative radiotherapy (IORT) with 50 kV x-rays is an alternative way to irradiate the resection cavity focally. We have already reported the outcome of our first 40 IORT patients treated until 2020. Since then, IORT has become the predominant cavity treatment in our center due to patients´ choice. METHODS We retrospectively analyzed the outcomes of all patients who underwent resection of BM and IORT between 2013 and August 2023 at Augsburg University Medical Center (UKA). RESULTS We identified 105 patients with 117 resected BM treated with 50 kV x-ray IORT. Median diameter of the resected metastases was 3.1 cm (range 1.3 - 7.0 cm). Median applied dose was 20 Gy. All patients received standardized follow-up (FU) including three-monthly MRI of the brain. Mean FU was 14 months, with a median MRI FU for patients alive of nine months. Median overall survival (OS) of all treated patients was 18.2 months (estimated 1-year OS 57.7%). The observed local control (LC) rate of the resection cavity was 90.5% (estimated 1-year LC 84.2%). Distant brain control (DC) was 61.9% (estimated 1-year DC 47.9%). Only 16.2% of all patients needed WBI in the further course of disease. The observed radio necrosis rate was 2.6%. CONCLUSION After 117 procedures IORT still appears to be a safe and appealing way to perform cavity RT after neurosurgical resection of BM with low toxicity and excellent LC.
Collapse
Affiliation(s)
- Klaus-Henning Kahl
- Department of Radiotherapy and Radio- Oncology, University Medical Center Augsburg, Augsburg, Germany.
| | - Philipp E Krauss
- Department of Neurosurgery, University Medical Center Augsburg, Augsburg, Germany
| | - Maria Neu
- Department of Radiotherapy and Radio- Oncology, University Medical Center Augsburg, Augsburg, Germany
| | - Christoph J Maurer
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Medical Center Augsburg, Augsburg, Germany
| | - Sabine Schill-Reiner
- Department of Medical Physics and Radiation Protection, University Medical Center Augsburg, Augsburg, Germany
| | - Zoha Roushan
- Department of Medical Physics and Radiation Protection, University Medical Center Augsburg, Augsburg, Germany
| | - Eva Laukmanis
- Department of Medical Physics and Radiation Protection, University Medical Center Augsburg, Augsburg, Germany
| | - Christian Dobner
- Department of Medical Physics and Radiation Protection, University Medical Center Augsburg, Augsburg, Germany
| | - Tilman Janzen
- Department of Medical Physics and Radiation Protection, University Medical Center Augsburg, Augsburg, Germany
| | - Nikolaos Balagiannis
- Department of Radiotherapy and Radio- Oncology, University Medical Center Augsburg, Augsburg, Germany
| | - Björn Sommer
- Department of Neurosurgery, University Medical Center Augsburg, Augsburg, Germany
| | - Georg Stüben
- Department of Radiotherapy and Radio- Oncology, University Medical Center Augsburg, Augsburg, Germany
| | - Ehab Shiban
- Department of Neurosurgery, University Medical Center Augsburg, Augsburg, Germany
| |
Collapse
|
2
|
Kanakarajan H, De Baene W, Gehring K, Eekers DBP, Hanssens P, Sitskoorn M. Factors associated with the local control of brain metastases: a systematic search and machine learning application. BMC Med Inform Decis Mak 2024; 24:177. [PMID: 38907265 PMCID: PMC11191176 DOI: 10.1186/s12911-024-02579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Enhancing Local Control (LC) of brain metastases is pivotal for improving overall survival, which makes the prediction of local treatment failure a crucial aspect of treatment planning. Understanding the factors that influence LC of brain metastases is imperative for optimizing treatment strategies and subsequently extending overall survival. Machine learning algorithms may help to identify factors that predict outcomes. METHODS This paper systematically reviews these factors associated with LC to select candidate predictor features for a practical application of predictive modeling. A systematic literature search was conducted to identify studies in which the LC of brain metastases is assessed for adult patients. EMBASE, PubMed, Web-of-Science, and the Cochrane Database were searched up to December 24, 2020. All studies investigating the LC of brain metastases as one of the endpoints were included, regardless of primary tumor type or treatment type. We first grouped studies based on primary tumor types resulting in lung, breast, and melanoma groups. Studies that did not focus on a specific primary cancer type were grouped based on treatment types resulting in surgery, SRT, and whole-brain radiotherapy groups. For each group, significant factors associated with LC were identified and discussed. As a second project, we assessed the practical importance of selected features in predicting LC after Stereotactic Radiotherapy (SRT) with a Random Forest machine learning model. Accuracy and Area Under the Curve (AUC) of the Random Forest model, trained with the list of factors that were found to be associated with LC for the SRT treatment group, were reported. RESULTS The systematic literature search identified 6270 unique records. After screening titles and abstracts, 410 full texts were considered, and ultimately 159 studies were included for review. Most of the studies focused on the LC of the brain metastases for a specific primary tumor type or after a specific treatment type. Higher SRT radiation dose was found to be associated with better LC in lung cancer, breast cancer, and melanoma groups. Also, a higher dose was associated with better LC in the SRT group, while higher tumor volume was associated with worse LC in this group. The Random Forest model predicted the LC of brain metastases with an accuracy of 80% and an AUC of 0.84. CONCLUSION This paper thoroughly examines factors associated with LC in brain metastases and highlights the translational value of our findings for selecting variables to predict LC in a sample of patients who underwent SRT. The prediction model holds great promise for clinicians, offering a valuable tool to predict personalized treatment outcomes and foresee the impact of changes in treatment characteristics such as radiation dose.
Collapse
Affiliation(s)
- Hemalatha Kanakarajan
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.
| | - Wouter De Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Karin Gehring
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Patrick Hanssens
- Gamma Knife Center, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Margriet Sitskoorn
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.
| |
Collapse
|
3
|
Hahnemann L, Krämer A, Fink C, Jungk C, Thomas M, Christopoulos P, Lischalk J, Meis J, Hörner-Rieber J, Eichkorn T, Deng M, Lang K, Paul A, Meixner E, Weykamp F, Debus J, König L. Fractionated stereotactic radiotherapy of intracranial postoperative cavities after resection of brain metastases - Clinical outcome and prognostic factors. Clin Transl Radiat Oncol 2024; 46:100782. [PMID: 38694237 PMCID: PMC11061678 DOI: 10.1016/j.ctro.2024.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/04/2024] Open
Abstract
Background and Purpose After surgical resection of brain metastases (BM), radiotherapy (RT) is indicated. Postoperative stereotactic radiosurgery (SRS) reduces the risk of local progression and neurocognitive decline compared to whole brain radiotherapy (WBRT). Aside from the optimal dose and fractionation, little is known about the combination of systemic therapy and postoperative fractionated stereotactic radiotherapy (fSRT), especially regarding tumour control and toxicity. Methods In this study, 105 patients receiving postoperative fSRT with 35 Gy in 7 fractions performed with Cyberknife were retrospectively reviewed. Overall survival (OS), local control (LC) and total intracranial brain control (TIBC) were analysed via Kaplan-Meier method. Cox proportional hazards models were used to identify prognostic factors. Results Median follow-up was 20.8 months. One-year TIBC was 61.6% and one-year LC was 98.6%. Median OS was 28.7 (95%-CI: 16.9-40.5) months. In total, local progression (median time not reached) occurred in 2.0% and in 20.4% radiation-induced contrast enhancements (RICE) of the cavity (after median of 14.3 months) were diagnosed. Absence of extracranial metastases was identified as an independent prognostic factor for superior OS (p = <0.001) in multivariate analyses, while a higher Karnofsky performance score (KPS) was predictive for longer OS in univariate analysis (p = 0.041). Leptomeningeal disease (LMD) developed in 13% of patients. Conclusion FSRT after surgical resection of BM is an effective and safe treatment approach with excellent local control and acceptable toxicity. Further prospective randomized trials are needed to establish standardized therapeutic guidelines.
Collapse
Affiliation(s)
- L. Hahnemann
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - A. Krämer
- Department of Radiation Oncology, University Hospital of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - C. Fink
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - C. Jungk
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - M. Thomas
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Germany
| | - P. Christopoulos
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Germany
| | - J.W. Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Health at Long Island, New York, NY, USA
| | - J. Meis
- Institute of Medical Biometry, University of Heidelberg, Im Neuenheimer Feld 130, 69120 Heidelberg, Germany
| | - J. Hörner-Rieber
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - T. Eichkorn
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - M. Deng
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - K. Lang
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - A. Paul
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - E. Meixner
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - F. Weykamp
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - J. Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heavy Ion Therapy Center (HIT), Heidelberg University Hospital, Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - L. König
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Samanci Y, Ali Tepebasili M, Deniz Ardor G, Haluk Duzkalir A, Orbay Askeroglu M, Peker S. Efficacy of hypofractionated Gamma Knife radiosurgery in treating surgical beds of metastatic brain tumors. J Clin Neurosci 2024; 121:105-113. [PMID: 38387112 DOI: 10.1016/j.jocn.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVE Surgery alone for metastatic brain tumors (METs) often results in local recurrence due to microscopic residual tumor tissue. While stereotactic radiosurgery (SRS) is commonly used post-surgery, hypofractionation may be required for large surgical beds. This study evaluated the efficacy and safety of hypofractionated Gamma Knife radiosurgery (hf-GKRS) for the first time as a post-operative adjuvant therapy. METHODS This retrospective study involved 24 patients (28 surgical beds) who underwent hf-GKRS within four weeks after surgery. The study primarily focused on local control (LC) rate and analyzed distant intracranial failure (DICF), intracranial progression-free survival (PFS), leptomeningeal disease (LMD), overall survival (OS), and radiation necrosis (RN). RESULTS During a median follow-up of 9 months, LC was achieved in 89.3 % of surgical beds. LC estimates at 6, 12, and 24 months were 96.4 %, 82.7 %, and 82.7 %, respectively. DICF was observed in 45.8 % of patients, and LMD was identified in two patients (8.3 %). At the end of the follow-up, 58.3 % of patients were alive, and the median OS was 20 months. RN occurred in only one surgical bed (3.6 %). No grade 5 toxicity was observed. The univariate analysis identified a longer interval to GKRS (HR 11.842, p = 0.042) and a larger treatment volume (HR 1.103, p = 0.037) as significant factors for local failure. CONCLUSIONS hf-GKRS shows potential as an effective and safe adjuvant treatment for surgical beds. It offers an alternative to SRS, SRT, or WBRT, particularly for larger volumes or tumors near critical structures. Further research is needed to confirm these results and optimize treatment approaches.
Collapse
Affiliation(s)
- Yavuz Samanci
- Koc University School of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | | | - Gokce Deniz Ardor
- Koc University Hospital, Department of Neurosurgery, Gamma Knife Center, Istanbul, Turkey
| | - Ali Haluk Duzkalir
- Koc University Hospital, Department of Neurosurgery, Gamma Knife Center, Istanbul, Turkey
| | - M Orbay Askeroglu
- Koc University Hospital, Department of Neurosurgery, Gamma Knife Center, Istanbul, Turkey
| | - Selcuk Peker
- Koc University School of Medicine, Department of Neurosurgery, Istanbul, Turkey.
| |
Collapse
|
5
|
Dharnipragada R, Dusenbery K, Ferreira C, Sharma M, Chen CC. Preoperative Versus Postoperative Radiosurgery of Brain Metastases: A Meta-Analysis. World Neurosurg 2024; 182:35-41. [PMID: 37918565 DOI: 10.1016/j.wneu.2023.10.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE While postoperative resection cavity radiosurgery (post-SRS) is an accepted treatment paradigm for brain metastasis (BM) patients who undergo surgical resection, there is emerging interest in preoperative radiosurgery (pre-SRS) followed by surgical resection as an alternative treatment paradigm. Here, we performed a meta-analysis of the available literature on this matter. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a search of all studies evaluating pre-SRS and post-SRS was completed. Local recurrence (LR), overall survival (OS), radiation necrosis (RN), and leptomeningeal disease (LMD) were evaluated from the available data. Moderator analysis and pooled effect sizes were performed using a proportional meta-analysis with R using the metafor package. Statistics are presented as mean [95% confidence interval]. RESULTS We identified 6 pre-SRS and 33 post-SRS studies with comparable tumor volume (4.5-17.6 cm3). There were significant differences in the pooled estimates of LR and LMD, favoring pre-SRS over post-SRS. Pooled aggregate for LR was 11.0% [4.9-13.7] and 17.5% [15.1-19.9] for pre- and post-SRS studies (P = 0.014). Similarly, pooled estimates of LMD favored pre-SRS, 4.4% [2.6-6.2], relative to post-SRS, 12.3% [8.9-15.7] (P = 0.019). In contrast, no significant differences were found in terms of RN and OS. Pooled estimates for RN were 6.4% [3.1-9.6] and 8.9% [6.3-11.6] for pre- and post-SRS studies (P = 0.393), respectively. Pooled estimates for OS were 60.2% [55.8-64.6] and 60.5% [56.9-64.0] for pre- and post-SRS studies (P = 0.974). CONCLUSIONS This meta-analysis supports further exploration of pre-SRS as a strategy for the treatment of BM.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA.
| | - Kathryn Dusenbery
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Mayur Sharma
- Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Waltenberger M, Bernhardt D, Diehl C, Gempt J, Meyer B, Straube C, Wiestler B, Wilkens JJ, Zimmer C, Combs SE. Hypofractionated stereotactic radiotherapy (HFSRT) versus single fraction stereotactic radiosurgery (SRS) to the resection cavity of brain metastases after surgical resection (SATURNUS): study protocol for a randomized phase III trial. BMC Cancer 2023; 23:709. [PMID: 37516835 PMCID: PMC10385881 DOI: 10.1186/s12885-023-11202-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/19/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The brain is a common site for cancer metastases. In case of large and/or symptomatic brain metastases, neurosurgical resection is performed. Adjuvant radiotherapy is a standard procedure to minimize the risk of local recurrence and is increasingly performed as local stereotactic radiotherapy to the resection cavity. Both hypofractionated stereotactic radiotherapy (HFSRT) and single fraction stereotactic radiosurgery (SRS) can be applied in this case. Although adjuvant stereotactic radiotherapy to the resection cavity is widely used in clinical routine and recommended in international guidelines, the optimal fractionation scheme still remains unclear. The SATURNUS trial prospectively compares adjuvant HFSRT with SRS and seeks to detect the superiority of HFSRT over SRS in terms of local tumor control. METHODS In this single center two-armed randomized phase III trial, adjuvant radiotherapy to the resection cavity of brain metastases with HFSRT (6 - 7 × 5 Gy prescribed to the surrounding isodose) is compared to SRS (1 × 12-20 Gy prescribed to the surrounding isodose). Patients are randomized 1:1 into the two different treatment arms. The primary endpoint of the trial is local control at the resected site at 12 months. The trial is based on the hypothesis that HFSRT is superior to SRS in terms of local tumor control. DISCUSSION Although adjuvant stereotactic radiotherapy after resection of brain metastases is considered standard of care treatment, there is a need for further prospective research to determine the optimal fractionation scheme. To the best of our knowledge, the SATURNUS study is the only randomized phase III study comparing different regimes of postoperative stereotactic radiotherapy to the resection cavity adequately powered to detect the superiority of HFSRT regarding local control. TRIAL REGISTRATION The study was retrospectively registered with ClinicalTrials.gov, number NCT05160818, on December 16, 2021. The trial registry record is available on https://clinicaltrials.gov/study/NCT05160818 . The presented protocol refers to version V1.3 from March 21, 2021.
Collapse
Affiliation(s)
- Maria Waltenberger
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany.
| | - Denise Bernhardt
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christian Diehl
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | | | - Benedikt Wiestler
- Institute of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | - Claus Zimmer
- Institute of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| |
Collapse
|
7
|
Diehl CD, Giordano FA, Grosu AL, Ille S, Kahl KH, Onken J, Rieken S, Sarria GR, Shiban E, Wagner A, Beck J, Brehmer S, Ganslandt O, Hamed M, Meyer B, Münter M, Raabe A, Rohde V, Schaller K, Schilling D, Schneider M, Sperk E, Thomé C, Vajkoczy P, Vatter H, Combs SE. Opportunities and Alternatives of Modern Radiation Oncology and Surgery for the Management of Resectable Brain Metastases. Cancers (Basel) 2023; 15:3670. [PMID: 37509330 PMCID: PMC10377800 DOI: 10.3390/cancers15143670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Postsurgical radiotherapy (RT) has been early proven to prevent local tumor recurrence, initially performed with whole brain RT (WBRT). Subsequent to disadvantageous cognitive sequalae for the patient and the broad distribution of modern linear accelerators, focal irradiation of the tumor has omitted WBRT in most cases. In many studies, the effectiveness of local RT of the resection cavity, either as single-fraction stereotactic radiosurgery (SRS) or hypo-fractionated stereotactic RT (hFSRT), has been demonstrated to be effective and safe. However, whereas prospective high-level incidence is still lacking on which dose and fractionation scheme is the best choice for the patient, further ablative techniques have come into play. Neoadjuvant SRS (N-SRS) prior to resection combines straightforward target delineation with an accelerated post-surgical phase, allowing an earlier start of systemic treatment or rehabilitation as indicated. In addition, low-energy intraoperative RT (IORT) on the surgical bed has been introduced as another alternative to external beam RT, offering sterilization of the cavity surface with steep dose gradients towards the healthy brain. This consensus paper summarizes current local treatment strategies for resectable brain metastases regarding available data and patient-centered decision-making.
Collapse
Affiliation(s)
- Christian D Diehl
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 München, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, University Medical Center, Medical Faculty, 79106 Freiburg, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Klaus-Henning Kahl
- Department of Radiation Oncology, University Medical Center Augsburg, 86156 Augsburg, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Comprehensive Cancer Center Niedersachsen (CCC-N), 37075 Göttingen, Germany
| | - Gustavo R Sarria
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Ehab Shiban
- Department of Neurosurgery, University Medical Center Augsburg, 86156 Augsburg, Germany
| | - Arthur Wagner
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Jürgen Beck
- Department of Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Stefanie Brehmer
- Department of Neurosurgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Oliver Ganslandt
- Neurosurgical Clinic, Klinikum Stuttgart, 70174 Stuttgart, Germany
| | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Marc Münter
- Department of Radiation Oncology, Klinikum Stuttgart Katharinenhospital, 70174 Stuttgart, Germany
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Veit Rohde
- Department of Neurosurgery, Universitätsmedizin Göttingen, 37075 Göttingen, Germany
| | - Karl Schaller
- Department of Neurosurgery, University of Geneva Medical Center & Faculty of Medicine, 1211 Geneva, Switzerland
| | - Daniela Schilling
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Elena Sperk
- Mannheim Cancer Center, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 München, Germany
| |
Collapse
|
8
|
Diehl CD, Rosenkranz E, Schwendner M, Mißlbeck M, Sollmann N, Ille S, Meyer B, Combs SE, Krieg SM. Dose Reduction to Motor Structures in Adjuvant Fractionated Stereotactic Radiotherapy of Brain Metastases: nTMS-Derived DTI-Based Motor Fiber Tracking in Treatment Planning. Cancers (Basel) 2022; 15:cancers15010282. [PMID: 36612277 PMCID: PMC9818359 DOI: 10.3390/cancers15010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Resection of brain metastases (BM) close to motor structures is challenging for treatment. Navigated transcranial magnetic stimulation (nTMS) motor mapping, combined with diffusion tensor imaging (DTI)-based fiber tracking (DTI-FTmot.TMS), is a valuable tool in neurosurgery to preserve motor function. This study aimed to assess the practicability of DTI-FTmot.TMS for local adjuvant radiotherapy (RT) planning of BM. Methods: Presurgically generated DTI-FTmot.TMS-based corticospinal tract (CST) reconstructions (FTmot.TMS) of 24 patients with 25 BM resected during later surgery were incorporated into the RT planning system. Completed fractionated stereotactic intensity-modulated RT (IMRT) plans were retrospectively analyzed and adapted to preserve FTmot.TMS. Results: In regular plans, mean dose (Dmean) of complete FTmot.TMS was 5.2 ± 2.4 Gy. Regarding planning risk volume (PRV-FTTMS) portions outside of the planning target volume (PTV) within the 17.5 Gy (50%) isodose line, the DTI-FTmot.TMS Dmean was significantly reduced by 33.0% (range, 5.9−57.6%) from 23.4 ± 3.3 Gy to 15.9 ± 4.7 Gy (p < 0.001). There was no significant decline in the effective treatment dose, with PTV Dmean 35.6 ± 0.9 Gy vs. 36.0 ± 1.2 Gy (p = 0.063) after adaption. Conclusions: The DTI-FTmot.TMS-based CST reconstructions could be implemented in adjuvant IMRT planning of BM. A significant dose reduction regarding motor structures within critical dose levels seems possible.
Collapse
Affiliation(s)
- Christian D. Diehl
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, 81675 Munich, Germany
- Correspondence:
| | - Enrike Rosenkranz
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Maximilian Schwendner
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Martin Mißlbeck
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Sebastian Ille
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, 81675 Munich, Germany
| | - Sandro M. Krieg
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| |
Collapse
|
9
|
Diehl CD, Pigorsch SU, Gempt J, Krieg SM, Reitz S, Waltenberger M, Barz M, Meyer HS, Wagner A, Wilkens J, Wiestler B, Zimmer C, Meyer B, Combs SE. Low-Energy X-Ray Intraoperative Radiation Therapy (Lex-IORT) for Resected Brain Metastases: A Single-Institution Experience. Cancers (Basel) 2022; 15:cancers15010014. [PMID: 36612015 PMCID: PMC9817795 DOI: 10.3390/cancers15010014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Resection followed by local radiation therapy (RT) is the standard of care for symptomatic brain metastases. However, the optimal technique, fractionation scheme and dose are still being debated. Lately, low-energy X-ray intraoperative RT (lex-IORT) has been of increasing interest. METHOD Eighteen consecutive patients undergoing BM resection followed by immediate lex-IORT with 16-30 Gy applied to the spherical applicator were retrospectively analyzed. Demographic, RT-specific, radiographic and clinical data were reviewed to evaluate the effectiveness and safety of IORT for BM. Descriptive statistics and Kaplan-Meyer analysis were applied. RESULTS The mean follow-up time was 10.8 months (range, 0-39 months). The estimated local control (LC), distant brain control (DBC) and overall survival (OS) at 12 months post IORT were 92.9% (95%-CI 79.3-100%), 71.4% (95%-CI 50.2-92.6%) and 58.0% (95%-CI 34.1-81.9%), respectively. Two patients developed radiation necrosis (11.1%) and wound infection (CTCAE grade III); both had additional adjuvant treatment after IORT. For five patients (27.8%), the time to the start or continuation of systemic treatment was ≤15 days and hence shorter than wound healing and adjuvant RT would have required. CONCLUSION In accordance with previous series, this study demonstrates the effectiveness and safety of IORT in the management of brain metastases despite the small cohort and the retrospective characteristic of this analysis.
Collapse
Affiliation(s)
- Christian D. Diehl
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, 81675 Munich, Germany
- Correspondence:
| | - Steffi U. Pigorsch
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, 81675 Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Sandro M. Krieg
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Silvia Reitz
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Maria Waltenberger
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Melanie Barz
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Hanno S. Meyer
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Arthur Wagner
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Jan Wilkens
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, 81675 Munich, Germany
| |
Collapse
|
10
|
Evin C, Eude Y, Jacob J, Jenny C, Bourdais R, Mathon B, Valery CA, Clausse E, Simon JM, Maingon P, Feuvret L. Hypofractionated postoperative stereotactic radiotherapy for large resected brain metastases. Cancer Radiother 2022; 27:87-95. [PMID: 36075831 DOI: 10.1016/j.canrad.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of the present retrospective study was to report outcomes after hypofractionated stereotactic radiotherapy (HSRT) for resected brain metastases (BM). PATIENTS AND METHODS We reviewed results of patients with resected BM treated with postoperative HSRT (3×7.7Gy to the prescription isodose 70%) between May 2013 and June 2020. Local control (LC), distant brain control (DBC), overall survival (OS), leptomeningeal disease relapse (LMDR), and radiation necrosis (RN) occurrence were reported. RESULTS Twenty-two patients with 23 brain cavities were included. Karnofsky Performance status (KPS) was≥70 in 77.3%. Median preoperative diameter was 37mm [21.0-75.0] and median planning target volume (PTV) was 23 cm3 [9.9-61.6]. Median time from surgery to SRT was 69 days [7-101] and 48% of patients had a local relapse on pre-SRT imaging. Median follow-up was 17.5 months [1.6-95.9]. One and two-year LC rates were 60.9 and 52.2% respectively. One and 2-year DBC rates were 45.5 and 40.9%. Median OS was 16.5 months. Four patients (18.2%) presented LMDR during follow-up. RN occurred in 6 patients (27.2%). Three factors were associated with OS: ECOG-PS (P=0.009), KPS (P=0.04), and cystic metastasis before surgery (P=0.037). Several factors were related to RN occurrence: PTV diameter and volume, Normal brain V21, V21 and V24 isodoses volumes. CONCLUSION HSRT is the most widely used scheme for larger brain cavities after surgery. The optimal dose and scheme remain to be defined as well as the optimal delay between postoperative SRT and surgery. Dose escalation may be necessary, especially in case of subtotal resection.
Collapse
Affiliation(s)
- C Evin
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| | - Y Eude
- Service d'ophtalmologie, Hôtel-Dieu, centre hospitalier universitaire de Nantes, 1, place Alexis-Ricordeau, 44000 Nantes France
| | - J Jacob
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - C Jenny
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - R Bourdais
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - B Mathon
- Service de neurochirurgie, groupe Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - C A Valery
- Service de neurochirurgie, groupe Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - E Clausse
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - J M Simon
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - P Maingon
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - L Feuvret
- Service d'oncologie radiothérapie, hôpitaux universitaires Pitié-Salpêtrière - Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| |
Collapse
|
11
|
Gondi V, Bauman G, Bradfield L, Burri SH, Cabrera AR, Cunningham DA, Eaton BR, Hattangadi-Gluth JA, Kim MM, Kotecha R, Kraemer L, Li J, Nagpal S, Rusthoven CG, Suh JH, Tomé WA, Wang TJC, Zimmer AS, Ziu M, Brown PD. Radiation Therapy for Brain Metastases: An ASTRO Clinical Practice Guideline. Pract Radiat Oncol 2022; 12:265-282. [PMID: 35534352 DOI: 10.1016/j.prro.2022.02.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE This guideline provides updated evidence-based recommendations addressing recent developments in the management of patients with brain metastases, including advanced radiation therapy techniques such as stereotactic radiosurgery (SRS) and hippocampal avoidance whole brain radiation therapy and the emergence of systemic therapies with central nervous system activity. METHODS The American Society for Radiation Oncology convened a task force to address 4 key questions focused on the radiotherapeutic management of intact and resected brain metastases from nonhematologic solid tumors. The guideline is based on a systematic review provided by the Agency for Healthcare Research and Quality. Recommendations were created using a predefined consensus-building methodology and system for grading evidence quality and recommendation strength. RESULTS Strong recommendations are made for SRS for patients with limited brain metastases and Eastern Cooperative Oncology Group performance status 0 to 2. Multidisciplinary discussion with neurosurgery is conditionally recommended to consider surgical resection for all tumors causing mass effect and/or that are greater than 4 cm. For patients with symptomatic brain metastases, upfront local therapy is strongly recommended. For patients with asymptomatic brain metastases eligible for central nervous system-active systemic therapy, multidisciplinary and patient-centered decision-making to determine whether local therapy may be safely deferred is conditionally recommended. For patients with resected brain metastases, SRS is strongly recommended to improve local control. For patients with favorable prognosis and brain metastases receiving whole brain radiation therapy, hippocampal avoidance and memantine are strongly recommended. For patients with poor prognosis, early introduction of palliative care for symptom management and caregiver support are strongly recommended. CONCLUSIONS The task force has proposed recommendations to inform best clinical practices on the use of radiation therapy for brain metastases with strong emphasis on multidisciplinary care.
Collapse
Affiliation(s)
- Vinai Gondi
- Department of Radiation Oncology, Northwestern Medicine Cancer Center and Proton Center, Warrenville, Illinois.
| | - Glenn Bauman
- Division of Radiation Oncology, Department of Oncology, London Health Sciences Centre & Western University, London, Ontario, Canada
| | - Lisa Bradfield
- American Society for Radiation Oncology, Arlington, Virginia
| | - Stuart H Burri
- Department of Radiation Oncology, Atrium Health, Charlotte, North Carolina
| | - Alvin R Cabrera
- Department of Radiation Oncology, Kaiser Permanente, Seattle, Washington
| | | | - Bree R Eaton
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | | | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | | | - Jing Li
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Seema Nagpal
- Division of Neuro-oncology, Department of Neurology, Stanford University, Stanford, California
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | - John H Suh
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Wolfgang A Tomé
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University, New York, New York
| | - Alexandra S Zimmer
- Women's Malignancies Branch, National Institutes of Health/National Cancer Institute, Bethesda, Maryland
| | - Mateo Ziu
- Department of Neurosciences, INOVA Neuroscience and INOVA Schar Cancer Institute, Falls Church, Virginia
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Lupattelli M, Tini P, Nardone V, Aristei C, Borghesi S, Maranzano E, Anselmo P, Ingrosso G, Deantonio L, di Monale E Bastia MB. Stereotactic radiotherapy for brain oligometastases. Rep Pract Oncol Radiother 2022; 27:15-22. [PMID: 35402029 PMCID: PMC8989457 DOI: 10.5603/rpor.a2021.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/14/2021] [Indexed: 11/25/2022] Open
Abstract
Brain metastases, the most common metastases in adults, will develop in up to 40% of cancer patients, accounting for more than one-half of all intracranial tumors. They are most associated with breast and lung cancer, melanoma and, less frequently, colorectal and kidney carcinoma. Magnetic resonance imaging (MRI) is the gold standard for diagnosis. For the treatment plan, computed tomography (CT ) images are co-registered and fused with a gadolinium-enhanced T1-weighted MRI where tumor volume and organs at risk are contoured. Alternatively, plain and contrast-enhanced CT scans are co-registered. Single-fraction stereotactic radiotherapy (SRT ) is used to treat patients with good performance status and up to 4 lesions with a diameter of 30 mm or less that are distant from crucial brain function areas. Fractionated SRT (2–5 fractions) is used for larger lesions, in eloquent areas or in proximity to crucial or surgically inaccessible areas and to reduce treatment-related neurotoxicity. The single-fraction SRT dose, which depends on tumor diameter, impacts local control. Fractionated SRT may encompass different schedules. No randomized trial data compared the safety and efficacy of single and multiple fractions. Both single-fraction and fractionated SRT provide satisfactory local control rates, tolerance, a low risk of transient acute adverse events and of radiation necrosis the incidence of which correlated with the irradiated brain volume.
Collapse
Affiliation(s)
- Marco Lupattelli
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Paolo Tini
- Unit of Radiation Oncology, University Hospital of Siena, Italy
| | - Valerio Nardone
- Unit of Radiation Oncology, Ospedale del Mare, Napoli, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Simona Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | | | - Paola Anselmo
- Radiation Oncology Centre, S. Maria Hospital, Terni, Italy
| | - Gianluca Ingrosso
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Letizia Deantonio
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, Bellinzona-Lugano, Switzerland
| | | |
Collapse
|
13
|
Dohm AE, Oliver DE, Michael Yu HH, Ahmed KA. Commentary: From Postoperative to Preoperative: A Case Series of Hypofractionated and Single-Fraction Neoadjuvant Stereotactic Radiosurgery for Brain Metastases. Oper Neurosurg (Hagerstown) 2022; 22:e283-e284. [DOI: 10.1227/ons.0000000000000187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
|
14
|
Kahl KH, Balagiannis N, Höck M, Schill S, Roushan Z, Shiban E, Müller H, Grossert U, Konietzko I, Sommer B, Maurer CJ, Berlis A, Heidecke V, Janzen T, Stüben G. Intraoperative radiotherapy with low-energy x-rays after neurosurgical resection of brain metastases-an Augsburg University Medical Center experience. Strahlenther Onkol 2021; 197:1124-1130. [PMID: 34415358 PMCID: PMC8604815 DOI: 10.1007/s00066-021-01831-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE External-beam radiotherapy (EBRT) is the predominant method for localized brain radiotherapy (LBRT) after resection of brain metastases (BM). Intraoperative radiotherapy (IORT) with 50-kV x‑rays is an alternative way to focally irradiate the resection cavity after BM surgery, with the option of shortening the overall treatment time and limiting normal tissue irradiation. METHODS We retrospectively analyzed the outcomes of all patients who underwent neurosurgical resection of BM and 50-kV x‑ray IORT between 2013 and 2020 at Augsburg University Medical Center. RESULTS We identified 40 patients with 44 resected BM treated with 50-kV x‑ray IORT. Median diameter of the resected metastases was 2.8 cm (range 1.5-5.9 cm). Median applied dose was 20 Gy. All patients received standardized follow-up (FU) including 3‑monthly MRI of the brain. Mean FU was 14.4 months, with a median MRI FU for alive patients of 12.2 months. Median overall survival (OS) of all treated patients was 26.4 months (estimated 1‑year OS 61.6%). The observed local control (LC) rate of the resection cavity was 88.6% (estimated 1‑year LC 84.3%). Distant brain control (DC) was 47.5% (estimated 1‑year DC 33.5%). Only 25% of all patients needed WBI in the further course of disease. The observed radionecrosis rate was 2.5%. CONCLUSION IORT with 50-kV x‑rays is a safe and appealing way to apply LBRT after neurosurgical resection of BM, with low toxicity and excellent LC. Close MRI FU is paramount to detect distant brain failure (DBF) early.
Collapse
Affiliation(s)
- Klaus-Henning Kahl
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany
| | - Nikolaos Balagiannis
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany
| | - Michael Höck
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany
| | - Sabine Schill
- Medizinische Physik und Strahlenschutz, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Zoha Roushan
- Medizinische Physik und Strahlenschutz, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Ehab Shiban
- Klinik für Neurochirurgie, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Heiko Müller
- Klinik für Neurochirurgie, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Ute Grossert
- Klinik für Neurochirurgie, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Ina Konietzko
- Klinik für Neurochirurgie, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Björn Sommer
- Klinik für Neurochirurgie, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Christoph J. Maurer
- Klinik für Diagnostische und Interventionelle Radiologie und Neuroradiologie, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Ansgar Berlis
- Klinik für Diagnostische und Interventionelle Radiologie und Neuroradiologie, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Volkmar Heidecke
- Klinik für Neurochirurgie, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Tilman Janzen
- Medizinische Physik und Strahlenschutz, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Georg Stüben
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany
| |
Collapse
|
15
|
Abstract
As novel systemic therapies yield improved survival in metastatic cancer patients, the frequency of brain metastases continues to increase. Over the years, management strategies have continued to evolve. Historically, stereotactic radiosurgery has been used as a boost to whole-brain radiotherapy (WBRT) but is increasingly being used as a replacement for WBRT. Given its capacity to treat both macro- and micro-metastases in the brain, WBRT has been an important management strategy for years, and recent research has identified technologic and pharmacologic approaches to delivering WBRT more safely. In this review, we outline the current landscape of radiotherapeutic treatment options and discuss approaches to integrating radiotherapy advances in the contemporary management of brain metastases.
Collapse
Affiliation(s)
- Vinai Gondi
- Northwestern Medicine Cancer Center Warrenville and Proton Center, Warrenville, Illinois, USA
| | | | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Gallo J, Garimall S, Shanker M, Castelli J, Watkins T, Olson S, Huo M, Foote MC, Pinkham MB. Outcomes Following Hypofractionated Stereotactic Radiotherapy to the Cavity After Surgery for Melanoma Brain Metastases. Clin Oncol (R Coll Radiol) 2021; 34:179-186. [PMID: 34642065 DOI: 10.1016/j.clon.2021.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/05/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
AIMS Hypofractionated stereotactic radiotherapy (HSRT) to the cavity after surgical resection of brain metastases improves local control. Most reported cohorts include few patients with melanoma, a population known to have high rates of recurrence and neurological death. We aimed to assess outcomes in patients with melanoma brain metastases who received HSRT after surgery at two Australian institutions. MATERIALS AND METHODS A retrospective analysis was carried out including patients treated between January 2012 and May 2020. HSRT was recommended for patients with melanoma brain metastases at high risk of local recurrence after surgery. Treatment was delivered using appropriately commissioned linear accelerators. Routine follow-up included surveillance magnetic resonance imaging brain every 3 months for at least 2 years. Primary outcomes were overall survival, local control, incidence of radiological radionecrosis and symptomatic radionecrosis. RESULTS There were 63 cavities identified in 57 patients. The most common HSRT dose prescriptions were 24 Gy in three fractions and 27.5 Gy in five fractions. The median follow-up was 32 months in survivors. Local control was 90% at 1 year, 83% at 2 years and 76% at 3 years. Subtotal brain metastases resection (hazard ratio 12.5; 95% confidence interval 1.4-111; P = 0.0238) was associated with more local recurrence. Overall survival was 64% at 1 year, 45% at 2 years and 40% at 3 years. There were 10 radiological radionecrosis events (16% of cavities) during the study period, with 5% at 1 year and 8% at 2 years after HSRT. The median time to onset of radiological radionecrosis was 21 months (range 6-56). Of these events, three became symptomatic (5%) during the study period at a median time to onset of 26 months (range 21-32). CONCLUSION Cavity HSRT is associated with high rates of local control in patients with melanoma brain metastases. Subtotal resection strongly predicts for local recurrence after HSRT. Symptomatic radionecrosis occurred in 5% of cavities but increased to 8% of longer-term survivors.
Collapse
Affiliation(s)
- J Gallo
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - S Garimall
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - M Shanker
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Princess Alexandra Hospital Research Foundation, Woolloongabba, Queensland, Australia
| | - J Castelli
- Icon Cancer Centre, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
| | - T Watkins
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - S Olson
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - M Huo
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - M C Foote
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Icon Cancer Centre, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
| | - M B Pinkham
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Icon Cancer Centre, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
| |
Collapse
|
17
|
Rogers S, Stauffer A, Lomax N, Alonso S, Eberle B, Gomez Ordoñez S, Lazeroms T, Kessler E, Brendel M, Schwyzer L, Riesterer O. Five fraction stereotactic radiotherapy after brain metastasectomy: a single-institution experience and literature review. J Neurooncol 2021; 155:35-43. [PMID: 34546498 DOI: 10.1007/s11060-021-03840-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The outcomes of five fraction stereotactic radiotherapy (hfSRT) following brain metastasectomy were evaluated and compared with published series. METHODS 30 Gy in 5 fractions HfSRT prescribed to the surgical cavity was reduced to 25 Gy if the volume of 'brain-GTV' receiving 20 Gy exceeded 20 cm3. Endpoints were local recurrence, nodular leptomeningeal recurrence, new brain metastases and radionecrosis. The literature was searched for reports of clinical and dosimetric outcomes following postoperative hfSRT in 3-5 fractions. RESULTS 39 patients with 40 surgical cavities were analyzed. Cavity local control rate at 1 year was 33/40 (82.5%). 3 local failures followed 30 Gy/5 fractions and 4 with 25 Gy/5 fractions. The incidence of leptomeningeal disease (LMD) was 7/40 (17.5%). No grade 3-4 toxicities, particularly no radionecrosis, were reported. The incidence of distant brain metastases was 15/40 (37.5%). The median overall survival was 15 months. Across 13 published series, the weighted mean local control was 83.1% (adjusted for sample size), the mean incidence of LMD was 14.9% (7-34%) and the mean rate of radionecrosis was 10.3% (0-20.6%). CONCLUSION Postoperative hfSRT can be delivered with 25-30 Gy in 5 fractions with efficacy in excess of 82% and no significant toxicity when the dose to 'brain-GTV' does not exceed 20 cm3.
Collapse
Affiliation(s)
- S Rogers
- Radiation Oncology Center KSA-KSB, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland.
| | - A Stauffer
- Department of Neurosurgery, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland
| | - N Lomax
- Radiation Oncology Center KSA-KSB, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland
| | - S Alonso
- Radiation Oncology Center KSA-KSB, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland
| | - B Eberle
- Radiation Oncology Center KSA-KSB, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland
| | - S Gomez Ordoñez
- Radiation Oncology Center KSA-KSB, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland
| | - T Lazeroms
- Radiation Oncology Center KSA-KSB, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland
| | - E Kessler
- Radiation Oncology Center KSA-KSB, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland
| | - M Brendel
- Department of Neuroradiology, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland
| | - L Schwyzer
- Department of Neurosurgery, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland
| | - O Riesterer
- Radiation Oncology Center KSA-KSB, Kantonsspital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
18
|
Milano MT, Chiang VLS, Soltys SG, Wang TJC, Lo SS, Brackett A, Nagpal S, Chao S, Garg AK, Jabbari S, Halasz LM, Gephart MH, Knisely JPS, Sahgal A, Chang EL. Executive summary from American Radium Society's appropriate use criteria on neurocognition after stereotactic radiosurgery for multiple brain metastases. Neuro Oncol 2021; 22:1728-1741. [PMID: 32780818 DOI: 10.1093/neuonc/noaa192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The American Radium Society (ARS) Appropriate Use Criteria brain malignancies panel systematically reviewed (PRISMA [Preferred Reporting Items for Systematic Reviews and Meta-Analyses]) published literature on neurocognitive outcomes after stereotactic radiosurgery (SRS) for patients with multiple brain metastases (BM) to generate consensus guidelines. METHODS The panel developed 4 key questions (KQs) to guide systematic review. From 11 614 original articles, 12 were selected. The panel developed model cases addressing KQs and potentially controversial scenarios not addressed in the systematic review (which might inform future ARS projects). Based upon quality of evidence, the panel confidentially voted on treatment options using a 9-point scale of appropriateness. RESULTS The panel agreed that SRS alone is usually appropriate for those with good performance status and 2-10 asymptomatic BM, and usually not appropriate for >20 BM. For 11-15 and 16-20 BM there was (between 2 case variants) agreement that SRS alone may be appropriate or disagreement on the appropriateness of SRS alone. There was no scenario (among 6 case variants) in which conventional whole-brain radiotherapy (WBRT) was considered usually appropriate by most panelists. There were several areas of disagreement, including: hippocampal sparing WBRT for 2-4 asymptomatic BM; WBRT for resected BM amenable to SRS; fractionated versus single-fraction SRS for resected BM, larger targets, and/or brainstem metastases; optimal treatment (WBRT, hippocampal sparing WBRT, SRS alone to all or select lesions) for patients with progressive extracranial disease, poor performance status, and no systemic options. CONCLUSIONS For patients with 2-10 BM, SRS alone is an appropriate treatment option for well-selected patients with good performance status. Future study is needed for those scenarios in which there was disagreement among panelists.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, NY
| | - Veronica L S Chiang
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CT
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Alexandria Brackett
- Cushing/Whitney Medical Library, Yale School of Medicine, Yale University, New Haven, CT
| | - Seema Nagpal
- Department of Neurology, Stanford University School of Medicine, Stanford, CT
| | - Samuel Chao
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Amit K Garg
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Albuquerque, NM
| | - Siavash Jabbari
- Laurel Amtower Cancer Institute and Neuro-oncology Center, Sharp Healthcare, San Diego, CA
| | - Lia M Halasz
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | | | - Jonathan P S Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Eric L Chang
- Department of Radiation Oncology, Keck School of Medicine of University of Southern California, Los Angeles, CA
| |
Collapse
|
19
|
Minniti G, Niyazi M, Andratschke N, Guckenberger M, Palmer JD, Shih HA, Lo SS, Soltys S, Russo I, Brown PD, Belka C. Current status and recent advances in resection cavity irradiation of brain metastases. Radiat Oncol 2021; 16:73. [PMID: 33858474 PMCID: PMC8051036 DOI: 10.1186/s13014-021-01802-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 12/04/2022] Open
Abstract
Despite complete surgical resection brain metastases are at significant risk of local recurrence without additional radiation therapy. Traditionally, the addition of postoperative whole brain radiotherapy (WBRT) has been considered the standard of care on the basis of randomized studies demonstrating its efficacy in reducing the risk of recurrence in the surgical bed as well as the incidence of new distant metastases. More recently, postoperative stereotactic radiosurgery (SRS) to the surgical bed has emerged as an effective and safe treatment option for resected brain metastases. Published randomized trials have demonstrated that postoperative SRS to the resection cavity provides superior local control compared to surgery alone, and significantly decreases the risk of neurocognitive decline compared to WBRT, without detrimental effects on survival. While studies support the use of postoperative SRS to the resection cavity as the standard of care after surgery, there are several issues that need to be investigated further with the aim of improving local control and reducing the risk of leptomeningeal disease and radiation necrosis, including the optimal dose prescription/fractionation, the timing of postoperative SRS treatment, and surgical cavity target delineation. We provide a clinical overview on current status and recent advances in resection cavity irradiation of brain metastases, focusing on relevant strategies that can improve local control and minimize the risk of radiation-induced toxicity.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100, Siena, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Joshua D Palmer
- Department of Radiation Oncology, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Scott Soltys
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Ivana Russo
- Radiation Oncology Unit, University of Pittsburgh Medical Center Hillman Cancer Center, San Pietro Hospital FBF, Rome, and Villa Maria Hospital, Mirabella, AV, Italy
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
20
|
Srinivasan ES, Tan AC, Anders CK, Pendergast AM, Sipkins DA, Ashley DM, Fecci PE, Khasraw M. Salting the Soil: Targeting the Microenvironment of Brain Metastases. Mol Cancer Ther 2021; 20:455-466. [PMID: 33402399 PMCID: PMC8041238 DOI: 10.1158/1535-7163.mct-20-0579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/31/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
Paget's "seed and soil" hypothesis of metastatic spread has acted as a foundation of the field for over a century, with continued evolution as mechanisms of the process have been elucidated. The central nervous system (CNS) presents a unique soil through this lens, relatively isolated from peripheral circulation and immune surveillance with distinct cellular and structural composition. Research in primary and metastatic brain tumors has demonstrated that this tumor microenvironment (TME) plays an essential role in the growth of CNS tumors. In each case, the cancerous cells develop complex and bidirectional relationships that reorganize the local TME and reprogram the CNS cells, including endothelial cells, pericytes, astrocytes, microglia, infiltrating monocytes, and lymphocytes. These interactions create a structurally and immunologically permissive TME with malignant processes promoting positive feedback loops and systemic consequences. Strategies to interrupt interactions with the native CNS components, on "salting the soil," to create an inhospitable environment are promising in the preclinical setting. This review aims to examine the general and specific pathways thus far investigated in brain metastases and related work in glioma to identify targetable mechanisms that may have general application across the spectrum of intracranial tumors.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Aaron C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Carey K Anders
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | | | - Dorothy A Sipkins
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - David M Ashley
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Peter E Fecci
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Mustafa Khasraw
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina.
| |
Collapse
|
21
|
Asher AL, Alvi MA, Bydon M, Pouratian N, Warnick RE, McInerney J, Grills IS, Sheehan J. Local failure after stereotactic radiosurgery (SRS) for intracranial metastasis: analysis from a cooperative, prospective national registry. J Neurooncol 2021; 152:299-311. [PMID: 33481148 DOI: 10.1007/s11060-021-03698-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Stereotactic radiosurgery (SRS) has been increasingly employed to treat patients with intracranial metastasis, both as a salvage treatment after failed whole brain radiation therapy (WBRT) and as an initial treatment. "Several studies have shown that SRS may be as effective as WBRT with the added benefit of preserving neuro-cognition". However, some patients may have local failure following SRS for intracranial metastasis, defined as increase in total lesion volume by 25% after at least 3 months of follow up. METHODS The SRS registry, established by the Neuro point alliance (NPA) under the auspices of the American Association of Neurological Surgeons (AANS), was queried for patients with intracranial metastasis receiving SRS at the participating sites. Demographic, clinical symptoms, tumor, and treatment characteristics as well as follow up status were summarized for the cohort. A multivariable explanatory cox- regression was performed to evaluate the impact of each of the factors on time to local failure.at last follow-up. RESULTS A total of 441 patients with 1255 intracranial metastatic lesions undergoing SRS were identified. The most common primary cancer histology was non-small cell lung cancer (43.8%, n = 193). More than half of the cohort had more than 1 metastatic lesion (2-3 lesions: 29.5%, n = 130; more than 3 lesions: 25.2% (n = 111). The average duration of follow-up for the cohort was found to be 8.4 months (SD = 7.61). The mean clinical treatment volume (CTV), after adding together the volume of each lesion for each patient was 5.39 cc (SD = 7.6) at baseline. A total of 20.2% (n = 89) had local failure (increase in volume by > 25%) with a mean time to progression of 7.719 months (SD = 6.09). The progression free survival (PFS) for the cohort at 3, 6 and 12 months were found to be 94.9%, 84.3%, and 69.4%, respectively. On multivariable cox regression analysis, factors associated with increased hazard of local failure included male gender (HR 1.65, 95% CI 1.03-2.66, p = 0.037), chemotherapy at or before SRS (HR = 2.39, 95% CI 1.41-4.05, p = 0.001), WBRT at or before SRS (HR = 2.21, 95% CI 1.16- 4.22, p = 0.017), while surgical resection (HR 0.45, 95% CI 0.21-0. 97, p = 0.04) and immunotherapy (0.34, 95% CI 0.16-0.50, p = 0.014) were associated with lower hazard of local failure. CONCLUSION Factors found to be predictive of local failure included higher RPA score and those receiving chemotherapy, while patients undergoing surgical resection and those with occipital lobe lesions were less likely to experience local failure. Our analyses not only corroborate those previously reported but also demonstrate the utility of a multi-institutional registry to advance real-world SRS research for patients with intracranial metastatic lesions.
Collapse
Affiliation(s)
- Anthony L Asher
- Neuroscience Institute, Carolinas Healthcare System and Carolina, Neurosurgery & Spine Associates, Charlotte, NC, 28204, USA
| | - Mohammed Ali Alvi
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55902, USA
| | - Mohamad Bydon
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55902, USA
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Ronald E Warnick
- Department of Neurosurgery, The Jewish Hospital, Cincinnati, OH, USA
| | - James McInerney
- Department of Neurosurgery, Penn State Health, Hershey, PA, USA
| | - Inga S Grills
- Department of Neurological Surgery, Beaumont Health System, Royal Oak, MI, USA
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia Health System, 1300 Jefferson Park Ave, Charlottesville, VA, 22908, USA.
| |
Collapse
|
22
|
Eitz KA, Lo SS, Soliman H, Sahgal A, Theriault A, Pinkham MB, Foote MC, Song AJ, Shi W, Redmond KJ, Gui C, Kumar AMS, Machtay M, Meyer B, Combs SE. Multi-institutional Analysis of Prognostic Factors and Outcomes After Hypofractionated Stereotactic Radiotherapy to the Resection Cavity in Patients With Brain Metastases. JAMA Oncol 2020; 6:1901-1909. [PMID: 33057566 PMCID: PMC7563677 DOI: 10.1001/jamaoncol.2020.4630] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/20/2020] [Indexed: 11/14/2022]
Abstract
IMPORTANCE For brain metastases, the combination of neurosurgical resection and postoperative hypofractionated stereotactic radiotherapy (HSRT) is an emerging therapeutic approach preferred to the prior practice of postoperative whole-brain radiotherapy. However, mature large-scale outcome data are lacking. OBJECTIVE To evaluate outcomes and prognostic factors after HSRT to the resection cavity in patients with brain metastases. DESIGN, SETTING, AND PARTICIPANTS An international, multi-institutional cohort study was performed in 558 patients with resected brain metastases and postoperative HSRT treated between December 1, 2003, and October 31, 2019, in 1 of 6 participating centers. Exclusion criteria were prior cranial radiotherapy (including whole-brain radiotherapy) and early termination of treatment. EXPOSURES A median total dose of 30 Gy (range, 18-35 Gy) and a dose per fraction of 6 Gy (range, 5-10.7 Gy) were applied. MAIN OUTCOMES AND MEASURES The primary end points were overall survival, local control (LC), and the analysis of prognostic factors associated with overall survival and LC. Secondary end points included distant intracranial failure, distant progression, and the incidence of neurologic toxicity. RESULTS A total of 558 patients (mean [SD] age, 61 [0.50] years; 301 [53.9%] female) with 581 resected cavities were analyzed. The median follow-up was 12.3 months (interquartile range, 5.0-25.3 months). Overall survival was 65% at 1 year, 46% at 2 years, and 33% at 3 years, whereas LC was 84% at 1 year, 75% at 2 years, and 71% at 3 years. Radiation necrosis was present in 48 patients (8.6%) and leptomeningeal disease in 73 patients (13.1%). Neurologic toxic events according to the Common Terminology Criteria for Adverse Events grade 3 or higher occurred in 16 patients (2.8%) less than 6 months and 24 patients (4.1%) greater than 6 months after treatment. Multivariate analysis identified a Karnofsky Performance Status score of 80% or greater (hazard ratio [HR], 0.61; 95% CI, 0.46-0.82; P < .001), 22 to 33 days between resection and radiotherapy (HR, 1.50; 95% CI, 1.07-2.10; P = .02), and a controlled primary tumor (HR, 0.69; 95% CI, 0.52-0.90; P = .007) as prognostic factors associated with overall survival. For LC, a single brain metastasis (HR, 0.57; 95% CI, 0.35-0.93; P = .03) and a controlled primary tumor (HR, 0.59; 95% CI, 0.39-0.92; P = .02) were significant in the multivariate analysis. CONCLUSIONS AND RELEVANCE To date, this cohort study includes one of the largest series of patients with brain metastases and postoperative HSRT and appears to confirm an excellent risk-benefit profile of local HSRT to the resection cavity. Additional studies will help determine radiation dose-volume parameters and provide a better understanding of synergistic effects with systemic and immunotherapies.
Collapse
Affiliation(s)
- Kerstin A. Eitz
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
- Institute for Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Simon S. Lo
- Department of Radiation Oncology, University of Washington, Seattle
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Aimee Theriault
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark. B. Pinkham
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Department of Radiation Oncology, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew C. Foote
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Department of Radiation Oncology, University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J. Song
- Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Wenyin Shi
- Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kristin J. Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chenchen Gui
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aryavarta M. S. Kumar
- Radiation Oncology Service, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio
| | - Mitchell Machtay
- Department of Radiation Oncology, University Hospital Cleveland Medical Center, Cleveland, Ohio
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich (TUM), Munich, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
- Institute for Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
23
|
Perlow HK, Dibs K, Liu K, Jiang W, Rajappa P, Blakaj DM, Palmer J, Raval RR. Whole-Brain Radiation Therapy Versus Stereotactic Radiosurgery for Cerebral Metastases. Neurosurg Clin N Am 2020; 31:565-573. [PMID: 32921352 DOI: 10.1016/j.nec.2020.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Whole-brain radiation therapy (WBRT) was frequently used to treat brain metastases in the past. Stereotactic radiosurgery (SRS) is now generally preferred to WBRT for patients with limited brain metastases. SRS can also be used to treat extensive brain metastases (>10-15 metastases), and clinical trials are currently comparing WBRT with SRS for extensive disease. SRS may allow for an increased risk of radiation necrosis or leptomeningeal disease dissemination after treatment. Preoperative SRS and multifraction radiotherapy decrease the risk of these side effects and may soon become standard of care. Combining SRS with immune checkpoint inhibitors may improve patient outcomes.
Collapse
Affiliation(s)
- Haley K Perlow
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA
| | - Khaled Dibs
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA
| | - Kevin Liu
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA
| | - William Jiang
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA
| | - Prajwal Rajappa
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA; Department of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Dukagjin M Blakaj
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA
| | - Joshua Palmer
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA
| | - Raju R Raval
- Department of Radiation Oncology, The James Cancer Hospital & Solove Research Institute Ohio State University Wexner Medical Center, 460 West 10th Avenue, Suite D252, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
Milano MT, Grimm J, Niemierko A, Soltys SG, Moiseenko V, Redmond KJ, Yorke E, Sahgal A, Xue J, Mahadevan A, Muacevic A, Marks LB, Kleinberg LR. Single- and Multifraction Stereotactic Radiosurgery Dose/Volume Tolerances of the Brain. Int J Radiat Oncol Biol Phys 2020; 110:68-86. [PMID: 32921513 DOI: 10.1016/j.ijrobp.2020.08.013] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE As part of the American Association of Physicists in Medicine Working Group on Stereotactic Body Radiotherapy investigating normal tissue complication probability (NTCP) after hypofractionated radiation therapy, data from published reports (PubMed indexed 1995-2018) were pooled to identify dosimetric and clinical predictors of radiation-induced brain toxicity after single-fraction stereotactic radiosurgery (SRS) or fractionated stereotactic radiosurgery (fSRS). METHODS AND MATERIALS Eligible studies provided NTCPs for the endpoints of radionecrosis, edema, or symptoms after cranial SRS/fSRS and quantitative dose-volume metrics. Studies of patients with only glioma, meningioma, vestibular schwannoma, or brainstem targets were excluded. The data summary and analyses focused on arteriovenous malformations (AVM) and brain metastases. RESULTS Data from 51 reports are summarized. There was wide variability in reported rates of radionecrosis. Available data for SRS/fSRS for brain metastases were more amenable to NTCP modeling than AVM data. In the setting of brain metastases, SRS/fSRS-associated radionecrosis can be difficult to differentiate from tumor progression. For single-fraction SRS to brain metastases, tissue volumes (including target volumes) receiving 12 Gy (V12) of 5 cm3, 10 cm3, or >15 cm3 were associated with risks of symptomatic radionecrosis of approximately 10%, 15%, and 20%, respectively. SRS for AVM was associated with modestly lower rates of symptomatic radionecrosis for equivalent V12. For brain metastases, brain plus target volume V20 (3-fractions) or V24 (5-fractions) <20 cm3 was associated with <10% risk of any necrosis or edema, and <4% risk of radionecrosis requiring resection. CONCLUSIONS The risk of radionecrosis after SRS and fSRS can be modeled as a function of dose and volume treated. The use of fSRS appears to reduce risks of radionecrosis for larger treatment volumes relative to SRS. More standardized dosimetric and toxicity reporting is needed to facilitate future pooled analyses that can refine predictive models of brain toxicity risks.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York.
| | - Jimm Grimm
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | - Andrzej Niemierko
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York City, New York
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Jinyu Xue
- Department of Radiation Oncology, NYU Langone Medical Center, New York City, NY
| | - Anand Mahadevan
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | | | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
The Evolving Role of Radiation Therapy in Patients with Metastatic Soft Tissue Sarcoma. Curr Oncol Rep 2020; 22:79. [DOI: 10.1007/s11912-020-00936-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Gui C, Grimm J, Kleinberg LR, Zaki P, Spoleti N, Mukherjee D, Bettegowda C, Lim M, Redmond KJ. A Dose-Response Model of Local Tumor Control Probability After Stereotactic Radiosurgery for Brain Metastases Resection Cavities. Adv Radiat Oncol 2020; 5:840-849. [PMID: 33083646 PMCID: PMC7557194 DOI: 10.1016/j.adro.2020.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/09/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose Recent randomized controlled trials evaluating stereotactic surgery (SRS) for resected brain metastases question the high rates of local control previously reported in retrospective studies. Tumor control probability (TCP) models were developed to quantify the relationship between radiation dose and local control after SRS for resected brain metastases. Methods and Materials Patients with resected brain metastases treated with SRS were evaluated retrospectively. Melanoma, sarcoma, and renal cell carcinoma were considered radio-resistant histologies. The planning target volume (PTV) was the region of enhancement on T1 post-gadolinium magnetic resonance imaging plus a 2-mm uniform margin. The primary outcome was local recurrence, defined as tumor progression within the resection cavity. Cox regression evaluated predictors of local recurrence. Dose-volume histograms for the PTV were obtained from treatment plans and converted to 3-fraction equivalent doses (α/β = 12 Gy). TCP models evaluated local control at 1-year follow-up as a logistic function of dose-volume histogram data. Results Among 150 cavities, 41 (27.3%) were radio-resistant. The median PTV volume was 14.6 mL (range, 1.3-65.3). The median prescription was 21 Gy (range, 15-25) in 3 fractions (range, 1-5). Local control rates at 12 and 24 months were 86% and 82%. On Cox regression, larger cavities (PTV > 12 cm3) predicted increased risk of local recurrence (P = .03). TCP modeling demonstrated relationships between improved 1-year local control and higher radiation doses delivered to radio-resistant cavities. Maximum PTV doses of 30, 35, and 40 Gy predicted 78%, 89%, and 94% local control among all radio-resistant cavities, versus 69%, 79%, and 86% among larger radio-resistant cavities. Conclusions After SRS for resected brain metastases, larger cavities are at greater risk of local recurrence. TCP models suggests that higher radiation doses may improve local control among cavities of radio-resistant histology. Given maximum tolerated doses established for single-fraction SRS, fractionated regimens may be required to optimize local control in large radio-resistant cavities.
Collapse
Affiliation(s)
- Chengcheng Gui
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Jimm Grimm
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Lawrence Richard Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Peter Zaki
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Nicholas Spoleti
- Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Kristin Janson Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
27
|
El Shafie RA, Dresel T, Weber D, Schmitt D, Lang K, König L, Höne S, Forster T, von Nettelbladt B, Eichkorn T, Adeberg S, Debus J, Rieken S, Bernhardt D. Stereotactic Cavity Irradiation or Whole-Brain Radiotherapy Following Brain Metastases Resection-Outcome, Prognostic Factors, and Recurrence Patterns. Front Oncol 2020; 10:693. [PMID: 32477942 PMCID: PMC7232539 DOI: 10.3389/fonc.2020.00693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction: Following the resection of brain metastases (BM), whole-brain radiotherapy (WBRT) is a long-established standard of care. Its position was recently challenged by the less toxic single-session radiosurgery (SRS) or fractionated stereotactic radiotherapy (FSRT) of the resection cavity, reducing dose exposure of the healthy brain. Patients and Methods: We analyzed 101 patients treated with either SRS/FSRT (n = 50) or WBRT (n = 51) following BM resection over a 5-year period. Propensity score adjustment was done for age, total number of BM, timepoint of BM diagnosis, controlled primary and extracranial metastases. A Cox Proportional Hazards model with univariate and multivariate analysis was fitted for overall survival (OS), local control (LC) and distant brain control (DBC). Results: Median patient age was 61 (interquartile range, IQR: 56-67) years and the most common histology was non-small cell lung cancer, followed by breast cancer. 38% of the patients had additional unresected BM. Twenty-four patients received SRS, 26 patients received FSRT and 51 patients received WBRT. Median OS in the SRS/FSRT subgroup was not reached (IQR NA-16.7 months) vs. 12.6 months (IQR 21.3-4.4) in the WBRT subgroup (hazard ratio, HR 3.3, 95%-CI: [1.5; 7.2] p < 0.002). Twelve-months LC-probability was 94.9% (95%-CI: [88.3; 100.0]) in the SRS subgroup vs. 81.7% (95%-CI: [66.6; 100.0]) in the WBRT subgroup (HR 0.2, 95%-CI: [0.01; 0.9] p = 0.037). Twelve-months DBC-probabilities were 65.0% (95%-CI: [50.8; 83.0]) and 58.8% (95%-CI: [42.9; 80.7]), respectively (HR 1.4, 95%-CI: [0.7; 2.7] p = 0.401). In propensity score-adjusted multivariate analysis, incomplete resection negatively impacted OS (HR 3.9, 95%-CI: [2.0;7.4], p < 0.001) and LC (HR 5.4, 95%-CI: [1.3; 21.9], p = 0.018). Excellent clinical performance (HR 0.4, 95%-CI: [0.2; 0.9], p = 0.030) and better graded prognostic assessment (GPA) score (HR 0.4, 95%-CI: [0.2; 1.0], p = 0.040) were prognostic of superior OS. A higher number of BM was associated with a greater risk of developing new distant BM (HR 5.6, 95%-CI: [1.0; 30.4], p = 0.048). In subgroup analysis, larger cavity volume (HR 1.1, 95%-CI: [1.0; 1.3], p = 0.033) and incomplete resection (HR 12.0, 95%-CI: [1.2; 118.3], p = 0.033) were associated with inferior LC following SRS/FSRT. Conclusion: This is the first propensity score-adjusted direct comparison of SRS/FSRT and WBRT following the resection of BM. Patients receiving SRS/FSRT showed longer OS and LC compared to WBRT. Future analyses will address the optimal choice of safety margin, dose and fractionation for postoperative stereotactic RT of the resection cavity.
Collapse
Affiliation(s)
- Rami A El Shafie
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Thorsten Dresel
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Dorothea Weber
- Institute of Medical Biometry and Informatics (IMBI), Heidelberg University Hospital, Heidelberg, Germany
| | - Daniela Schmitt
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Simon Höne
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Tobias Forster
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Bastian von Nettelbladt
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (dkfz), Heidelberg, Germany.,Deutsches Konsortium Für Translationale Krebsforschung (DKTK), Partner Site Heidelberg, German Cancer Research Center (dkfz), Heidelberg, Germany.,Heidelberger Ionenstrahltherapie-Zentrum (HIT), Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
28
|
Soliman H, Myrehaug S, Tseng CL, Ruschin M, Hashmi A, Mainprize T, Spears J, Das S, Yang V, da Costa L, Maralani P, Heyn C, Atenafu EG, Sahgal A. Image-Guided, Linac-Based, Surgical Cavity-Hypofractionated Stereotactic Radiotherapy in 5 Daily Fractions for Brain Metastases. Neurosurgery 2020; 85:E860-E869. [PMID: 31173150 DOI: 10.1093/neuros/nyz162] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/18/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cavity stereotactic radiotherapy has emerged as a standard option following resection of brain metastases. However, the optimal approach with either single-fraction or hypofractionated stereotactic radiotherapy (HSRT) remains a significant question. OBJECTIVE To report outcomes for 5-fraction HSRT to the surgical cavity, based on contouring according to a recently reported international consensus guideline. METHODS Patients treated with cavity HSRT were identified from a prospective institutional database. Local brain control (LC), distant brain failure (DBF), leptomeningeal disease (LMD), and overall survival rates were determined. Univariate and multivariable analyses were performed on potential predictive factors. RESULTS One hundred thirty-seven cavities in 122 patients were treated at a median total dose of 30 Gy (range, 25-35 Gy). The median follow-up was 16 mo (range, 1-60 mo). Nonsmall cell lung cancer was the most common histology (44%), followed by breast cancer (21%). In 57% of surgical cavities, the preoperative tumor diameter was >3 cm. One-year LC, DBF, LMD, and overall survival rates were 84%, 45%, 22%, and 62%, respectively. Multivariable analyses identified colorectal (hazard ratio [HR] 4.1, P = .0066) and melanoma (HR 2.4, P = .012) metastases as predictors of local recurrence; preoperative tumor diameter >2 cm (HR 8.9, P = .012) and absence of targeted therapy (HR 4.4, P = .03) as predictors of DBF; and breast cancer histology (HR 2.1, P = .05) and subtotal resection (HR 2.6, P = .009) as predictors of LMD. Symptomatic radiation necrosis was observed in 7 patients (6%). CONCLUSION High rates of LC were observed following this 5-fraction HSRT regimen. Superiority as compared to single-fraction SRS requires a randomized trial.
Collapse
Affiliation(s)
- Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Ahmed Hashmi
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Todd Mainprize
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Julian Spears
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Sunit Das
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Victor Yang
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Leodante da Costa
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Pejman Maralani
- Neuroradiology Division, Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Chris Heyn
- Neuroradiology Division, Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Challenges in the treatment of breast cancer brain metastases: evidence, unresolved questions, and a practical algorithm. Clin Transl Oncol 2020; 22:1698-1709. [PMID: 32207041 DOI: 10.1007/s12094-020-02333-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/01/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is the leading cause of brain metastases in women. Large randomized clinical trials that have evaluated local therapies in patients with brain metastases include patients with brain metastases from a variety of cancer types. The incidence of brain metastases in the breast cancer population continues to grow, which is, aside from the rising breast cancer incidence, mainly attributable to improvements in systemic therapies leading to more durable control of extracranial metastatic disease and prolonged survival. The management of breast cancer brain metastases remains challenging, even more so with the continued advancement of local and highly effective systemic therapies. For most patients, a metastases-directed initial approach (i.e., radiation, surgery) represents the most appropriate initial therapy. Treatment should be based on multidisciplinary team discussions and a shared decision with the patients taking into account the risks and benefits of each therapeutic modality with the goal of prolonging survival while maintaining quality of life. In this narrative review, a multidisciplinary group of experts will address challenging questions in the context of current scientific literature and propose a therapeutic algorithm for breast cancer patients with brain metastases.
Collapse
|
30
|
Brown DA, Lu VM, Himes BT, Burns TC, Quiñones-Hinojosa A, Chaichana KL, Parney IF. Breast brain metastases are associated with increased risk of leptomeningeal disease after stereotactic radiosurgery: a systematic review and meta-analysis. Clin Exp Metastasis 2020; 37:341-352. [DOI: 10.1007/s10585-020-10019-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
|
31
|
Dincoglan F, Sager O, Uysal B, Demiral S, Gamsiz H, Gündem E, Elcim Y, Dirican B, Beyzadeoglu M. Evaluatıon of hypofractıonated stereotactıc radıotherapy (HFSRT) to the resectıon cavıty after surgıcal resectıon of braın metastases: A sıngle center experıence. Indian J Cancer 2020; 56:202-206. [PMID: 31389381 DOI: 10.4103/ijc.ijc_345_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTON Adjuvant radiotherapy after surgical resection is used for the treatment of patients with brain metastasis. In this study, we assessed the use of adjuvant hypofractionated stereotactic radiotherapy (HFSRT) to the resection cavity for the management of patients with brain metastasis. MATERIALS AND METHODS A total of 28 patients undergoing surgical resection for their brain metastasis were treated using HFSRT to the resection cavity. A total HFSRT dose of 25-30 Gray (Gy) was delivered in 5 consecutive daily fractions. Patients were retrospectively assessed for toxicity, local control, and survival outcomes. Kaplan-Meier method and log-rank test were used for statistical analysis. RESULTS Median planning target volume (PTV) was 27.2 cc (range: 6-76.1 cc). At a median follow-up time of 11 months (range: 2-21 months.), 1-year local control rate was 85.7%, and 1-year distant failure rate was 57.1% (16 patients). Median overall survival was 15 months from HFSRT. Higher recursive partitioning analysis class (P = 0.01) and the presence of extracranial metastases (P = 0.02) were associated with decreased overall survival on statistical analysis. There was no radiation necrosis observed during follow-up. CONCLUSION HFSRT to the resection cavity offers a safe and effective adjuvant treatment for patients undergoing surgical resection of brain metastasis. With comparable local control rates, HFSRT may serve as a viable alternative to whole brain irradiation.
Collapse
Affiliation(s)
- Ferrat Dincoglan
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Omer Sager
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Bora Uysal
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Selcuk Demiral
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Hakan Gamsiz
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Esin Gündem
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Yelda Elcim
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Bahar Dirican
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| | - Murat Beyzadeoglu
- Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| |
Collapse
|
32
|
Post-operative stereotactic radiosurgery following excision of brain metastases: A systematic review and meta-analysis. Radiother Oncol 2020; 142:27-35. [DOI: 10.1016/j.radonc.2019.08.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/21/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022]
|
33
|
Palmer JD, Trifiletti DM, Gondi V, Chan M, Minniti G, Rusthoven CG, Schild SE, Mishra MV, Bovi J, Williams N, Lustberg M, Brown PD, Rao G, Roberge D. Multidisciplinary patient-centered management of brain metastases and future directions. Neurooncol Adv 2020; 2:vdaa034. [PMID: 32793882 PMCID: PMC7415255 DOI: 10.1093/noajnl/vdaa034] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The incidence of brain metastasis is increasing as improvements in systemic therapy lead to increased survival. This provides new and challenging clinical decisions for patients who are trying to balance the risk of recurrence or progression with treatment-related side effects, and it requires appropriate management strategies from multidisciplinary teams. Improvements in prognostic assessment and systemic therapy with increasing activity in the brain allow for individualized care to better guide the use of local therapies and/or systemic therapy. Here, we review the current landscape of brain-directed therapy for the treatment of brain metastasis in the context of recent improved systemic treatment options. We also discuss emerging treatment strategies including targeted therapies for patients with actionable mutations, immunotherapy, modern whole-brain radiation therapy, radiosurgery, surgery, and clinical trials.
Collapse
Affiliation(s)
- Joshua D Palmer
- Department of Radiation Oncology, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Neurosurgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Daniel M Trifiletti
- Departments of Radiation Oncology and Neurological Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Vinai Gondi
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Radiation Oncology Consultants LLC, Chicago, Illinois, USA
- Northwestern Medicine Chicago Proton Center Warrenville, Chicago, Illinois, USA
| | - Michael Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Giuseppe Minniti
- Radiation Oncology Unit, UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic Scottsdale, Phoenix, Arizona, USA
| | - Mark V Mishra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joseph Bovi
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nicole Williams
- Department of Medical Oncology, The James Cancer Hospital and Solove Research Institute at The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Maryam Lustberg
- Department of Medical Oncology, The James Cancer Hospital and Solove Research Institute at The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David Roberge
- Department of Radiation Oncology, Centre Hospitalier de l’ Université de Montreal, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Palmer JD, Greenspoon J, Brown PD, Johnson DR, Roberge D. Neuro-Oncology Practice Clinical Debate: stereotactic radiosurgery or fractionated stereotactic radiotherapy following surgical resection for brain metastasis. Neurooncol Pract 2019; 7:263-267. [PMID: 32537175 DOI: 10.1093/nop/npz047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The treatment of resected brain metastasis has shifted away from the historical use of whole-brain radiotherapy (WBRT) toward adjuvant radiosurgery (stereotactic radiosurgery [SRS]) based on a recent prospective clinical trial demonstrating less cognitive decline with the use of SRS alone and equivalent survival as compared with WBRT. Whereas all level 1 evidence to date concerns single-fraction SRS for postoperative brain metastasis, there is emerging evidence that fractionated stereotactic radiotherapy (FSRT) may improve local control at the resected tumor bed. The lack of direct comparative data for SRS vs FSRT results in a diversity in clinical practice. In this article, Greenspoon and Roberge defend the use of SRS as the standard of care for resected brain metastasis, whereas Palmer and Brown argue for FSRT.
Collapse
Affiliation(s)
- Joshua D Palmer
- Department of Radiation Oncology, The James Cancer Hospital at The Ohio State University Wexner Medical Center, Columbus, USA
| | | | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - David Roberge
- Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal, Quebec, Canada
| |
Collapse
|
35
|
Traylor JI, Habib A, Patel R, Muir M, Gadot R, Briere T, Yeboa DN, Li J, Rao G. Fractionated stereotactic radiotherapy for local control of resected brain metastases. J Neurooncol 2019; 144:343-350. [PMID: 31313060 DOI: 10.1007/s11060-019-03233-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE Postoperative stereotactic radiosurgery (SRS) has been shown to establish local control in patients with resected brain metastases, yet its efficacy may be limited, particularly for resected lesions with large post-operative resection cavities. We describe the efficacy of postoperative fractionated stereotactic radiotherapy (FSRT) for local control in patients who have undergone resection for brain metastases. METHODS In this retrospective cohort study, we analyzed patients who received FSRT for resected brain metastases in 3 or 5 fractions. Time to local recurrence was the primary endpoint in this study. RESULTS Sixty-seven patients (n = 29 female, n = 38 male) met study criteria for review. The median age of the cohort was 62 years (range 18-79 years). Median preoperative tumor volume was 11.1 cm3 (range 0.4-77.0 cm3). The rate of local control was 91.0% at 6 months, 85.1% at 12 months, and 85.1% at 18 months. Estimates of freedom from local recurrence at 6 and 12 months were 90.9% and 84.3%, respectively. Higher biologically equivalent doses (BED10) were found to be predictive of longer freedom from local recurrence on univariate and multivariable analysis. Larger cavity volumes were found to correspond to longer time to local recurrence on univariate and multivariable analysis. CONCLUSION Our results suggest that postoperative FSRT may be an effective method for providing local control to the surgical bed in patients with resected brain metastases, particularly for larger tumors not amenable to conventional, single-fraction SRS. Additional prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Jeffrey I Traylor
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed Habib
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajan Patel
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Muir
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ron Gadot
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Briere
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debra N Yeboa
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Room FC7.2000, Unit 853, Houston, TX, 77030-4009, USA.
| |
Collapse
|
36
|
Minniti G, Scaringi C, Lanzetta G, Anzellini D, Bianciardi F, Tolu B, Morace R, Romano A, Osti M, Gentile P, Paolini S. Comparative effectiveness of multi-fraction stereotactic radiosurgery for surgically resected or intact large brain metastases from non-small-cell lung cancer (NSCLC). Lung Cancer 2019; 132:119-125. [PMID: 31097084 DOI: 10.1016/j.lungcan.2019.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/29/2019] [Accepted: 04/15/2019] [Indexed: 11/17/2022]
Abstract
PURPOSE to investigate clinical outcomes in patients with large brain metastases from non-small-cell lung cancer (NSCLC) who received surgical resection and postoperative stereotactic radiosurgery or SRS alone. PATIENTS AND METHODS Two hundred and twenty-two patients with 241 large brain metastases (2-4 cm in size) who received surgery and multi-fraction SRS (mfSRS) to the resection cavity or mfSRS alone were analyzed. For all lesions the delivered dose was 3 x 9 Gy over three consecutive days. Primary endpoint of the study was local control (LC). Secondary endpoints included early improvement of neurological deficits, changes in performance status, treatment-related toxicity, radiation-induced brain necrosis (RN), distant brain failure (DBF), and overall survival (OS). Kaplan-Meier analysis and cumulative incidence function were used for comparing the probability of failure. RESULTS At a median follow-up of 13 months, median OS times and 1-year survival rates were comparable: 13.5 months and 59% for patients receiving surgery and postoperative mfSRS to the resection cavity and 15.2 months and 68% for those treated with mfSRS alone (p = 0.2). Median DBF did not differ significantly between groups (surgery and mfSRS,12 months; mfSRS,14 months). Eighteen patients receiving surgery and mfSRS and 17 patients treated with mfSRS alone recurred locally (p = 0.2); respective 6-month and 12-month LC rates were 87% and 83% and 96% and 91% (p = 0.15). The 1-year cumulative incidence rates of RN were 15% and 7% after postoperative mfSRS and mfSRS alone (p = 0.03), respectively. CONCLUSIONS In conclusion, mfSRS is an effective treatment for patients with large brain metastases from NSCLC resulting in equivalent LC and lower RN and risk of leptomeningeal spread compared to surgery and mf-SRS to the resection cavity. Surgery is an effective treatment option for patients with large symptomatic brain metastases who require rapid relief of neurological symptoms caused by tumor mass effect.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Radiation Oncology Unit, UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy.
| | - Claudia Scaringi
- Radiation Oncology Unit, UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | | | - Dimitri Anzellini
- Radiation Oncology Unit, Sant' Andrea Hospital, University Sapienza, 00100 Rome, Italy
| | - Federico Bianciardi
- Radiation Oncology Unit, UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Barbara Tolu
- Radiation Oncology Unit, UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | | | - Andrea Romano
- Neuroradiology Unit, Sant' Andrea Hospital, University Sapienza, 00189 Rome, Italy
| | - Mattia Osti
- Radiation Oncology Unit, UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - PierCarlo Gentile
- Radiation Oncology Unit, UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | | |
Collapse
|
37
|
Martinage G, Geffrelot J, Stefan D, Bogart E, Rault E, Reyns N, Emery E, Makhloufi-Martinage S, Mouttet-Audouard R, Basson L, Mirabel X, Lartigau E, Pasquier D. Efficacy and Tolerance of Post-operative Hypo-Fractionated Stereotactic Radiotherapy in a Large Series of Patients With Brain Metastases. Front Oncol 2019; 9:184. [PMID: 30984617 PMCID: PMC6448411 DOI: 10.3389/fonc.2019.00184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/04/2019] [Indexed: 11/13/2022] Open
Abstract
Purpose: The aim of this study was to assess, in a large series, the efficacy and tolerance of post-operative adjuvant hypofractionated stereotactic radiation therapy (HFSRT) for brain metastases (BMs). Materials and Methods: Between July 2012 and January 2017, 160 patients from 2 centers were operated for BM and treated by HFSRT. Patients had between 1 and 3 BMs, no brainstem lesions or carcinomatous meningitis. The primary endpoint was local control. Secondary endpoints were distant brain control, overall survival (OS) and tolerance to HFSRT. Results: 73 patients (46%) presented with non-small cell lung cancer (NSCLC), 23 (14%) had melanoma and 21 (13%) breast cancer. Median age was 58 years (range, 22–83 years). BMs were synchronous in 50% of the cases. The most frequent prescription regimens were 24 Gy in 3 fractions (n = 52, 33%) and 30 Gy in 5 fractions (n = 37, 23%). Local control rates at 1 and 2 years were 88% [95%CI, 81–93%] and 81% [95%CI, 70–88%], respectively. Distant control rate at 1 year was 48% [95%CI, 81–93%]. In multivariate analysis, primary NSCLC was associated with a significant reduction in the risk of death compared to other primary sites (HR = 0.57, p = 0.007), the number of extra-cerebral metastatic sites (HR = 1.26, p = 0.003) and planning target volumes (HR = 1.15, p = 0.012) were associated with a lower OS. There was no prognostic factor of time to local progression. Median OS was 15.2 months [95%CI, 12.0–17.9 months] and the OS rate at 1 year was 58% [95% CI, 50–65%]. Salvage radiotherapy was administered to 72 patients (45%), of which 49 received new HFSRT. Ten (7%) patients presented late grade 2 and 4 (3%) patients late grade 3 toxicities. Thirteen (8.9%) patients developed radiation necrosis. Conclusions: This large multicenter retrospective study shows that HFSRT allows for good local control of metastasectomy tumor beds and that this technique is well-tolerated by patients.
Collapse
Affiliation(s)
- Geoffrey Martinage
- Academic Department of Radiation Oncology, Centre Oscar Lambret, University Lille II, Lille, France
| | - Julien Geffrelot
- Department of Radiation Oncology, Centre François Baclesse, Caen, France
| | - Dinu Stefan
- Department of Radiation Oncology, Centre François Baclesse, Caen, France
| | - Emilie Bogart
- Department of Biostatistics, Centre Oscar Lambret, Lille, France
| | - Erwan Rault
- Department of Medical Physics, Centre Oscar Lambret, Lille, France
| | - Nicolas Reyns
- Department of Neurosurgery, CHRU Lille, Lille, France
| | - Evelyne Emery
- Neurosurgical Department, Universitary Hospital Caen, Caen, France
| | | | | | - Laurent Basson
- Academic Department of Radiation Oncology, Centre Oscar Lambret, University Lille II, Lille, France
| | - Xavier Mirabel
- Academic Department of Radiation Oncology, Centre Oscar Lambret, University Lille II, Lille, France
| | - Eric Lartigau
- Academic Department of Radiation Oncology, Centre Oscar Lambret, University Lille II, Lille, France.,CRIStAL UMR CNRS 9189, Lille University, Lille, France
| | - David Pasquier
- Academic Department of Radiation Oncology, Centre Oscar Lambret, University Lille II, Lille, France.,CRIStAL UMR CNRS 9189, Lille University, Lille, France
| |
Collapse
|
38
|
Kim KH, Lee MH, Cho KR, Choi JW, Kong DS, Seol HJ, Nam DH, Lee JI. The influence of histology on the response of brain metastases to gamma knife radiosurgery: a propensity score-matched study. Acta Neurochir (Wien) 2018; 160:2379-2386. [PMID: 30413940 DOI: 10.1007/s00701-018-3726-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND In terms of response to fractionated radiotherapy, metastatic brain tumors of certain origins are considered radioresistant. OBJECTIVE To determine the influence of "radioresistant" histology on outcomes of brain metastases treated with radiosurgery. METHODS Between 2001 and 2017, 121 patients with brain metastases from renal cell carcinoma (RCC) and 2151 from non-small cell lung cancer (NSCLC) were reviewed. Eighty-seven pairs were derived using propensity score matching. Local progression-free survival (PFS), progression patterns, distant PFS, and overall survival were investigated. RESULTS The median follow-up period was 13.7 months (range, 1.6-78.4 months). A total of 536 lesions were treated using gamma knife radiosurgery (GKS), with a median dose of 20 Gy (range, 12-28 Gy). The actuarial local PFS rates in the RCC group were 91% and 89% at 6 and 12 months, respectively, and did not differ from the NSCLC group (97% and 83% at 6 and 12 months, respectively). Continuous progression, without response to GKS, was noted in seven of the eight progressed RCCs. However, six of the seven progressed NSCLCs showed transient shrinkage before progression. The median distant PFS was 9.3 months (95% CI, 6.3-12.2) in the RCC group and 8.0 months (95% CI, 5.5-10.4) in the NSCLC group. The median overall survival was 16.1 months (95% CI, 11.3-20.8) and 14.9 months (95% CI, 11.9-17.8) in RCC and NSCLC groups, respectively. CONCLUSION Histological differences had no effect on local control in the single high-dose range used for radiosurgery. However, changes in tumor volume during progression varied across tumor histology.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Min Ho Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Kyung-Rae Cho
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Jung-Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Ho Jun Seol
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
39
|
Ayas AW, Grau S, Jablonska K, Ruess D, Ruge M, Marnitz S, Goldbrunner R, Kocher M. Postoperative local fractionated radiotherapy for resected single brain metastases. Strahlenther Onkol 2018; 194:1163-1170. [PMID: 30218137 DOI: 10.1007/s00066-018-1368-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/28/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE Evaluation of postoperative fractionated local 3D-conformal radiotherapy (3DRT) of the resection cavity in brain metastases. PATIENTS AND METHODS Between 2011 and 2016, 57 patients underwent resection of a single, previously untreated (37/57, 65%) or recurrent (20/57, 35%) brain metastasis (median maximal diameter 3.5 cm [1.1-6.5 cm]) followed by 3DRT. For definition of the gross tumor volume (GTV), the resection cavity was used and for the clinical target volume (CTV), margins of 1.0-1.5 cm were added. Median dose was 48.0 Gy (30.0-50.4 Gy) in 25 (10-28) fractions; most patients had 36.0-42.0 Gy in 3.0 Gy fractions (n = 16, EQD210Gy 39.0-45.5 Gy) or 40.0-50.4 Gy in 1.8-2.0 Gy fractions (n = 37, EQD210Gy 39.3-50.0 Gy). RESULTS Median follow-up was 18 months. Local control rates were 83% at 1 year and 78% at 2 years and were significantly influenced by histology (breast cancer 100%, non-small lung cancer 87%, melanoma 80%, colorectal cancer 26% at 2 years, p = 0.006) and resection status (p < 0.0001), but not by EQD210Gy or size of the planning target volume (median 96.7 ml [16.7-282.8 ml]). At 1 and 2 years, 74% and 52% of the patients were free from distant brain metastases. Salvage procedures were applied in 25/27 (93%) of recurrent patients. Survival was 68% at 1 year and 41% at 2 years and was significantly improved in younger patients (p = 0.006) with higher Karnofsky performance score (p < 0.0001) and without prior radiotherapy (54% vs. 9% at 2 years, p = 0.006). No cases of radiographic or symptomatic radionecrosis were observed. CONCLUSION Adjuvant fractionated local 3DRT is highly effective in radiosensitive, completely resected metastases and should be considered for treating large resection cavities as an alternative to postoperative stereotactic single dose or hypofractionated radiosurgery.
Collapse
Affiliation(s)
- Ahmad Walid Ayas
- Department of Radiation Oncology, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | - Stefan Grau
- Department of Neurosurgery, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | - Karolina Jablonska
- Department of Radiation Oncology, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | - Daniel Ruess
- Department of Stereotactic and Functional Neurosurgery, Center for Integrated Oncology, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Maximilian Ruge
- Department of Stereotactic and Functional Neurosurgery, Center for Integrated Oncology, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Simone Marnitz
- Department of Radiation Oncology, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Department of Neurosurgery, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | - Martin Kocher
- Department of Radiation Oncology, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany.
- Department of Stereotactic and Functional Neurosurgery, Center for Integrated Oncology, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Juelich, Juelich, Germany.
| |
Collapse
|
40
|
Marchan EM, Peterson J, Sio TT, Chaichana KL, Harrell AC, Ruiz-Garcia H, Mahajan A, Brown PD, Trifiletti DM. Postoperative Cavity Stereotactic Radiosurgery for Brain Metastases. Front Oncol 2018; 8:342. [PMID: 30234013 PMCID: PMC6127288 DOI: 10.3389/fonc.2018.00342] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/06/2018] [Indexed: 11/26/2022] Open
Abstract
During the past decade, tumor bed stereotactic radiosurgery (SRS) after surgical resection has been increasingly utilized in the management of brain metastases. SRS has risen as an alternative to adjuvant whole brain radiation therapy (WBRT), which has been shown in several studies to be associated with increased neurotoxicity. Multiple recent articles have shown favorable local control rates compared to those of WBRT. Specifically, improvements in local control can be achieved by adding a 2 mm margin around the resection cavity. Risk factors that have been established as increasing the risk of local recurrence after resection include: subtotal resection, larger treatment volume, lower margin dose, and a long delay between surgery and SRS (>3 weeks). Moreover, consensus among experts in the field have established the importance of (a) fusion of the pre-operative magnetic resonance imaging scan to aid in volume delineation (b) contouring the entire surgical tract and (c) expanding the target to include possible microscopic disease that may extend to meningeal or venous sinus territory. These strategies can minimize the risks of symptomatic radiation-induced injury and leptomeningeal dissemination after postoperative SRS. Emerging data has arisen suggesting that multifraction postoperative SRS, or alternatively, preoperative SRS could provide decreased rates of radiation necrosis and leptomeningeal disease. Future prospective randomized clinical trials comparing outcomes between these techniques are necessary in order to improve outcomes in these patients.
Collapse
Affiliation(s)
- Eduardo M Marchan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Jennifer Peterson
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Kaisorn L Chaichana
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Anna C Harrell
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
41
|
Bilger A, Bretzinger E, Fennell J, Nieder C, Lorenz H, Oehlke O, Grosu A, Specht HM, Combs SE. Local control and possibility of tailored salvage after hypofractionated stereotactic radiotherapy of the cavity after brain metastases resection. Cancer Med 2018; 7:2350-2359. [PMID: 29745035 PMCID: PMC6010898 DOI: 10.1002/cam4.1486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 02/03/2023] Open
Abstract
In patients undergoing surgical resection of brain metastases, the risk of local recurrence remains high. Adjuvant whole brain radiation therapy (WBRT) can reduce the risk of local relapse but fails to improve overall survival. At two tertiary care centers in Germany, a retrospective study was performed to evaluate the role of hypofractionated stereotactic radiotherapy (HFSRT) in patients with brain metastases after surgical resection. In particular, need for salvage treatment, for example, WBRT, surgery, or stereotactic radiosurgery (SRS), was evaluated. Both intracranial local (LF) and locoregional (LRF) failures were analyzed. A total of 181 patients were treated with HFSRT of the surgical cavity. In addition to the assessment of local control and distant intracranial control, we analyzed treatment modalities for tumor recurrence including surgical strategies and reirradiation. Imaging follow-up for the evaluation of LF and LRF was available in 159 of 181 (88%) patients. A total of 100 of 159 (63%) patients showed intracranial progression after HFSRT. A total of 81 of 100 (81%) patients received salvage therapy. Fourteen of 81 patients underwent repeat surgery, and 78 of 81 patients received radiotherapy as a salvage treatment (53% WBRT). Patients with single or few metastases distant from the initial site or with WBRT in the past were retreated by HFSRT (14%) or SRS, 33%. Some patients developed up to four metachronous recurrences, which could be salvaged successfully. Eight (4%) patients experienced radionecrosis. No other severe side effects (CTCAE≥3) were observed. Postoperative HFSRT to the resection cavity resulted in a crude rate for local control of 80.5%. Salvage therapy for intracranial progression was commonly needed, typically at distant sites. Salvage therapy was performed with WBRT, SRS, and surgery or repeated HFSRT of the resection cavity depending on the tumor spread and underlying histology. Prospective studies are warranted to clarify whether or not the sequence of these therapies is important in terms of quality of life, risk of radiation necrosis, and likelihood of neurological cause of death.
Collapse
Affiliation(s)
- Angelika Bilger
- Department of Radiation OncologyMedical Center, Medical FacultyUniversity of FreiburgFreiburg im BreisgauGermany
| | - Eva Bretzinger
- Department of Radiation OncologyMedical Center, Medical FacultyUniversity of FreiburgFreiburg im BreisgauGermany
| | - Jamina Fennell
- Department of Radiation OncologyMedical Center, Medical FacultyUniversity of FreiburgFreiburg im BreisgauGermany
| | - Carsten Nieder
- Department of Oncology and Palliative MedicineNordland HospitalBodøNorway
- Institute of Clinical Medicine, Faculty of Health SciencesUniversity of TromsøTromsøNorway
| | - Hannah Lorenz
- Department of Radiation OncologyMedical Center, Medical FacultyUniversity of FreiburgFreiburg im BreisgauGermany
| | - Oliver Oehlke
- Department of Radiation OncologyMedical Center, Medical FacultyUniversity of FreiburgFreiburg im BreisgauGermany
| | - Anca‐Ligia Grosu
- Department of Radiation OncologyMedical Center, Medical FacultyUniversity of FreiburgFreiburg im BreisgauGermany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site FreiburgFreiburg im BreisgauGermany
| | - Hanno M. Specht
- Department of Radiation Oncology, Klinikumrechts der IsarTechnical University of MunichMunichGermany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikumrechts der IsarTechnical University of MunichMunichGermany
- Institute of Innovative Radiotherapy (iRT)Helmholtz Zentrum MunichOberschleißheimGermany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site MunichMunichGermany
| |
Collapse
|
42
|
Sinclair G, Benmakhlouf H, Martin H, Brigui M, Maeurer M, Dodoo E. The role of radiosurgery in the acute management of fourth ventricle compression due to brain metastases. Surg Neurol Int 2018; 9:112. [PMID: 29930878 PMCID: PMC5991270 DOI: 10.4103/sni.sni_387_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/26/2017] [Indexed: 11/16/2022] Open
Abstract
Background: Approximately 20–30% of all intracranial metastases are located in the posterior fossa. The clinical evolution hinges on factors such as tumor growth dynamics, local topographic conditions, performance status, and prompt intervention. Fourth ventricle (V4) compression with secondary life-threatening obstructive hydrocephalus remains a major concern, often requiring acute surgical intervention. We have previously reported on the application of adaptive hypofractionated Gamma Knife Radiosurgery in the acute management of critically located metastases, a technique known to us as rapid rescue radiosurgery (3R). We report the results of 3R in the management of posterior fossa lesions and ensuing V4 decompression. Case Descriptions: Four patients with V4 compression due to posterior fossa metastases were treated with 3R by three separate gamma knife radiosurgical sessions (GKRS) over a period of seven days. Mean V4 volume was 1.02 cm3 at GKRS 1, 1.13 cm3 at GKRS 2, and 1.12 cm3 at GKRS 3. Mean tumor volume during the week of treatment was 10 cm3 at both GKRS 1 and 2 and 9 cm3 at GKRS 3. On average, we achieved a tumor volume reduction of 52% and a V4 size increase of 64% at the first follow-up (4 weeks after GKRS 3). Long-term follow-up showed continued local tumor control, stable V4 volume, and absence of hydrocephalus. Conclusion: For this series, 3R was effective in terms of rapid tumor ablation, V4 decompression, and limited radiation-induced toxicity. This surgical procedure may become an additional tool in the management of intractable posterior fossa metastasis with V4 compression.
Collapse
Affiliation(s)
- G Sinclair
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - H Benmakhlouf
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - H Martin
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - M Brigui
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - M Maeurer
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institute, Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - E Dodoo
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
43
|
Rana N, Kim E, Jaboin J, Attia A. The Role of Adjuvant Radiation in the Management of Solitary Fibrous Tumors of the Central Nervous System: A National Cancer Database Analysis of 155 Patients. Cureus 2018; 10:e2656. [PMID: 30042907 PMCID: PMC6054364 DOI: 10.7759/cureus.2656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Solitary fibrous tumors (SFT) are a rare neoplasm of mesenchymal origin. There is limited evidence on the epidemiology, treatment, and outcomes of SFT in the central nervous system (CNS). The National Cancer Database (NCDB) was queried for patients diagnosed with an SFT in the CNS as their only tumor diagnosis between 2003 and 2011. The final cohort included 155 patients who received surgery and had adequate information for analysis. Descriptive statistics, logistic regression, and Kaplan-Meier survival analyses were performed. Significance was calculated using a t-test, Fisher’s exact test, chi-square, log-rank test, or Cox model. Twenty-three patients (15%) underwent both surgery and adjuvant radiation while 132 (85%) underwent surgery alone. The treatment groups had comparable demographics and tumor size; median age 53 (range 25-80) and 11 females (48%) in the surgery and adjuvant radiation group, compared to 55 (20-89) and 71 (54%) in the surgery alone group, respectively. Radiotherapy methods included conventional and stereotactic dose and fractionations schemes. Information on margin status and re-resection rates was not available. No variables were significantly associated with receipt of adjuvant radiation. In single (p = 0.78) and multivariable (p = 0.86) survival analyses, the addition of adjuvant radiation did not significantly affect overall survival. Five-year overall survival was 88% with surgery alone versus 93% with adjuvant radiation. SFTs are rare neoplasms, especially in the CNS. Our study did not demonstrate an overall survival benefit for adjuvant radiation. The role of adjuvant radiation is still unclear and warrants further investigation.
Collapse
Affiliation(s)
- Nitesh Rana
- Department of Radiation Oncology, Vanderbilt University Medical Center
| | - Ellen Kim
- Department of Radiation Oncology, Vanderbilt University Medical Center
| | - Jerry Jaboin
- Radiation Medicine, Oregon Health & Science University
| | - Albert Attia
- Department of Radiation Oncology, Vanderbilt University Medical Center
| |
Collapse
|
44
|
Radiation Therapy in Brain Metastasis of Solid Tumors: A Challenge for the Future. Radiat Oncol 2018. [DOI: 10.1007/978-3-319-52619-5_12-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Keller A, Doré M, Cebula H, Thillays F, Proust F, Darié I, Martin SA, Delpon G, Lefebvre F, Noël G, Antoni D. Hypofractionated Stereotactic Radiation Therapy to the Resection Bed for Intracranial Metastases. Int J Radiat Oncol Biol Phys 2017; 99:1179-1189. [DOI: 10.1016/j.ijrobp.2017.08.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/27/2017] [Accepted: 08/11/2017] [Indexed: 11/30/2022]
|
46
|
[Delineation of the surgical bed of operated brain metastases treated with adjuvant stereotactic irradiation: A review]. Cancer Radiother 2017; 21:804-813. [PMID: 29170039 DOI: 10.1016/j.canrad.2017.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/30/2017] [Accepted: 04/19/2017] [Indexed: 11/22/2022]
Abstract
Stereotactic radiotherapy of the surgical bed of brain metastases is a technique that comes supplant indications of adjuvant whole brain radiotherapy after surgery. After a growing number of retrospective studies, a phase III trial has been presented and validated this indication. However, several criteria such as the dose, the fractionation, the use of a margin and definition of volumes remain to be defined. Our study consisted in making a literature review in order to provide a guideline of delineation of surgical beds of brain metastases, as well as the different modalities of their implementation process.
Collapse
|
47
|
Cleary RK, Meshman J, Dewan M, Du L, Cmelak AJ, Luo G, Morales-Paliza M, Weaver K, Thompson R, Chambless LB, Attia A. Postoperative Fractionated Stereotactic Radiosurgery to the Tumor Bed for Surgically Resected Brain Metastases. Cureus 2017; 9:e1279. [PMID: 28656127 PMCID: PMC5484602 DOI: 10.7759/cureus.1279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction Stereotactic radiosurgery (SRS) is increasingly used as an alternative to whole brain radiotherapy (WBRT) following surgical resection of brain metastases. We analyzed the outcomes of postoperative frameless fractionated stereotactic radiosurgery (fSRS) cases for surgically resected brain metastases at our institution. Materials and Methods We performed a retrospective review of 85 patients who underwent fSRS to 87 resection beds from 2006 - 2014 with a median follow-up of 6.4 months. Clinically relevant outcomes were assessed with analysis to determine predictors of these outcomes. Results The median target volume was 9.8 cm3 (1.1 - 43.1 cm3). The most frequently used fractionation scheme was 3,000 cGy in five fractions. The rates of local control (LC), distant brain failure (DBF), and overall survival (OS) at one-year were 87%, 52%, and 52%, respectively. Five patients (5.9%) experienced Grade >2 toxicity related to fSRS, including seizures (two), symptomatic radionecrosis (two), and potential treatment-related death (one). A multivariable analysis revealed that tumor volume (p < 0.001) and number of fractions (p < 0.001) were associated with LC, while recursive partitioning analysis (RPA) class (p < .0001), tumor volume (p = .0181), and the number of fractions (p = .0181) were associated with OS. Conclusions Postoperative fSRS for surgically resected brain metastases is well-tolerated and achieves durable LC. Further studies are needed to determine the optimal dose and fractionation for fSRS as well as to compare outcomes with WBRT.
Collapse
Affiliation(s)
- Ryan K Cleary
- Department of Radiation Oncology, Vanderbilt University Medical Center
| | - Jessica Meshman
- Department of Radiation Oncology, Vanderbilt University Medical Center
| | - Michael Dewan
- Department of Neurological Surgery, Vanderbilt University Medical Center
| | - Liping Du
- Center for Quantitative Sciences, Vanderbilt University School of Medicine
| | - Anthony J Cmelak
- Department of Radiation Oncology, Vanderbilt University Medical Center
| | - Guozhen Luo
- Department of Radiation Oncology, Vanderbilt University Medical Center
| | | | - Kyle Weaver
- Department of Neurological Surgery, Vanderbilt University Medical Center
| | - Reid Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center
| | - Lola B Chambless
- Department of Neurological Surgery, Vanderbilt University Medical Center
| | - Albert Attia
- Department of Radiation Oncology, Vanderbilt University Medical Center
| |
Collapse
|
48
|
Keller A, Doré M, Antoni D, Menoux I, Thillays F, Clavier JB, Delpon G, Jarnet D, Bourrier C, Lefebvre F, Chibbaro S, Darié I, Proust F, Noël G. [Risk of radionecrosis after hypofractionated stereotactic radiotherapy targeting the postoperative resection cavity of brain metastases]. Cancer Radiother 2017; 21:377-388. [PMID: 28551018 DOI: 10.1016/j.canrad.2017.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/02/2017] [Accepted: 01/31/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE To investigate the factors that potentially lead to brain radionecrosis after hypofractionated stereotactic radiotherapy targeting the postoperative resection cavity of brain metastases. METHODS AND MATERIALS A retrospective analysis conducted in two French centres, was performed in patients treated with trifractionated stereotactic radiotherapy (3×7.7Gy prescribed to the 70% isodose line) for resected brain metastases. Patients with previous whole-brain irradiation were excluded of the analysis. Radionecrosis was diagnosed according to a combination of criteria including clinical, serial imaging or, in some cases, histology. Univariate and multivariate analyses were performed to determine the predictive factors of radionecrosis including clinical and dosimetric variables such as volume of brain receiving a specific dose (V8Gy-V22Gy). RESULTS One hundred eighty-one patients, with a total of 189 cavities were treated between March 2008 and February 2015. Thirty-five patients (18.5%) developed radionecrosis after a median follow-up of 15 months (range: 3-38 months) after hypofractionated stereotactic radiotherapy. One third of patients with radionecrosis were symptomatic. Multivariate analysis showed that infra-tentorial location was predictive of radionecrosis (hazard ratio [HR]: 2.97; 95% confidence interval [95% CI]: 1.47-6.01; P=0.0025). None V8Gy-V22Gy was associated with appearance of radionecrosis, even if V14Gy trended toward significance (P=0.059). CONCLUSION Analysis of patients and treatment variables revealed that infratentorial location of brain metastases was predictive for radionecrosis after hypofractionated stereotactic radiotherapy for postoperative resection cavities.
Collapse
Affiliation(s)
- A Keller
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France
| | - M Doré
- Département de radiothérapie, institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| | - D Antoni
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France; Laboratoire EA 3430, fédération de médecine translationnelle de Strasbourg, université de Strasbourg, 67000 Strasbourg, France
| | - I Menoux
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France
| | - F Thillays
- Département de radiothérapie, institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| | - J B Clavier
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France
| | - G Delpon
- Département de radiothérapie, institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| | - D Jarnet
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France
| | - C Bourrier
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France
| | - F Lefebvre
- Laboratoire de biostatistiques, faculté de médecine, 4, rue Kirschleger, 67085 Strasbourg cedex, France
| | - S Chibbaro
- Département de neurochirurgie, hôpital de Hautepierre, avenue Molière, 67200 Strasbourg, France
| | - I Darié
- Service de neurochirurgie, centre hospitalier régional d'Orléans, 1, rue Porte-Madeleine, 45000 Orléans, France
| | - F Proust
- Département de neurochirurgie, hôpital de Hautepierre, avenue Molière, 67200 Strasbourg, France
| | - G Noël
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France; Laboratoire EA 3430, fédération de médecine translationnelle de Strasbourg, université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
49
|
Outcomes of postoperative stereotactic radiosurgery to the resection cavity versus stereotactic radiosurgery alone for melanoma brain metastases. J Neurooncol 2017; 132:455-462. [DOI: 10.1007/s11060-017-2394-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
|
50
|
Gronchi A, Guadagnolo BA, Erinjeri JP. Local Ablative Therapies to Metastatic Soft Tissue Sarcoma. Am Soc Clin Oncol Educ Book 2017; 35:e566-75. [PMID: 27249769 DOI: 10.1200/edbk_157450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The approach to metastatic soft tissue sarcoma is complex and depends upon several factors, such as the extent of the disease, the histologic subtype of the primary tumor, the disease-free interval, patient status and comorbidities, and previous treatments. The effect of systemic chemotherapy is suboptimal, therefore local ablative therapies are often considered when the disease is limited, especially if confined to a single site/organ. Historically, surgery has been considered the treatment of choice for isolated lung metastases. This approach also has been extended to metastases in the liver, although a formal demonstration of its benefit has never been provided. Radiation therapy instead has been mainly used to obtain pain control and to reduce the risk of bone fracture and cord compression. Advances in techniques, such as the development of more precise conformational modalities and the employment of particles, may change the role of this modality in the strategic approach to metastatic soft tissue sarcoma. Recently, the use of interventional radiology in this scenario has expanded. Ablative approaches, such as radiofrequency ablation and cryoablation, have shown durable eradication of tumors. Catheter-directed therapies, such as hepatic artery embolization, are potential techniques for treating the patient who has multiple unresectable liver metastases. Understanding the timing and role of these three different modalities in the multidisciplinary approach to metastatic soft tissue sarcoma is critical to provide better care and to personalize the approach to the single patient.
Collapse
Affiliation(s)
- Alessandro Gronchi
- From the Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - B Ashleigh Guadagnolo
- From the Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joseph Patrick Erinjeri
- From the Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|