1
|
Hao J, Huang Z, Zhang S, Song K, Wang J, Gao C, Fang Z, Zhang N. Deciphering the multifaceted roles and clinical implications of 2-hydroxyglutarate in cancer. Pharmacol Res 2024; 209:107437. [PMID: 39349213 DOI: 10.1016/j.phrs.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Increasing evidence indicates that 2-hydroxyglutarate (2HG) is an oncometabolite that drives tumour formation and progression. Due to mutations in isocitrate dehydrogenase (IDH) and the dysregulation of other enzymes, 2HG accumulates significantly in tumour cells. Due to its structural similarity to α-ketoglutarate (αKG), accumulated 2HG leads to the competitive inhibition of αKG-dependent dioxygenases (αKGDs), such as KDMs, TETs, and EGLNs. This inhibition results in epigenetic alterations in both tumour cells and the tumour microenvironment. This review comprehensively discusses the metabolic pathways of 2HG and the subsequent pathways influenced by elevated 2HG levels. We will delve into the molecular mechanisms by which 2HG exerts its oncogenic effects, particularly focusing on epigenetic modifications. This review will also explore the various methods available for the detection of 2HG, emphasising both current techniques and emerging technologies. Furthermore, 2HG shows promise as a biomarker for clinical diagnosis and treatment. By integrating these perspectives, this review aims to provide a comprehensive overview of the current understanding of 2HG in cancer biology, highlight the importance of ongoing research, and discuss future directions for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jie Hao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siyue Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Song
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Broome JA, Nguyen NP, Baumung CRE, Chen VC, Bushnell EAC. Gaining Insight into the Catalytic Mechanism of the R132H IDH1 Mutant: A Synergistic DFT Cluster and Experimental Investigation. Biochemistry 2024; 63:2682-2691. [PMID: 39318042 DOI: 10.1021/acs.biochem.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Human isocitrate dehydrogenase 1 (IDH1) is an enzyme that is found in humans that plays a critical role in aerobic metabolism. As a part of the citric acid cycle, IDH1 becomes responsible for catalyzing the oxidative decarboxylation of isocitrate to form α-ketoglutarate (αKG), with nicotinamide adenine dinucleotide phosphate (NADP+) as a cofactor. Strikingly, mutations of the IDH1 enzyme have been discovered in several cancers including glioblastoma multiforme (GBM), a highly aggressive form of brain cancer. It has been experimentally determined that single-residue IDH1 mutations occur at a very high frequency in GBM. Specifically, the IDH1 R132H mutation is known to produce (D)2-hydroxyglutarate (2HG), a recognized oncometabolite. Using the previously determined catalytic mechanism of IDH1, a DFT QM model was developed to study the mechanistic properties of IDH1 R132H compared to wild type enzyme. Validating these insights, biochemical in vitro assays of metabolites produced by mutant vs wild type enzymes were measured and compared. From the results discussed herein, we discuss the mechanistic impact of mutations in IDH1 on its ability to catalyze the formation of αKG and 2HG.
Collapse
Affiliation(s)
- Joshua A Broome
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Nguyen P Nguyen
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Cassidy R E Baumung
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Vincent C Chen
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Eric A C Bushnell
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| |
Collapse
|
3
|
You WC, Lee HD, Pan HC, Chen HC. Re-irradiation combined with bevacizumab for recurrent glioblastoma beyond bevacizumab failure: survival outcomes and prognostic factors. Sci Rep 2023; 13:9442. [PMID: 37296207 PMCID: PMC10256803 DOI: 10.1038/s41598-023-36290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The combination of re-irradiation and bevacizumab has emerged as a potential therapeutic strategy for patients experiencing their first glioblastoma multiforme (GBM) recurrence. This study aims to assess the effectiveness of the re-irradiation and bevacizumab combination in treating second-progression GBM patients who are resistant to bevacizumab monotherapy. This retrospective study enrolled 64 patients who developed a second progression after single-agent bevacizumab therapy. The patients were divided into two groups: 35 underwent best supportive care (none-ReRT group), and 29 received bevacizumab and re-irradiation (ReRT group). The study measured the overall survival time after bevacizumab failure (OST-BF) and re-irradiation (OST-RT). Statistical tests were used to compare categorical variables, evaluate the difference in recurrence patterns between the two groups, and identify optimal cutoff points for re-irradiation volume. The results of the Kaplan-Meier survival analysis indicated that the re-irradiation (ReRT) group experienced a significantly higher survival rate and longer median survival time than the non-ReRT group. The median OST-BF and OST-RT were 14.5 months and 8.8 months, respectively, for the ReRT group, while the OST-BF for the none-ReRT group was 3.9 months (p < 0.001). The multivariable analysis identified the re-irradiation target volume as a significant factor for OST-RT. Moreover, the re-irradiation target volume exhibited excellent discriminatory ability in the area under the curve (AUC) analysis, with an optimal cutoff point of greater than 27.58 ml. These findings suggest that incorporating re-irradiation with bevacizumab therapy may be a promising treatment strategy for patients with recurrent GBM resistant to bevacizumab monotherapy. The re-irradiation target volume may serve as a valuable selection factor in determining which patients with recurrent GBM are likely to benefit from the combined re-irradiation and bevacizumab treatment modality.
Collapse
Affiliation(s)
- Weir-Chiang You
- Department of Radiation Oncology, Taichung Veterans General Hospital, 1650, Tawain Blvd Section 4, Taichung, 40704, Taiwan.
| | - Hsu-Dung Lee
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hung-Chuan Pan
- Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hung-Chieh Chen
- Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Zhang J, Wang J, Li M, Su X, Tian Y, Wang P, Zhou X, Jin G, Liu F. Oncolytic HSV-1 suppresses cell invasion through downregulating Sp1 in experimental glioblastoma. Cell Signal 2023; 103:110581. [PMID: 36572188 DOI: 10.1016/j.cellsig.2022.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Gliomas are highly aggressive intracranial tumors that are difficult to resect and have high lethality and recurrence rates. According to WHO grading criteria, glioblastoma with wild-type IDH1 has a poorer prognosis than WHO grade 4 IDH-mutant astrocytomas. To date, no effective therapeutic strategies have been developed to treat glioblastoma. Clinical trials have shown that herpes simplex virus (HSV)-1 is the safest and most efficacious oncolytic virus against glioblastoma, but the molecular antitumor mechanism of action of HSV-1 has not yet been determined. Deletion of the γ34.5 and ICP47 genes from a strain of HSV-1 yielded the oncolytic virus, oHSV-1, which reduced glioma cell viability, migration, and invasive capacity, as well as the growth of microvilli. Infected cell polypeptide 4 (ICP4) expressed by oHSV-1 was found to suppress the expression of the transcription factor Sp1, reducing the expression of host invasion-related genes. In vivo, oHSV-1 showed significant antitumor effects by suppressing the expression of Sp1 and invasion-associated genes, highly expressed in high-grade glioblastoma tissue specimens. These findings indicate that Sp1 may be a molecular marker predicting the antitumor effects of oHSV-1 in the treatment of glioma and that oHSV-1 suppresses host cell invasion through the ICP4-mediated downregulation of Sp1.
Collapse
Affiliation(s)
- Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Jialin Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Mingxin Li
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xiaodong Su
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Yifu Tian
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Peiwen Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xianzhe Zhou
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China.
| |
Collapse
|
5
|
Hwang S, Lim J, Kang H, Jeong JY, Joung JG, Heo J, Jung D, Cho K, An HJ. Predictive biomarkers for the responsiveness of recurrent glioblastomas to activated killer cell immunotherapy. Cell Biosci 2023; 13:17. [PMID: 36694264 PMCID: PMC9875464 DOI: 10.1186/s13578-023-00961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Recurrent glioblastoma multiforme (GBM) is a highly aggressive primary malignant brain tumor that is resistant to existing treatments. Recently, we reported that activated autologous natural killer (NK) cell therapeutics induced a marked increase in survival of some patients with recurrent GBM. METHODS To identify biomarkers that predict responsiveness to NK cell therapeutics, we examined immune profiles in tumor tissues using NanoString nCounter analysis and compared the profiles between 5 responders and 7 non-responders. Through a three-step data analysis, we identified three candidate biomarkers (TNFRSF18, TNFSF4, and IL12RB2) and performed validation with qRT-PCR. We also performed immunohistochemistry and a NK cell migration assay to assess the function of these genes. RESULTS Responders had higher expression of many immune-signaling genes compared with non-responders, which suggests an immune-active tumor microenvironment in responders. The random forest model that identified TNFRSF18, TNFSF4, and IL12RB2 showed a 100% accuracy (95% CI 73.5-100%) for predicting the response to NK cell therapeutics. The expression levels of these three genes by qRT-PCR were highly correlated with the NanoString levels, with high Pearson's correlation coefficients (0.419 (TNFRSF18), 0.700 (TNFSF4), and 0.502 (IL12RB2)); their prediction performance also showed 100% accuracy (95% CI 73.54-100%) by logistic regression modeling. We also demonstrated that these genes were related to cytotoxic T cell infiltration and NK cell migration in the tumor microenvironment. CONCLUSION We identified TNFRSF18, TNFSF4, and IL12RB2 as biomarkers that predict response to NK cell therapeutics in recurrent GBM, which might provide a new treatment strategy for this highly aggressive tumor.
Collapse
Affiliation(s)
- Sohyun Hwang
- grid.410886.30000 0004 0647 3511Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496 Korea ,grid.452398.10000 0004 0570 1076CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam, Korea
| | - Jaejoon Lim
- grid.410886.30000 0004 0647 3511Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496 Korea
| | - Haeyoun Kang
- grid.410886.30000 0004 0647 3511Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496 Korea
| | - Ju-Yeon Jeong
- grid.452398.10000 0004 0570 1076CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam, Korea
| | - Je-Gun Joung
- grid.452398.10000 0004 0570 1076CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam, Korea ,grid.410886.30000 0004 0647 3511Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Jinhyung Heo
- grid.410886.30000 0004 0647 3511Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496 Korea
| | - Daun Jung
- grid.410886.30000 0004 0647 3511Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496 Korea
| | - Kyunggi Cho
- grid.410886.30000 0004 0647 3511Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496 Korea
| | - Hee Jung An
- grid.410886.30000 0004 0647 3511Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496 Korea ,grid.452398.10000 0004 0570 1076CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam, Korea
| |
Collapse
|
6
|
Cost Matrix of Molecular Pathology in Glioma-Towards AI-Driven Rational Molecular Testing and Precision Care for the Future. Biomedicines 2022; 10:biomedicines10123029. [PMID: 36551786 PMCID: PMC9775648 DOI: 10.3390/biomedicines10123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
Gliomas are the most common and aggressive primary brain tumors. Gliomas carry a poor prognosis because of the tumor's resistance to radiation and chemotherapy leading to nearly universal recurrence. Recent advances in large-scale genomic research have allowed for the development of more targeted therapies to treat glioma. While precision medicine can target specific molecular features in glioma, targeted therapies are often not feasible due to the lack of actionable markers and the high cost of molecular testing. This review summarizes the clinically relevant molecular features in glioma and the current cost of care for glioma patients, focusing on the molecular markers and meaningful clinical features that are linked to clinical outcomes and have a realistic possibility of being measured, which is a promising direction for precision medicine using artificial intelligence approaches.
Collapse
|
7
|
Schönthal AH, Swenson S, Bonney PA, Wagle N, Simmon VF, Mathew AJ, Hurth KM, Chen TC. Detection of perillyl alcohol and its metabolite perillic acid in postsurgical glioblastoma tissue after intranasal administration of NEO100: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2022; 4:CASE22215. [PMID: 36088606 PMCID: PMC9706323 DOI: 10.3171/case22215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Intranasal delivery of NEO100, a pharmaceutical-grade version of the natural monoterpene perillyl alcohol (POH), is undergoing clinical phase IIa testing as a treatment for glioblastoma (GBM). However, so far there is no evidence that intranasal delivery of NEO100 indeed results in POH reaching intracranial malignancies in a patient. OBSERVATIONS After surgical removal of her recurrent GBM tumor, a patient received daily intranasal NEO100 therapy for more than 3 years before a second recurrence emerged. At that time, a final dose of NEO100 was given shortly before the tumor tissue was surgically removed, and the tissue was processed for high-performance liquid chromatography analysis of POH and its primary metabolite, perillic acid (PA). Both molecules could readily be detected in the tumor tissue. LESSONS This is the first demonstration of POH and PA in brain tumor tissue from any patient. It reveals that intranasal administration of NEO100 is a valid approach to achieve delivery of this agent to a brain tumor. In view of the noninvasive and safe nature of this method, along with tentative indications of activity, our findings add confidence to the notion that intranasal administration of NEO100 holds potential as a new treatment option for brain-localized malignancies.
Collapse
Affiliation(s)
| | | | | | - Naveed Wagle
- Pacific Brain Tumor Center, Pacific Neuroscience Institute, Santa Monica, California; and
| | | | | | | | - Thomas C. Chen
- Neurological Surgery, and
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- NeOnc Technologies, Inc., Los Angeles, California
| |
Collapse
|
8
|
Noll KR, Wefel J. On the classification of impairment in neuropsychological research and practice in the neuro-oncological setting. Neurooncol Pract 2022; 9:255-256. [PMID: 35859538 PMCID: PMC9290879 DOI: 10.1093/nop/npac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kyle R Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Todo T, Ino Y, Ohtsu H, Shibahara J, Tanaka M. A phase I/II study of triple-mutated oncolytic herpes virus G47∆ in patients with progressive glioblastoma. Nat Commun 2022; 13:4119. [PMID: 35864115 PMCID: PMC9304402 DOI: 10.1038/s41467-022-31262-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Here, we report the results of a phase I/II, single-arm study (UMIN-CTR Clinical Trial Registry UMIN000002661) assessing the safety (primary endpoint) of G47∆, a triple-mutated oncolytic herpes simplex virus type 1, in Japanese adults with recurrent/progressive glioblastoma despite radiation and temozolomide therapies. G47Δ was administered intratumorally at 3 × 108 pfu (low dose) or 1 × 109 pfu (set dose), twice to identical coordinates within 5–14 days. Thirteen patients completed treatment (low dose, n = 3; set dose, n = 10). Adverse events occurred in 12/13 patients. The most common G47Δ-related adverse events were fever, headache and vomiting. Secondary endpoint was the efficacy. Median overall survival was 7.3 (95%CI 6.2–15.2) months and the 1-year survival rate was 38.5%, both from the last G47∆ administration. Median progression-free survival was 8 (95%CI 7–34) days from the last G47∆ administration, mainly due to immediate enlargement of the contrast-enhanced area of the target lesion on MRI. Three patients survived >46 months. One complete response (low dose) and one partial response (set dose) were seen at 2 years. Based on biopsies, post-administration MRI features (injection site contrast-enhancement clearing and entire tumor enlargement) likely reflected tumor cell destruction via viral replication and lymphocyte infiltration towards tumor cells, the latter suggesting the mechanism for “immunoprogression” characteristic to this therapy. This study shows that G47Δ is safe for treating recurrent/progressive glioblastoma and warrants further clinical development. G47Δ is a third-generation, triple-mutated oncolytic HSV-1 that has demonstrated anti-tumor efficacy in preclinical studies. Here the authors report the results of a phase I/II study of G47Δ in patients with recurrent or progressive glioblastoma.
Collapse
Affiliation(s)
- Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. .,Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan.
| | - Yasushi Ino
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroshi Ohtsu
- Department of Data Science, National Center for Global Health and Medicine in Japan, Tokyo, Japan.,Leading Center for the Development and Research of Cancer Medicine, Juntendo University, Tokyo, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
10
|
Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial. Nat Med 2022; 28:1630-1639. [PMID: 35864254 PMCID: PMC9388376 DOI: 10.1038/s41591-022-01897-x] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/09/2022] [Indexed: 12/23/2022]
Abstract
This investigator-initiated, phase 2, single-arm trial primarily assessed the efficacy of G47∆, a triple-mutated, third-generation oncolytic herpes simplex virus type 1, in 19 adult patients with residual or recurrent, supratentorial glioblastoma after radiation therapy and temozolomide (UMIN-CTR Clinical Trial Registry UMIN000015995). G47Δ was administered intratumorally and repeatedly for up to six doses. The primary endpoint of 1-yr survival rate after G47∆ initiation was 84.2% (95% confidence interval, 60.4–96.6; 16 of 19). The prespecified endpoint was met and the trial was terminated early. Regarding secondary endpoints, the median overall survival was 20.2 (16.8–23.6) months after G47∆ initiation and 28.8 (20.1–37.5) months from the initial surgery. The most common G47∆-related adverse event was fever (17 of 19) followed by vomiting, nausea, lymphocytopenia and leukopenia. On magnetic resonance imaging, enlargement of and contrast-enhancement clearing within the target lesion repeatedly occurred after each G47∆ administration, which was characteristic to this therapy. Thus, the best overall response in 2 yr was partial response in one patient and stable disease in 18 patients. Biopsies revealed increasing numbers of tumor-infiltrating CD4+/CD8+ lymphocytes and persistent low numbers of Foxp3+ cells. This study showed a survival benefit and good safety profile, which led to the approval of G47∆ as the first oncolytic virus product in Japan. Results from a pivotal single-arm phase 2 trial show that the repeated intratumoral administration of the oncolytic herpes virus G47∆ in residual or recurrent glioblastoma exhibits survival benefit and a safe profile.
Collapse
|
11
|
Kobayashi T, Nitta M, Shimizu K, Saito T, Tsuzuki S, Fukui A, Koriyama S, Kuwano A, Komori T, Masui K, Maehara T, Kawamata T, Muragaki Y. Therapeutic Options for Recurrent Glioblastoma—Efficacy of Talaporfin Sodium Mediated Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14020353. [PMID: 35214085 PMCID: PMC8879869 DOI: 10.3390/pharmaceutics14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Recurrent glioblastoma (GBM) remains one of the most challenging clinical issues, with no standard treatment and effective treatment options. To evaluate the efficacy of talaporfin sodium (TS) mediated photodynamic therapy (PDT) as a new treatment for this condition, we retrospectively analyzed 70 patients who underwent surgery with PDT (PDT group) for recurrent GBM and 38 patients who underwent surgery alone (control group). The median progression-free survival (PFS) in the PDT and control groups after second surgery was 5.7 and 2.2 months, respectively (p = 0.0043). The median overall survival (OS) after the second surgery was 16.0 and 12.8 months, respectively (p = 0.031). Both univariate and multivariate analyses indicated that surgery with PDT and a preoperative Karnofsky Performance Scale were significant independent prognostic factors for PFS and OS. In the PDT group, there was no significant difference regarding PFS and OS between patients whose previous pathology before recurrence was already GBM and those who had malignant transformation to GBM from lower grade glioma. There was also no significant difference in TS accumulation in the tumor between these two groups. According to these results, additional PDT treatment for recurrent GBM could have potential survival benefits and its efficacy is independent of the pre-recurrence pathology.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Masayuki Nitta
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
- Faculty of Advanced Techno-Surgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
- Correspondence:
| | - Kazuhide Shimizu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA;
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan;
| | - Taiichi Saito
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
- Faculty of Advanced Techno-Surgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shunsuke Tsuzuki
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Shunichi Koriyama
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Atsushi Kuwano
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu-shi, Tokyo 183-0042, Japan;
| | - Kenta Masui
- Department of Pathology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan;
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
- Faculty of Advanced Techno-Surgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
12
|
Samii A, Sorokin M, Kar S, Makovskaia L, Garazha A, Hartmann C, Moisseev A, Kim E, Giese A, Buzdin A. Case of multifocal glioblastoma with four fusion transcripts of ALK, FGFR2, NTRK2, and NTRK3 genes stresses the need for tumor tissue multisampling for transcriptomic analysis. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006100. [PMID: 34341009 PMCID: PMC8327882 DOI: 10.1101/mcs.a006100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor with patient mortality rate close to 100%, 5-yr survival rate of ∼5%, and a median survival of 14 mo. GBMs have notorious histomorphologic and molecular heterogeneities thus giving hope for development of future personalized therapies. We describe here a case of a 48-yr-old male patient with three-nodular GBM. To address the question of intratumoral molecular heterogeneity, a comparative analysis of gene expression was performed by using multiple samples collected from different tumor sites with the aid of intraoperative magnetic resonance imaging (MRI). Sixteen GBM biosamples from parietal, temporal, and temporo-polar localizations were collected from primary, recurrent, and second recurrent tumors and were obtained and investigated by RNA sequencing. Our investigations revealed that biosamples derived from different tumor sites differ in their gene expression profiles with classical or mesenchymal signatures associated with clinically distinct molecular subtypes of GBM found within the same tumor. The results also showed significant differences in the expression of genes specific for targeted therapeutics. Our investigations have enabled the identification of four novel fusion transcripts—KIF5C-NTRK3, AC016907.2-ALK, CNTNAP3-NTRK2, and ZNF135-FGFR2—each present in only one sample. We found no differences between untreated and recurrent stages in the expression levels of genes involved in fusion transcripts, suggesting the lack of association between fusion transcript and treatment response. In contrast, longitudinal changes in the expression of VEGF and MGMT genes were concordant with the tumor response to bevacizumab and temozolomide. Our study underscores the importance of integrating a multisampling approach and RNA sequencing and demonstrates the predictive merit of an integrated approach for differentiating genomic aberrations associated with untreated or post-treatment recurrent GBMs.
Collapse
Affiliation(s)
- Amir Samii
- International Neuroscience Institute, Hannover, 30625 Germany
| | - Maxim Sorokin
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia.,Omicsway Corp., Walnut, California 91789, USA.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - Souvik Kar
- International Neuroscience Institute, Hannover, 30625 Germany
| | - Luidmila Makovskaia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 117997 Russia
| | | | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology at Hannover Medical School, Hannover, 30625 Germany
| | - Aleksey Moisseev
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - Ella Kim
- Clinic for Neurosurgery, Laboratory of Experimental Neurooncology, Johannes Gutenberg University Medical Centre, 55124 Mainz, 55124 Germany
| | - Alf Giese
- Orthocentrum Hamburg, Hamburg, 20149 Germany
| | - Anton Buzdin
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia.,Omicsway Corp., Walnut, California 91789, USA.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia.,Moscow Institute of Physics and Technology (National Research University), Moscow, 141701 Russia
| |
Collapse
|
13
|
Wu J, Yuan Y, Long Priel DA, Fink D, Peer CJ, Sissung TM, Su YT, Pang Y, Yu G, Butler MK, Mendoza TR, Vera E, Ahmad S, Bryla C, Lindsley M, Grajkowska E, Mentges K, Boris L, Antony R, Garren N, Siegel C, Lollo N, Cordova C, Aboud O, Theeler BJ, Burton EM, Penas-Prado M, Leeper H, Gonzales J, Armstrong TS, Calvo KR, Figg WD, Kuhns DB, Gallin JI, Gilbert MR. Phase I Study of Zotiraciclib in Combination with Temozolomide for Patients with Recurrent High-grade Astrocytomas. Clin Cancer Res 2021; 27:3298-3306. [PMID: 33785481 PMCID: PMC8197750 DOI: 10.1158/1078-0432.ccr-20-4730] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/03/2021] [Accepted: 03/24/2021] [Indexed: 01/31/2023]
Abstract
PURPOSE To investigate the toxicity profile and establish an optimal dosing schedule of zotiraciclib with temozolomide in patients with recurrent high-grade astrocytoma. PATIENTS AND METHODS This two-stage phase I trial determined the MTD of zotiraciclib combined with either dose-dense (Arm1) or metronomic (Arm2) temozolomide using a Bayesian Optimal Interval design; then a randomized cohort expansion compared the progression-free survival rate at 4 months (PFS4) of the two arms for an efficient determination of a temozolomide schedule to combine with zotiraciclib at MTD. Pharmacokinetic and pharmacogenomic profiling were included. Patient-reported outcome was evaluated by longitudinal symptom burden. RESULTS Fifty-three patients were enrolled. Dose-limiting toxicities were neutropenia, diarrhea, elevated liver enzymes, and fatigue. MTD of zotiraciclib was 250 mg in both arms and thus selected for the cohort expansion. Dose-dense temozolomide plus zotiraciclib (PSF4 40%) compared favorably with metronomic temozolomide (PFS4 25%). Symptom burden worsened at cycle 2 but stabilized by cycle 4 in both arms. A significant decrease in absolute neutrophil count and neutrophil reactive oxygen species production occurred 12-24 hours after an oral dose of zotiraciclib but both recovered by 72 hours. Pharmacokinetic/pharmacogenomic analyses revealed that the CYP1A2_5347T>C (rs2470890) polymorphism was associated with higher AUCinf value. CONCLUSIONS Zotiraciclib combined with temozolomide is safe in patients with recurrent high-grade astrocytomas. Zotiraciclib-induced neutropenia can be profound but mostly transient, warranting close monitoring rather than treatment discontinuation. Once validated, polymorphisms predicting drug metabolism may allow personalized dosing of zotiraciclib.
Collapse
Affiliation(s)
- Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debra A Long Priel
- Neutrophil Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Danielle Fink
- Neutrophil Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Cody J Peer
- Clinical Pharmacology Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Tristan M Sissung
- Clinical Pharmacology Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Yu-Ting Su
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ying Pang
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Guangyang Yu
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Madison K Butler
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Tito R Mendoza
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth Vera
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - Christine Bryla
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Matthew Lindsley
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ewa Grajkowska
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Kelly Mentges
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Lisa Boris
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ramya Antony
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nancy Garren
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Christine Siegel
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nicole Lollo
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Christine Cordova
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Orwa Aboud
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Brett J Theeler
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Eric M Burton
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Marta Penas-Prado
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Heather Leeper
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Javier Gonzales
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Terri S Armstrong
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - William D Figg
- Clinical Pharmacology Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
14
|
Khasraw M, Weller M, Lorente D, Kolibaba K, Lee CK, Gedye C, I de La Fuente M, Vicente D, Reardon DA, Gan HK, Scott AM, Dussault I, Helwig C, Ojalvo LS, Gourmelon C, Groves M. Bintrafusp alfa (M7824), a bifunctional fusion protein targeting TGF-β and PD-L1: results from a phase I expansion cohort in patients with recurrent glioblastoma. Neurooncol Adv 2021; 3:vdab058. [PMID: 34056607 PMCID: PMC8156979 DOI: 10.1093/noajnl/vdab058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background For patients with recurrent glioblastoma (rGBM), there are few options following treatment failure with radiotherapy plus temozolomide. Bintrafusp alfa is a first-in-class bifunctional fusion protein composed of the extracellular domain of the TGF-βRII receptor (a TGF-β “trap”) fused to a human IgG1 antibody blocking PD-L1. Methods In this phase I, open-label expansion cohort (NCT02517398), patients with rGBM that progressed after radiotherapy plus temozolomide received bintrafusp alfa 1200 mg Q2W until disease progression, unacceptable toxicity, or trial withdrawal. Response was assessed per RANO criteria. The primary endpoint was disease control rate (DCR); secondary endpoints included safety. Results As of August 24, 2018, 35 patients received bintrafusp alfa for a median of 1.8 (range, 0.5–20.7) months. Eight patients (22.9%) experienced disease control as assessed by an independent review committee: 2 had a partial response, 4 had stable disease, and 2 had non-complete response/non-progressive disease. Median progression-free survival (PFS) was 1.4 (95% confidence interval [CI], 1.2–1.6) months; 6- and 12-month PFS rates were 15.1% and 11.3%, respectively. Median overall survival (OS) was 5.3 (95% CI, 2.6–9.4) months; 6- and 12-month OS rates were 44.5% and 30.8%, respectively. The DCR (95% CI) was 66.7% (22.3–95.7%) for patients with IDH-mutant GBM (n = 6) and 13.8% (3.9–31.7%) for patients with IDH–wild-type GBM (n = 29). Disease control was seen regardless of PD-L1 expression. Twenty-five patients (71.4%) experienced treatment-related adverse events (grade ≥3; 17.1% [n = 6]). Conclusions The percentage of patients achieving disease control and the manageable safety profile may warrant further investigation of bintrafusp alfa in GBM.
Collapse
Affiliation(s)
- Mustafa Khasraw
- Royal North Shore Hospital, St Leonards, New South Wales, Australia.,University of Sydney, Sydney, New South Wales, Australia
| | - Michael Weller
- University Hospital and University of Zurich, Zurich, Switzerland
| | - David Lorente
- Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Kathryn Kolibaba
- Compass Oncology, US Oncology Research, Vancouver, Washington, USA
| | | | - Craig Gedye
- Calvary Mater Newcastle, Waratah, New South Wales, Australia
| | | | - David Vicente
- Hospital Universitario Virgen Macarena, Seville, Spain
| | | | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Isabelle Dussault
- EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA.,Merck KGaA, Darmstadt, Germany
| | | | - Laureen S Ojalvo
- EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA.,Merck KGaA, Darmstadt, Germany
| | | | | |
Collapse
|
15
|
Schönthal AH, Peereboom DM, Wagle N, Lai R, Mathew AJ, Hurth KM, Simmon VF, Howard SP, Taylor LP, Chow F, da Fonseca CO, Chen TC. Phase I trial of intranasal NEO100, highly purified perillyl alcohol, in adult patients with recurrent glioblastoma. Neurooncol Adv 2021; 3:vdab005. [PMID: 33604574 PMCID: PMC7879254 DOI: 10.1093/noajnl/vdab005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Better treatments for glioblastoma (GBM) patients, in particular in the recurrent setting, are urgently needed. Clinical trials performed in Brazil indicated that intranasal delivery of perillyl alcohol (POH) might be effective in this patient group. NEO100, a highly purified version of POH, was current good manufacturing practice (cGMP) manufactured to evaluate the safety and efficacy of this novel approach in a Phase I/IIa clinical trial in the United States. Methods A total of 12 patients with recurrent GBM were enrolled into Phase I of this trial. NEO100 was administered by intranasal delivery using a nebulizer and nasal mask. Dosing was 4 times a day, every day. Four cohorts of 3 patients received the following dosages: 96 mg/dose (384 mg/day), 144 mg/dose (576 mg/day), 192 mg/dose (768 mg/day), and 288 mg/dose (1152 mg/day). Completion of 28 days of treatment was recorded as 1 cycle. Adverse events were documented, and radiographic response via Response Assessment in Neuro-Oncology (RANO) criteria was evaluated every 2 months. Progression-free and overall survival were determined after 6 and 12 months, respectively (progression-free survival-6 [PFS-6], overall survival-12 [OS-12]). Results Intranasal NEO100 was well tolerated at all dose levels and no severe adverse events were reported. PFS-6 was 33%, OS-12 was 55%, and median OS was 15 months. Four patients (33%), all of them with isocitrate dehydrogenase 1 (IDH1)-mutant tumors, survived >24 months. Conclusion Intranasal glioma therapy with NEO100 was well tolerated. It correlated with improved survival when compared to historical controls, pointing to the possibility that this novel intranasal approach could become useful for the treatment of recurrent GBM.
Collapse
Affiliation(s)
- Axel H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David M Peereboom
- Department of Medical Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Naveed Wagle
- Department of Oncology, Providence St. Johns Medical Center, Santa Monica, California, USA
| | - Rose Lai
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anna J Mathew
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kyle M Hurth
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Steven P Howard
- Department of Radiation Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Lynne P Taylor
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Frances Chow
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Clovis O da Fonseca
- NeOnc Technologies, Inc., Los Angeles, California, USA.,Department of General and Specialized Surgery, Antonio Pedro University Hospital, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Thomas C Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,NeOnc Technologies, Inc., Los Angeles, California, USA.,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
16
|
Role of Ethnicity and Geographic Location on Glioblastoma IDH1/IDH2 Mutations. World Neurosurg 2021; 149:e894-e912. [PMID: 33516867 DOI: 10.1016/j.wneu.2021.01.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Previous studies have demonstrated possible differences in glioblastoma (GBM) survival attributable to ethnicity. The goal of this study was to quantify oncogenic differences and evaluate the overall survival (OS) and progression-free survival (PFS) differences in GBM patients across race/ethnicity using both population-based surveillance and institutional data sets from the United States (US) and Mexico. METHODS Retrospective cohort study comprising the Texas Cancer Registry (TCR, n = 4134) and referral institutions located in US (n = 254) and Mexico (n = 47) were evaluated. Primary outcomes include OS and PFS. Oncogenic differences attributable to ethnicity were assessed. IDH1/IDH2 status was evaluated by sequencing in US and Mexico samples. Kaplan-Meier and Cox proportional hazards regression for survival analysis. RESULTS A total of 4134 GBM patients were identified from the TCR data set, ethnicity comparison demonstrated that Hispanic patients were diagnosed at a significantly younger age compared to non-Hispanic white patients (NHW) (median: 58 vs. 62, P < 0.001) and had improved OS (hazard ratio: 0.82, P < 0.001). In the oncogenic analysis, we observed a significant enrichment of IDH1/IDH2 mutations in Mexican Hispanic patients compared to US Hispanic patients (29.8% vs. 7.9%, P = 0.012); IDH2 mutations drove this difference. Post-progression survival was significantly shorter in patients from Mexico than US (3.0 vs. 11.4 months; P < 0.001), while OS remained similar. CONCLUSIONS IDH2 mutations are more prevalent in Mexican Hispanic individuals compared to US individuals and may be a crucial contributor to the previously reported survival benefit of Hispanic individuals in large population databases. These findings are critical for both screening of IDH2 mutations and targeted interventions in GBM.
Collapse
|
17
|
Tabei Y, Kobayashi K, Saito K, Shimizu S, Suzuki K, Sasaki N, Shiokawa Y, Nagane M. Survival in patients with glioblastoma at a first progression does not correlate with isocitrate dehydrogenase (IDH)1 gene mutation status. Jpn J Clin Oncol 2021; 51:45-53. [PMID: 32888020 PMCID: PMC7767982 DOI: 10.1093/jjco/hyaa162] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023] Open
Abstract
Backgrounds Mutations in the isocitrate dehydrogenase (IDH)1 gene are favourable prognostic factors in newly diagnosed diffuse gliomas, whereas it remains controversial in the recurrent glioblastoma setting. Methods A total of 171 patients with newly diagnosed glioblastoma, either ‘primary’ glioblastoma or ‘secondary’ glioblastoma, treated at Kyorin University Hospital or Japanese Red Cross Medical Center from 2000 to 2015 were included. Patients with confirmed IDH1 status and O6-methylguanine-DNA methyltransferase promoter methylation status were retrospectively analysed for overall survival from the initial diagnosis (n = 147) and after the first progression (n = 122). Results IDH1 mutation but not IDH2 was noted in 19 of 147 patients with glioblastoma (12.9%). In patients with ‘primary’ glioblastoma (n = 136), median overall survival after the first progression was 13.5 and 10.5 months for mutant IDH1 and wild-type IDH1 glioblastoma, respectively (P = 0.747). Multivariate analysis revealed O6-methylguanine-DNA methyltransferase promoter methylation, and Karnofsky Performance status 60 or higher, were independent prognostic factors for better overall survival after the first progression. When ‘primary’ glioblastoma and ‘secondary’ glioblastoma were combined, median overall survival from the first progression was not significantly different between the mutant IDH1 group (10.1 months) and wild-type IDH1 group (10.5 months) (P = 0.559), whereas median overall survival from the initial diagnosis was significantly different (47.5 months vs.18.3 months, respectively; P = 0.035). Conclusions These results suggest that IDH1 mutation may not be a prognostic factor for survival at the first progression of patients with ‘primary’ glioblastoma and pretreated ‘secondary’ glioblastoma, and further warrant investigation in prospective studies.
Collapse
Affiliation(s)
- Yusuke Tabei
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo.,Department of Neurosurgery, The Japanese Red Cross Medical Center, 4-1-20 Hiroo, Shibuya, Tokyo
| | - Keiichi Kobayashi
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo
| | - Kuniaki Saito
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo
| | - Saki Shimizu
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo
| | - Kaori Suzuki
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo
| | - Nobuyoshi Sasaki
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo.,Department of Neurosurgery, Kyorin University Graduate School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo.,Department of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Yoshiaki Shiokawa
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo
| |
Collapse
|
18
|
Yan Y, Takayasu T, Hines G, Dono A, Hsu SH, Zhu JJ, Riascos-Castaneda RF, Kamali A, Bhattacharjee MB, Blanco AI, Tandon N, Kim DH, Ballester LY, Esquenazi AY. Landscape of Genomic Alterations in IDH Wild-Type Glioblastoma Identifies PI3K as a Favorable Prognostic Factor. JCO Precis Oncol 2020; 4:575-584. [DOI: 10.1200/po.19.00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE IDH wild-type (WT) glioblastoma (GBM) is an aggressive tumor with poor survival despite current therapies. The aim of this study was to characterize its genomic profile and determine whether a particular molecular signature is associated with improved survival outcomes. PATIENTS AND METHODS Tumor samples from 232 patients with IDH-WT GBM were sequenced, and the landscape of genomic alterations was fully delineated. Genomics data from The Cancer Genome Atlas (TCGA) cohort were analyzed for confirmation. Association of alterations with survival was evaluated in both univariable and multivariable approaches. RESULTS The genomic landscape of IDH-WT GBM revealed a high frequency of CDKN2A/B loss, TERT promoter mutations, PTEN loss, EGFR alteration, and TP53 mutations. Novel variants or gene mutations, such as ARID1B and MLL2, were identified. To better understand synergistic effects and facilitate decision making for precision medicine, we identified 11 pairs of gene alterations that tended to co-occur or were mutually exclusive, which were confirmed in the TCGA cohort. Survival analysis showed that genomic alterations in TP53 were associated with worse overall survival (OS). However, alterations in PI3K class I genes were associated with significantly better OS (univariable analysis: P = .002; multivariable analysis: hazard ratio [HR], 0.5785; P = .00162) and longer progression-free survival (univariable analysis: P = .0043; multivariable analysis: HR, 0.6228; P = .00913). CONCLUSION Genomic alterations in PI3K class I are a favorable prognostic factor in IDH-WT GBM. This new prognostic biomarker may facilitate risk stratification of patients, assist in clinical trial enrollment, and provide potential therapeutic targets
Collapse
Affiliation(s)
- Yuanqing Yan
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX
| | - Takeshi Takayasu
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX
| | - Gabriella Hines
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX
| | - Antonio Dono
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX
| | - Sigmund H. Hsu
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX
- Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX
| | - Jay-Jiguang Zhu
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX
- Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX
| | - Roy F. Riascos-Castaneda
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, TX
| | - Arash Kamali
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, TX
| | - Meenakshi B. Bhattacharjee
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX
| | - Angel I. Blanco
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX
- Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX
- Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX
| | - Dong H. Kim
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX
- Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX
| | - Leomar Y. Ballester
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX
- Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX
| | - and Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX
- Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
19
|
Dissaux G, Basse V, Schick U, EL Kabbaj O, Auberger B, Magro E, Kassoul A, Abgral R, Salaun PY, Bourhis D, Querellou S. Prognostic value of 18F-FET PET/CT in newly diagnosed WHO 2016 high-grade glioma. Medicine (Baltimore) 2020; 99:e19017. [PMID: 32000446 PMCID: PMC7004648 DOI: 10.1097/md.0000000000019017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
O-(2-[F]fluoroethyl)-L-tyrosine positron-emission tomography/computed tomography (F-FET PET/CT) is well known in brain tumor management. Our study aimed to identify the prognostic value of F-FET PET/CT in high-grade gliomas (HGG) according the current 2016 World Health Organization (WHO) classification.Patients with histologically proven WHO 2016 HGG were prospectively included. A dynamic F-FET PET/CT was performed allowing to obtain 2 static PET frames (static frame 1: 20-40 minutes and static frame 2: 2-22 minutes). We analyzed static parameters (standard uptake value [SUV]max, SUVmean, SUVpeak, TBRmax, TBRmean, tumoral lesion glycolysis, and metabolic tumoral volume) for various isocontours (from 10% to 90%). PET parameters, clinical features, and molecular biomarkers were compared with progression-free survival (PFS) and overall survival (OS) in univariate and multivariate analysis.Twenty-nine patients were included (grade III n = 3, grade IV n = 26). Mean PFS and OS were, respectively, 8.8 and 13.9 months. According to univariate analysis, SUVmean, SUVpeak, TBRmax, and TBRmean were significantly correlated with OS. In static 1 analysis, TBRmax seemed to be the best OS prognostic parameter (P = .004). In static 2 analysis, TBRmean was the best parameter (P = .01). In static 1 analysis, only SUVpeak was significant (P = .05) for PFS. Good performance status (PS < 2; P < .0001) and extent of resection (P = .019) identified the subgroup of patients with the best OS. Only TBRmax (P = .026) and extent of resection (P = .025) remained significant parameters in multivariate analysis.Our data suggested that high TBRmax seemed to be the most significant OS independent prognostic factor in patients with newly diagnosed HGG.
Collapse
Affiliation(s)
| | - Victor Basse
- Oncology Department, University Hospital Morvan, Brest Cedex
| | | | | | | | - Elsa Magro
- Neurosurgery Department University Hospital Cavale Blanche
| | - Aboubakr Kassoul
- Nuclear Medicine Department, University Hospitam Morvan, Brest cedex
| | - Ronan Abgral
- Nuclear Medicine Department, University Hospitam Morvan, Brest cedex
- EA 3878 GETBO IFR 148
- University of Bretagne Occidentale, Brest, France
| | - Pierre-Yves Salaun
- Nuclear Medicine Department, University Hospitam Morvan, Brest cedex
- EA 3878 GETBO IFR 148
- University of Bretagne Occidentale, Brest, France
| | - David Bourhis
- Nuclear Medicine Department, University Hospitam Morvan, Brest cedex
- EA 3878 GETBO IFR 148
- University of Bretagne Occidentale, Brest, France
| | - Solène Querellou
- Nuclear Medicine Department, University Hospitam Morvan, Brest cedex
- EA 3878 GETBO IFR 148
- University of Bretagne Occidentale, Brest, France
| |
Collapse
|
20
|
Kesler SR, Harrison RA, Petersen ML, Rao V, Dyson H, Alfaro-Munoz K, Weathers SP, de Groot J. Pre-surgical connectome features predict IDH status in diffuse gliomas. Oncotarget 2019; 10:6484-6493. [PMID: 31741712 PMCID: PMC6849657 DOI: 10.18632/oncotarget.27301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/21/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Gliomas are the most common type of malignant brain tumor. Clinical outcomes depend on many factors including tumor molecular characteristics. Mutation of the isocitrate dehydrogenase (IDH) gene confers significant benefits in terms of survival and quality of life. Preoperative determination of IDH genotype can facilitate surgical planning, allow for novel clinical trial designs, and assist clinical counseling surrounding the individual patient's disease. METHODS In this study, we aimed to evaluate a novel approach for non-invasively predicting IDH status from conventional MRI via connectomics, a whole-brain network-based technique. We retrospectively extracted 93 connectome features from the preoperative, T1-weighted MRI data of 234 adult patients (148 IDH mutated) and evaluated the performance of four common machine learning models to predict IDH genotype. RESULTS Area under the curve (AUC) of the receiver operator characteristic were 0.76 to 0.94 with random forest (RF) showing significantly higher performance (p < 0.01) than other algorithms. Feature selection schemes and the addition of age and tumor location did not change RF performance. CONCLUSIONS Our findings suggest that connectomics is a feasible approach for preoperatively predicting IDH genotype in patients with gliomas. Our results support prior evidence that RF is an ideal machine learning method for this area of research. Additionally, connectomics provides unique insights regarding potential mechanisms of tumor genotype on large-scale brain network organization.
Collapse
Affiliation(s)
- Shelli R. Kesler
- Cancer Neuroscience Laboratory, School of Nursing, The University of Texas at Austin, Austin, Texas, USA
- Department of Diagnostic Medicine, Dell School of Medicine, The University of Texas at Austin, Austin, Texas, USA
- These authors contributed equally to this work
| | - Rebecca A. Harrison
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- These authors contributed equally to this work
| | - Melissa L. Petersen
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vikram Rao
- Cancer Neuroscience Laboratory, School of Nursing, The University of Texas at Austin, Austin, Texas, USA
- Department of Diagnostic Medicine, Dell School of Medicine, The University of Texas at Austin, Austin, Texas, USA
| | - Hannah Dyson
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kristin Alfaro-Munoz
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shiao-Pei Weathers
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
21
|
Cloughesy TF, Landolfi J, Vogelbaum MA, Ostertag D, Elder JB, Bloomfield S, Carter B, Chen CC, Kalkanis SN, Kesari S, Lai A, Lee IY, Liau LM, Mikkelsen T, Nghiemphu P, Piccioni D, Accomando W, Diago OR, Hogan DJ, Gammon D, Kasahara N, Kheoh T, Jolly DJ, Gruber HE, Das A, Walbert T. Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neuro Oncol 2019; 20:1383-1392. [PMID: 29762717 DOI: 10.1093/neuonc/noy075] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Vocimagene amiretrorepvec (Toca 511) is an investigational gamma-retroviral replicating vector encoding cytosine deaminase that, when used in combination with extended-release 5-fluorocytosine (Toca FC), results preclinically in local production of 5-fluorouracil, depletion of immune-suppressive myeloid cells, and subsequent induction of antitumor immunity. Recurrent high-grade glioma (rHGG) patients have a high unmet need for effective therapies that produce durable responses lasting more than 6 months. In this setting, relapse is nearly universal and most responses are transient. Methods In this Toca 511 ascending-dose phase I trial (NCT01470794), HGG patients who recurred after standard of care underwent surgical resection and received Toca 511 injected into the resection cavity wall, followed by orally administered cycles of Toca FC. Results Among 56 patients, durable complete responses were observed. A subgroup was identified based on Toca 511 dose and entry requirements for the follow-up phase III study. In this subgroup, which included both isocitrate dehydrogenase 1 (IDH1) mutant and wild-type tumors, the durable response rate is 21.7%. Median duration of follow-up for responders is 35.7+ months. As of August 25, 2017, all responders remain in response and are alive 33.9+ to 52.2+ months after Toca 511 administration, suggesting a positive association of durable response with overall survival. Conclusions Multiyear durable responses have been observed in rHGG patients treated with Toca 511 + Toca FC in a phase I trial, and the treatment will be further evaluated in a randomized phase III trial. Among IDH1 mutant patients treated at first recurrence, there may be an enrichment of complete responders.
Collapse
Affiliation(s)
- Timothy F Cloughesy
- Departments of Neuro-Oncology and Neurosurgery, University of California, Los Angeles, California
| | - Joseph Landolfi
- New Jersey Neuroscience Institute, JFK Brain Tumor Center, Edison, New Jersey
| | | | | | - James B Elder
- Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Stephen Bloomfield
- New Jersey Neuroscience Institute, JFK Brain Tumor Center, Edison, New Jersey
| | - Bob Carter
- Moores Cancer Center, Department of Neurosciences, University of California, San Diego, California
| | - Clark C Chen
- Moores Cancer Center, Department of Neurosciences, University of California, San Diego, California
| | | | - Santosh Kesari
- Moores Cancer Center, Department of Neurosciences, University of California, San Diego, California
| | - Albert Lai
- Departments of Neuro-Oncology and Neurosurgery, University of California, Los Angeles, California
| | - Ian Y Lee
- Henry Ford Hospital, Detroit, Michigan
| | - Linda M Liau
- Departments of Neuro-Oncology and Neurosurgery, University of California, Los Angeles, California
| | | | - Phioanh Nghiemphu
- Departments of Neuro-Oncology and Neurosurgery, University of California, Los Angeles, California
| | - David Piccioni
- Moores Cancer Center, Department of Neurosciences, University of California, San Diego, California
| | | | | | | | | | - Noriyuki Kasahara
- Tocagen Inc., San Diego, California.,Departments of Cell Biology and Pathology, University of Miami, UM
| | | | | | | | - Asha Das
- Tocagen Inc., San Diego, California
| | | |
Collapse
|
22
|
Asif S, Fatima R, Krc R, Bennett J, Raza S. Comparative proteogenomic characterization of glioblastoma. CNS Oncol 2019; 8:CNS37. [PMID: 31290679 PMCID: PMC6713026 DOI: 10.2217/cns-2019-0003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/21/2019] [Indexed: 01/15/2023] Open
Abstract
Aim: Glioblastoma multiforme (GBM) carries a dismal prognosis. Integrated proteogenomic analysis was performed to understand GBM pathophysiology. Patients & methods: 17 patient samples were analyzed for driver mutations, oncogenes, major pathway alterations and molecular changes at gene and protein level. Clinical, treatment and survival data were collected. Results: Significantly mutated genes included TP53, EGFR, PIK3R1, PTEN, NF1, RET and STAG2. EGFR mutations noted included EGFRvIII-expression, EGFR-L816Q missense mutation-exon 21 and EGFR fusion (FGFR3-TACC3). TP53 mutations were noticed in COSMIC hot-spot driver gene and accompany IDH1 and ATRX mutations suggesting low- to high-grade glioma transformation. Proteomics showed higher (53%) EGFR expression than genomic expression (23%). MGMT methylation was present in two-thirds of cases. Conclusion: This study identifies a distinct biological process that may characterize each GBM differently. Proteogenomic data identify potential therapeutic targets of GBM.
Collapse
Affiliation(s)
- Samia Asif
- Saint Luke’s Cancer Institute, University of Missouri, Kansas City, MO 64111, USA
| | - Rawish Fatima
- Saint Luke’s Cancer Institute, University of Missouri, Kansas City, MO 64111, USA
| | - Rebecca Krc
- Saint Luke’s Cancer Institute, University of Missouri, Kansas City, MO 64111, USA
| | - Joseph Bennett
- Saint Luke’s Cancer Institute, University of Missouri, Kansas City, MO 64111, USA
| | - Shahzad Raza
- Saint Luke’s Cancer Institute, University of Missouri, Kansas City, MO 64111, USA
| |
Collapse
|
23
|
Arevalo OD, Soto C, Rabiei P, Kamali A, Ballester LY, Esquenazi Y, Zhu JJ, Riascos RF. Assessment of Glioblastoma Response in the Era of Bevacizumab: Longstanding and Emergent Challenges in the Imaging Evaluation of Pseudoresponse. Front Neurol 2019; 10:460. [PMID: 31133966 PMCID: PMC6514158 DOI: 10.3389/fneur.2019.00460] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma is the deadliest primary malignant brain neoplasm, and despite the availability of many treatment options, its prognosis remains somber. Enhancement detected by magnetic resonance imaging (MRI) was considered the best imaging marker of tumor activity in glioblastoma for decades. However, its role as a surrogate marker of tumor viability has changed with the appearance of new treatment regimens and imaging modalities. The antiangiogenic therapy created an inflection point in the imaging assessment of glioblastoma response in clinical trials and clinical practice. Although BEV led to the improvement of enhancement, it did not necessarily mean tumor response. The decrease in the enhancement intensity represents a change in the permeability properties of the blood brain barrier, and presumably, the switch of the tumor growth pattern to an infiltrative non-enhancing phenotype. New imaging techniques for the assessment of cellularity, blood flow hemodynamics, and biochemistry have emerged to overcome this hurdle; nevertheless, designing tools to assess tumor response more accurately, and in so doing, improve the assessment of response to standard of care (SOC) therapies and to novel therapies, remains challenging.
Collapse
Affiliation(s)
- Octavio D Arevalo
- Department of Diagnostic and Interventional Radiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Carolina Soto
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Pejman Rabiei
- Department of Diagnostic and Interventional Radiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Arash Kamali
- Department of Diagnostic and Interventional Radiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jay-Jiguang Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Roy Francisco Riascos
- Department of Diagnostic and Interventional Radiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
24
|
Philbrick BD, Adamson DC. Early clinical trials of Toca 511 and Toca FC show a promising novel treatment for recurrent malignant glioma. Expert Opin Investig Drugs 2019; 28:207-216. [PMID: 30676111 DOI: 10.1080/13543784.2019.1572112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Glioblastoma and anaplastic astrocytoma are two of the most aggressive and common glioma malignancies in adults. These high-grade gliomas (HGG) universally recur despite aggressive treatment modalities and have a median overall survival (mOS) of approximately 14 months from initial diagnosis. Upon recurrence, there is no standard of care and these patients have a dismal prognosis of around 9 months at time of recurrence. Areas covered: In this article, we assess the newly published phase I data of Toca 511 and Toca FC, a two-drug combination therapy for recurrent HGG (rHGG) tumors, for effectiveness and safety. Expert opinion: These early studies provide very encouraging results for Toca 511 and Toca FC in rHGG. This therapy had a response rate of 11.3% and a mOS of 11.9 months in 56 patients, an improvement compared to historical controls. Furthermore, all responders were complete responses after extended follow-up. The drug is well tolerated for most patients. Responders tended to be young and have high-performance scores prior to beginning therapy, but more studies are necessary to understand the patient profile that receives the most benefit. Randomized-controlled trials are warranted for Toca 511 and Toca FC to confirm drug efficacy.
Collapse
Affiliation(s)
- Brandon D Philbrick
- a Department of Neurosurgery , Emory University School of Medicine , Atlanta , GA , USA
| | - D Cory Adamson
- a Department of Neurosurgery , Emory University School of Medicine , Atlanta , GA , USA.,b Neurosurgery Section , Atlanta VA Medical Center , Decatur , GA , USA
| |
Collapse
|
25
|
Mandel JJ, Yust-Katz S, Patel AJ, Cachia D, Liu D, Park M, Yuan Y, Kent TA, de Groot JF. Inability of positive phase II clinical trials of investigational treatments to subsequently predict positive phase III clinical trials in glioblastoma. Neuro Oncol 2019; 20:113-122. [PMID: 29016865 DOI: 10.1093/neuonc/nox144] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Glioblastoma is the most common primary malignant brain tumor in adults, but effective therapies are lacking. With the scarcity of positive phase III trials, which are increasing in cost, we examined the ability of positive phase II trials to predict statistically significant improvement in clinical outcomes of phase III trials. Methods A PubMed search was conducted to identify phase III clinical trials performed in the past 25 years for patients with newly diagnosed or recurrent glioblastoma. Trials were excluded if they did not examine an investigational chemotherapy or agent, if they were stopped early owing to toxicity, if they lacked prior phase II studies, or if a prior phase II study was negative. Results Seven phase III clinical trials in newly diagnosed glioblastoma and 4 phase III clinical trials in recurrent glioblastoma met the inclusion criteria. Only 1 (9%) phase III study documented an improvement in overall survival and changed the standard of care. Conclusion The high failure rate of phase III trials demonstrates the urgent need to increase the reliability of phase II trials of treatments for glioblastoma. Strategies such as the use of adaptive trial designs, Bayesian statistics, biomarkers, volumetric imaging, and mathematical modeling warrant testing. Additionally, it is critical to increase our expectations of phase II trials so that positive findings increase the probability that a phase III trial will be successful.
Collapse
Affiliation(s)
- Jacob J Mandel
- Baylor College of Medicine, Department of Neurology, Houston, Texas, USA
| | - Shlomit Yust-Katz
- Rabin Medical Center, Department of Neurosurgery, Petah Tikva, Israel
| | - Akash J Patel
- Baylor College of Medicine, Department of Neurology, Houston, Texas, USA
| | - David Cachia
- Medical University of South Carolina, Department of Neurosurgery, Charleston, South Carolina, USA
| | - Diane Liu
- The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, Texas, USA
| | - Minjeong Park
- The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, Texas, USA
| | - Ying Yuan
- The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, Texas, USA
| | - Thomas A Kent
- Baylor College of Medicine, Department of Neurology, Houston, Texas, USA
| | - John F de Groot
- The University of Texas MD Anderson Cancer Center, Department of Neuro-Oncology, Houston, Texas, USA
| |
Collapse
|
26
|
Molecular pathway activation – New type of biomarkers for tumor morphology and personalized selection of target drugs. Semin Cancer Biol 2018; 53:110-124. [DOI: 10.1016/j.semcancer.2018.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
|
27
|
Mandel JJ, Youssef M, Ludmir E, Yust-Katz S, Patel AJ, De Groot JF. Highlighting the need for reliable clinical trials in glioblastoma. Expert Rev Anticancer Ther 2018; 18:1031-1040. [PMID: 29973092 DOI: 10.1080/14737140.2018.1496824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Several recent phase III studies have attempted to improve the dismal survival seen in glioblastoma patients, with disappointing results despite prior promising phase II data. Areas covered: A literature review of prior phase II and phase III studied in glioblastoma was performed to help identify possible areas of concern. Numerous issues in previous phase II trials for glioblastoma were found that may have contributed to these discouraging outcomes and discordant results. Expert commentary: These concerns include the improper selection of therapeutics warranting investigation in a phase III trial, suboptimal design of phase II studies (often lacking a control arm), absence of molecular data, the use of imaging criteria as a surrogate endpoint, and a lack of pharmacodynamic testing. Hopefully, by recognizing prior phase II trial limitations that contributed to failed phase III trials, we can adapt quickly to improve our ability to accurately discover survival-prolonging treatments for glioblastoma patients.
Collapse
Affiliation(s)
- Jacob J Mandel
- a Department of Neurology , Baylor College of Medicine , Houston , Texas , USA
| | - Michael Youssef
- a Department of Neurology , Baylor College of Medicine , Houston , Texas , USA
| | - Ethan Ludmir
- b Department of Radiation Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
| | - Shlomit Yust-Katz
- c Department of Neurosurgery , Rabin Medical Center , Petah Tikva , Israel
| | - Akash J Patel
- a Department of Neurology , Baylor College of Medicine , Houston , Texas , USA
| | - John F De Groot
- d Department of Neuro-Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
| |
Collapse
|
28
|
Desjardins A, Gromeier M, Herndon JE, Beaubier N, Bolognesi DP, Friedman AH, Friedman HS, McSherry F, Muscat AM, Nair S, Peters KB, Randazzo D, Sampson JH, Vlahovic G, Harrison WT, McLendon RE, Ashley D, Bigner DD. Recurrent Glioblastoma Treated with Recombinant Poliovirus. N Engl J Med 2018; 379:150-161. [PMID: 29943666 PMCID: PMC6065102 DOI: 10.1056/nejmoa1716435] [Citation(s) in RCA: 538] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The prognosis of patients with recurrent World Health Organization (WHO) grade IV malignant glioma is dismal, and there is currently no effective therapy. We conducted a dose-finding and toxicity study in this population of patients, evaluating convection-enhanced, intratumoral delivery of the recombinant nonpathogenic polio-rhinovirus chimera (PVSRIPO). PVSRIPO recognizes the poliovirus receptor CD155, which is widely expressed in neoplastic cells of solid tumors and in major components of the tumor microenvironment. METHODS We enrolled consecutive adult patients who had recurrent supratentorial WHO grade IV malignant glioma, confirmed on histopathological testing, with measurable disease (contrast-enhancing tumor of ≥1 cm and ≤5.5 cm in the greatest dimension). The study evaluated seven doses, ranging between 107 and 1010 50% tissue-culture infectious doses (TCID50), first in a dose-escalation phase and then in a dose-expansion phase. RESULTS From May 2012 through May 2017, a total of 61 patients were enrolled and received a dose of PVSRIPO. Dose level -1 (5.0×107 TCID50) was identified as the phase 2 dose. One dose-limiting toxic effect was observed; a patient in whom dose level 5 (1010 TCID50) was administered had a grade 4 intracranial hemorrhage immediately after the catheter was removed. To mitigate locoregional inflammation of the infused tumor with prolonged glucocorticoid use, dose level 5 was deescalated to reach the phase 2 dose. In the dose-expansion phase, 19% of the patients had a PVSRIPO-related adverse event of grade 3 or higher. Overall survival among the patients who received PVSRIPO reached a plateau of 21% (95% confidence interval, 11 to 33) at 24 months that was sustained at 36 months. CONCLUSIONS Intratumoral infusion of PVSRIPO in patients with recurrent WHO grade IV malignant glioma confirmed the absence of neurovirulent potential. The survival rate among patients who received PVSRIPO immunotherapy was higher at 24 and 36 months than the rate among historical controls. (Funded by the Brain Tumor Research Charity and others; ClinicalTrials.gov number, NCT01491893 .).
Collapse
Affiliation(s)
- Annick Desjardins
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Matthias Gromeier
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - James E Herndon
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Nike Beaubier
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Dani P Bolognesi
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Allan H Friedman
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Henry S Friedman
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Frances McSherry
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Andrea M Muscat
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Smita Nair
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Katherine B Peters
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Dina Randazzo
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - John H Sampson
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Gordana Vlahovic
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - William T Harrison
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Roger E McLendon
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - David Ashley
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Darell D Bigner
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| |
Collapse
|
29
|
BCAT1 is a New MR Imaging-related Biomarker for Prognosis Prediction in IDH1-wildtype Glioblastoma Patients. Sci Rep 2017; 7:17740. [PMID: 29255149 PMCID: PMC5735129 DOI: 10.1038/s41598-017-17062-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023] Open
Abstract
Isocitrate dehydrogenase 1 (IDH1)-wildtype glioblastoma (GBM) has found to be accompanied with increased expression of branched-chain amino acid trasaminase1 (BCAT1), which is associated with tumor growth and disease progression. In this retrospective study, quantitative RT-PCR, immunohistochemistry, and western blot were performed with GBM patient tissues to evaluate the BCAT1 level. Quantitative MR imaging parameters were evaluated from DSC perfusion imaging, DWI, contrast-enhanced T1WI and FLAIR imaging using a 3T MR scanner. The level of BCAT1 was significantly higher in IDH1-wildtype patients than in IDH1-mutant patients obtained in immunohistochemistry and western blot. The BCAT1 level was significantly correlated with the mean and 95th percentile-normalized CBV as well as the mean ADC based on FLAIR images. In addition, the 95th percentile-normalized CBV from CE T1WI also had a significant correlation with the BCAT1 level. Moreover, the median PFS in patients with BCAT1 expression <100 was longer than in those with BCAT1 expression ≥100. Taken together, we found that a high BCAT1 level is correlated with high CBV and a low ADC value as well as the poor prognosis of BCAT1 expression is related to the aggressive nature of GBM.
Collapse
|
30
|
Byron SA, Tran NL, Halperin RF, Phillips JJ, Kuhn JG, de Groot JF, Colman H, Ligon KL, Wen PY, Cloughesy TF, Mellinghoff IK, Butowski NA, Taylor JW, Clarke JL, Chang SM, Berger MS, Molinaro AM, Maggiora GM, Peng S, Nasser S, Liang WS, Trent JM, Berens ME, Carpten JD, Craig DW, Prados MD. Prospective Feasibility Trial for Genomics-Informed Treatment in Recurrent and Progressive Glioblastoma. Clin Cancer Res 2017; 24:295-305. [PMID: 29074604 DOI: 10.1158/1078-0432.ccr-17-0963] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/15/2017] [Accepted: 10/03/2017] [Indexed: 01/16/2023]
Abstract
Purpose: Glioblastoma is an aggressive and molecularly heterogeneous cancer with few effective treatment options. We hypothesized that next-generation sequencing can be used to guide treatment recommendations within a clinically acceptable time frame following surgery for patients with recurrent glioblastoma.Experimental Design: We conducted a prospective genomics-informed feasibility trial in adults with recurrent and progressive glioblastoma. Following surgical resection, genome-wide tumor/normal exome sequencing and tumor RNA sequencing were performed to identify molecular targets for potential matched therapy. A multidisciplinary molecular tumor board issued treatment recommendations based on the genomic results, blood-brain barrier penetration of the indicated therapies, drug-drug interactions, and drug safety profiles. Feasibility of generating genomics-informed treatment recommendations within 35 days of surgery was assessed.Results: Of the 20 patients enrolled in the study, 16 patients had sufficient tumor tissue for analysis. Exome sequencing was completed for all patients, and RNA sequencing was completed for 14 patients. Treatment recommendations were provided within the study's feasibility time frame for 15 of 16 (94%) patients. Seven patients received treatment based on the tumor board recommendations. Two patients reached 12-month progression-free survival, both adhering to treatments based on the molecular profiling results. One patient remained on treatment and progression free 21 months after surgery, 3 times longer than the patient's previous time to progression. Analysis of matched nonenhancing tissue from 12 patients revealed overlapping as well as novel putatively actionable genomic alterations.Conclusions: Use of genome-wide molecular profiling is feasible and can be informative for guiding real-time, central nervous system-penetrant, genomics-informed treatment recommendations for patients with recurrent glioblastoma. Clin Cancer Res; 24(2); 295-305. ©2017 AACRSee related commentary by Wick and Kessler, p. 256.
Collapse
Affiliation(s)
- Sara A Byron
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Nhan L Tran
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Rebecca F Halperin
- Quantitative Medicine & Systems Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.,Department of Neuropathology, University of California, San Francisco, San Francisco, California
| | - John G Kuhn
- College of Pharmacy, University of Texas Health Science Center, San Antonio, Texas
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Howard Colman
- Department of Neurosurgery, University of Utah Huntsman Cancer Institute, Salt Lake City, Utah
| | - Keith L Ligon
- Center for Neuro-Oncology, Dana-Farber Cancer Center, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Neuro-Oncology Program, The Ronald Reagan UCLA Medical Center, University of California, Los Angeles, Los Angeles, California
| | - Ingo K Mellinghoff
- Department of Neurology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Gerald M Maggiora
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Sara Nasser
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Winnie S Liang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona.,Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Jeffrey M Trent
- Genetic Basis of Human Disease Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Michael E Berens
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - John D Carpten
- Department of Translational Genomics, University of Southern California, Los Angeles, California
| | - David W Craig
- Department of Translational Genomics, University of Southern California, Los Angeles, California
| | - Michael D Prados
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
31
|
Secondary Glioblastoma: Molecular and Clinical Factors That Affect Outcome After Malignant Progression of a Lower Grade Tumor. World Neurosurg 2017; 102:49-55. [PMID: 28263929 DOI: 10.1016/j.wneu.2017.02.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND OBJECTIVE There is limited information on prognostic factors and outcomes in patients with secondary glioblastoma (sGBM). Herein we report on the outcomes of patients with sGBM and identify clinically relevant prognostic factors. METHODS We retrospectively analyzed our institutional database for patients with histologic evidence of World Health Organization (WHO) grade II-III gliomas that went on to develop WHO grade IV sGBM. The assessment of the isocitrate dehydrogenase-1 (IDH1) R132H mutation was performed by immunohistochemical staining. RESULTS Forty-five patients with sGBM were included within our analysis (median age, 41 years). Mutated IDH1 (R132H) protein was present within the gliomas of 24 patients and was absent in 17. Immunohistochemistry assessment could not be performed for 4 patients. The median time between first diagnosis of glioma and sGBM was 158.9 weeks. Median overall survival (OS) after a diagnosis of sGBM was 63.6 weeks. When assessing patient-specific (i.e., therapy-independent) factors, mutated IDH1 (R132H) protein (P = 0.01; hazard ratio (HR), 0.54; confidence interval (CI) 0.33-0.87), WHO grade II tumor as precursor lesion (P = 0.05; HR, 0.49; CI 0.25-0.97), and a frontal tumor location (P = 0.04; HR, 0.48; CI 0.23-0.99) were found to be associated with better OS by multivariate analysis. Our data further indicate that complete tumor removal is associated with better patient survival in sGBM patients within certain risk groups (time period to development of sGBM, >104 weeks; initial WHO grade II tumor, IDH1 mutation, and time period to development of sGBM, >104 weeks; initial WHO grade II or III tumor, IDH1 wild type, frontal lobe localization). CONCLUSIONS Our retrospective analysis suggested that the presence of an IDH1 (R132H) mutation, frontal tumor location, and WHO grade of the initial tumor are associated with OS after progression to sGBM. In addition, some patients with sGBM may benefit from complete tumor resection depending on these patient-specific parameters. This is a finding that will ultimately need prospective validation.
Collapse
|