3
|
Keerthika Devi R, Ganesan M, Chen TW, Chen SM, Akilarasan M, Shaju A, Rwei SP, Yu J, Yu YY. In-situ formation of niobium oxide – niobium carbide – reduced graphene oxide ternary nanocomposite as an electrochemical sensor for sensitive detection of anticancer drug methotrexate. J Colloid Interface Sci 2023; 643:600-612. [PMID: 37003869 DOI: 10.1016/j.jcis.2023.03.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Engineering the nanostructure of an electrocatalyst is crucial in developing a high-performance electrochemical sensor. This work exhibits the hydrothermal followed by annealing synthesis of niobium oxide/niobium carbide/reduced graphene oxide (NbO/NbC/rGO) ternary nanocomposite. The oval-shaped NbO/NbC nanoparticles cover the surface of rGO evenly, and the rGO nanosheets are interlinked to produce a micro-flower-like architecture. The NbO/NbC/rGO nanocomposite-modified electrode is presented here for the first time for the rapid and sensitive electrochemical detection of the anticancer drug methotrexate (MTX). Down-sized NbO/NbC nanoparticles and rGO's high surface area provide many active sites with a rapid electron transfer rate, making them ideal for MTX detection. In comparison to previously reported MTX sensors, the developed drug sensor exhibits a lower oxidation potential and a higher peak current responsiveness. The constructed sensors worked analytically well under optimal conditions, as shown by a low detection limit of 1.6 nM, a broad linear range of 0.1-850 µM, and significant recovery findings (∼98 %, (n = 3)) in real samples analysis. Thus, NbO/NbC/rGO nanocomposite material for high-performance electrochemical applications seems promising.
Collapse
Affiliation(s)
- Ramadhass Keerthika Devi
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Muthusankar Ganesan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Muthumariappan Akilarasan
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Anlin Shaju
- International College of Semiconductor Technology (ICST), National Yang Ming Chiao Tung University, Taiwan
| | - Syang-Peng Rwei
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan; Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taiwan
| | - Jaysan Yu
- Well Fore Special Wire Corporation, 10, Tzu-Chiang 7rd., Chung-Li Industrial Park, Taoyuan, Taiwan
| | - Yen-Yao Yu
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| |
Collapse
|
5
|
Chen YT, Chang YH, Pathak N, Tzou SC, Luo YC, Hsu YC, Li TN, Lee JY, Chen YC, Huang YW, Yang HJ, Hsu NY, Tsai HP, Chang TY, Hsu SC, Liu PC, Chin YF, Lin WC, Yang CM, Wu HL, Lee CY, Hsu HL, Liu YC, Chu JW, Wang LHC, Wang JY, Huang CH, Lin CH, Hsieh PS, Wu Lee YH, Hung YJ, Yang JM. Methotrexate inhibition of SARS-CoV-2 entry, infection and inflammation revealed by bioinformatics approach and a hamster model. Front Immunol 2022; 13:1080897. [PMID: 36618412 PMCID: PMC9811668 DOI: 10.3389/fimmu.2022.1080897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background Drug repurposing is a fast and effective way to develop drugs for an emerging disease such as COVID-19. The main challenges of effective drug repurposing are the discoveries of the right therapeutic targets and the right drugs for combating the disease. Methods Here, we present a systematic repurposing approach, combining Homopharma and hierarchal systems biology networks (HiSBiN), to predict 327 therapeutic targets and 21,233 drug-target interactions of 1,592 FDA drugs for COVID-19. Among these multi-target drugs, eight candidates (along with pimozide and valsartan) were tested and methotrexate was identified to affect 14 therapeutic targets suppressing SARS-CoV-2 entry, viral replication, and COVID-19 pathologies. Through the use of in vitro (EC50 = 0.4 μM) and in vivo models, we show that methotrexate is able to inhibit COVID-19 via multiple mechanisms. Results Our in vitro studies illustrate that methotrexate can suppress SARS-CoV-2 entry and replication by targeting furin and DHFR of the host, respectively. Additionally, methotrexate inhibits all four SARS-CoV-2 variants of concern. In a Syrian hamster model for COVID-19, methotrexate reduced virus replication, inflammation in the infected lungs. By analysis of transcriptomic analysis of collected samples from hamster lung, we uncovered that neutrophil infiltration and the pathways of innate immune response, adaptive immune response and thrombosis are modulated in the treated animals. Conclusions We demonstrate that this systematic repurposing approach is potentially useful to identify pharmaceutical targets, multi-target drugs and regulated pathways for a complex disease. Our findings indicate that methotrexate is established as a promising drug against SARS-CoV-2 variants and can be used to treat lung damage and inflammation in COVID-19, warranting future evaluation in clinical trials.
Collapse
Affiliation(s)
- Yun-Ti Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Hsiu Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Nikhil Pathak
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shey-Cherng Tzou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yong-Chun Luo
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yen-Chao Hsu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tian-Neng Li
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jung-Yu Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Cyun Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Wei Huang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsin-Ju Yang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Nung-Yu Hsu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hui-Ping Tsai
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Chen Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Cheng Liu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Fan Chin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chin Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chuen-Mi Yang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsueh-Ling Wu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Ying Lee
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hui-Ling Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Chun Liu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jhih-Wei Chu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hung Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan,Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Shiuan Hsieh
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yan-Hwa Wu Lee
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Jen Hung
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan,Division of Endocrine and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,*Correspondence: Yi-Jen Hung, ; Jinn-Moon Yang,
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,*Correspondence: Yi-Jen Hung, ; Jinn-Moon Yang,
| |
Collapse
|