1
|
Saadh MJ, Ghnim ZS, Mahdi MS, Chandra M, Ballal S, Bareja L, Chaudhary K, Sharma RSK, Gupta S, Taher WM, Alwan M, Jawad MJ, Hamad AK. Decoding the Role of Kinesin Superfamily Proteins in Glioma Progression. J Mol Neurosci 2025; 75:10. [PMID: 39847238 DOI: 10.1007/s12031-025-02308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets. We discuss how KIFs influence key aspects of glioma biology, including cell proliferation, invasion, migration, and metastasis. Furthermore, we explore the regulation of the cell cycle and critical signaling pathways associated with glioma, such as PI3K-Akt, Wnt/β-catenin, and Hedgehog signaling by KIFs. The review also addresses the emerging interplay between KIFs and non-coding RNAs, including circular RNAs (circRNAs) and microRNAs (miRNAs), in glioma progression. Finally, we examine current therapeutic strategies targeting KIFs, including immunotherapy, chemotherapy, and small-molecule inhibitors, and their potential to improve treatment outcomes for glioma patients. By synthesizing these insights, this review underscores the significance of KIFs in glioma pathogenesis and their promise as novel therapeutic targets in the fight against glioma.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Muktesh Chandra
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - R S K Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
2
|
Diallo MT, Chen B, Yan Z, Sun Q, Liu G, Wang Y, Ren J, Wang D. Targeted therapy for KIF3C: A study on the mechanism of combined therapy with KIF3C signaling pathway, afatinib, and MT-DC (ac)phosphoramide in regulating gastric cancer cell proliferation. Cell Signal 2024; 125:111514. [PMID: 39580063 DOI: 10.1016/j.cellsig.2024.111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND KIF3C serves as a motor protein that facilitates axonal transport in neuronal cells. It belongs to the kinesin superfamily and plays a crucial role in the development of various cancers. However, the role of KIF3C in gastric cancer (GC) the third-highest cause of cancer-related deaths remains unclear. To investigate the regulatory mechanisms and expression patterns of KIF3C in GC and their implications for GC progression, we conducted a series of in vitro and in vivo experiments. METHODS We employed bioinformatics tools, including GEPIA, Kaplan-Meier plotter, and cBioPortal, to examine the role of KIF3C in GC, with a focus on its prognostic significance and associated signaling pathways. Furthermore, we conducted immunohistochemistry, real-time polymerase chain reaction (RT-PCR), western blot analyses, cell function and signaling pathway experiments. We further assessed the impact of combination therapy with afatinib and MT-DC (ac) phosphoramidite alongside KIF3C knockdown and overexpression in GC cells and a xenograft mouse model experiment. RESULTS Kaplan-Meier and Cox regression analyses revealed that high KIF3C expression in GC is significantly associated with poor prognosis. Genomic alteration and immune microenvironment analyses provided insights into the underlying causes of abnormal KIF3C expression. We observed that KIF3C knockdown decreased the proliferation of GC tumor cells. Additionally, KIF3C was overexpressed in GC and elevated expression was significantly correlated with tumor prognosis. We demonstrated that KIF3C knockdown and overexpression could significantly inhibit and promote tumor cell proliferation, respectively, through the combination therapy by modulating PI3K, AKT, and cell cycle signaling pathways. Notably, tumor size and the number of GC nodules were significantly reduced in the Sh-KIF3C group compared to the Sh-ctrl group. CONCLUSION Our findings highlight the potential of KIF3C as a biomarker for tumor progression diagnosis, establishing it as a pivotal therapeutic target for combating tumor advancement in GC.
Collapse
Affiliation(s)
- Maladho Tanta Diallo
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, China
| | - Bangquan Chen
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, China
| | - Zhang Yan
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China
| | - Qiannan Sun
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, China
| | - Guanghao Liu
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, China
| | - Yong Wang
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, China
| | - Jun Ren
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, China.
| | - Daorong Wang
- Northern Jiangsu People's Hospital, Yangzhou 225001, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225001, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, 225001, China.
| |
Collapse
|
3
|
Zhong Q, Hong W, Xiong L. KIF3C: an emerging biomarker with prognostic and immune implications across pan-cancer types and its experiment validation in gastric cancer. Aging (Albany NY) 2024; 16:6163-6187. [PMID: 38552217 PMCID: PMC11042961 DOI: 10.18632/aging.205694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/08/2024] [Indexed: 04/23/2024]
Abstract
Kinesin Family Member 3C (KIF3C) assumes a crucial role in various biological processes of specific human cancers. Nevertheless, there exists a paucity of systematic assessments pertaining to the contribution of KIF3C in human malignancies. We conducted an extensive analysis of KIF3C, covering its expression profile, prognostic relevance, molecular function, tumor immunity, and drug sensitivity. Functional enrichment analysis was also carried out. In addition, we conducted in vitro experiments to substantiate the role of KIF3C in gastric cancer (GC). KIF3C expression demonstrated consistent elevation in various tumors compared to their corresponding normal tissues. We further unveiled that heightened KIF3C expression served as a prognostic indicator, and its elevated levels correlated with unfavorable clinical outcomes, encompassing reduced OS, DSS, and PFS in several cancer types. Notably, KIF3C expression exhibited positive associations with the pathological stages of several cancers. Moreover, KIF3C demonstrated varying relationships with the infiltration of various distinct immune cell types in gastric cancer. Functional analysis outcomes indicated that KIF3C played a role in the PI3K-AKT signaling pathway. Drug sensitivity unveiled a positive relationship between KIF3C in gastric cancer and the IC50 values of the majority of identified anti-cancer drugs. Additionally, KIF3C knockdown reduced the proliferation, migration, and invasion capabilities, increased apoptosis, and led to alterations in the cell cycle of gastric cancer cells. Our research has revealed the significant and functional role of KIF3C as a tumorigenic gene in diverse cancer types. These findings indicate that KIF3C may serve as a promising target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Qiangqiang Zhong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Laboratory of Metabolic Abnormalities and Vascular Aging Huazhong University of Science and Technology, Wuhan 430077, China
| | - Wenbo Hong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Laboratory of Metabolic Abnormalities and Vascular Aging Huazhong University of Science and Technology, Wuhan 430077, China
| | - Lina Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| |
Collapse
|
4
|
Wang X, Shi Y, Shi H, Liu X, Liao A, Liu Z, Orlowski RZ, Zhang R, Wang H. MUC20 regulated by extrachromosomal circular DNA attenuates proteasome inhibitor resistance of multiple myeloma by modulating cuproptosis. J Exp Clin Cancer Res 2024; 43:68. [PMID: 38439082 PMCID: PMC10913264 DOI: 10.1186/s13046-024-02972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Proteasome inhibitors (PIs) are one of the most important classes of drugs for the treatment of multiple myeloma (MM). However, almost all patients with MM develop PI resistance, resulting in therapeutic failure. Therefore, the mechanisms underlying PI resistance in MM require further investigation. METHODS We used several MM cell lines to establish PI-resistant MM cell lines. We performed RNA microarray and EccDNA-seq in MM cell lines and collected human primary MM samples to explore gene profiles. We evaluated the effect of MUC20 on cuproptosis of PI-resistant MM cells using Co-immunoprecipitation (Co-IP), Seahorse bioenergetic profiling and in vivo assay. RESULTS This study revealed that the downregulation of Mucin 20 (MUC20) could predict PI sensitivity and outcomes in MM patients. Besides, MUC20 attenuated PI resistance in MM cells by inducing cuproptosis via the inhibition of cyclin-dependent kinase inhibitor 2 A expression (CDKN2A), which was achieved by hindering MET proto-oncogene, receptor tyrosine kinase (MET) activation. Moreover, MUC20 suppressed MET activation by repressing insulin-like growth factor receptor-1 (IGF-1R) lactylation in PI-resistant MM cells. This study is the first to perform extrachromosomal circular DNA (eccDNA) sequencing for MM, and it revealed that eccDNA induced PI resistance by amplifying kinesin family member 3 C (KIF3C) to reduce MUC20 expression in MM. CONCLUSION Our findings indicated that MUC20 regulated by eccDNA alleviates PI resistance of MM by modulating cuproptosis, which would provide novel strategies for the treatment of PI-resistant MM.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
- Center for Reproductive Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yingqing Shi
- Department of Hematology, Daping Hospital, Chongqing, China
| | - Hua Shi
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Xiaoyu Liu
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Robert Z Orlowski
- Departments of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Rui Zhang
- Department of Hematology, The First Affiliated Hospital, China Medical University, Shenyang, China.
| | - Huihan Wang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Chen J, Xu X, Chen S, Lu T, Zheng Y, Gan Z, Shen Z, Ma S, Wang D, Su L, He F, Shang X, Xu H, Chen D, Zhang L, Xiong F. Double heterozygous pathogenic mutations in KIF3C and ZNF513 cause hereditary gingival fibromatosis. Int J Oral Sci 2023; 15:46. [PMID: 37752101 PMCID: PMC10522663 DOI: 10.1038/s41368-023-00244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Hereditary gingival fibromatosis (HGF) is a rare inherited condition with fibromatoid hyperplasia of the gingival tissue that exhibits great genetic heterogeneity. Five distinct loci related to non-syndromic HGF have been identified; however, only two disease-causing genes, SOS1 and REST, inducing HGF have been identified at two loci, GINGF1 and GINGF5, respectively. Here, based on a family pedigree with 26 members, including nine patients with HGF, we identified double heterozygous pathogenic mutations in the ZNF513 (c.C748T, p.R250W) and KIF3C (c.G1229A, p.R410H) genes within the GINGF3 locus related to HGF. Functional studies demonstrated that the ZNF513 p.R250W and KIF3C p.R410H variants significantly increased the expression of ZNF513 and KIF3C in vitro and in vivo. ZNF513, a transcription factor, binds to KIF3C exon 1 and participates in the positive regulation of KIF3C expression in gingival fibroblasts. Furthermore, a knock-in mouse model confirmed that heterozygous or homozygous mutations within Zfp513 (p.R250W) or Kif3c (p.R412H) alone do not led to clear phenotypes with gingival fibromatosis, whereas the double mutations led to gingival hyperplasia phenotypes. In addition, we found that ZNF513 binds to the SOS1 promoter and plays an important positive role in regulating the expression of SOS1. Moreover, the KIF3C p.R410H mutation could activate the PI3K and KCNQ1 potassium channels. ZNF513 combined with KIF3C regulates gingival fibroblast proliferation, migration, and fibrosis response via the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways. In summary, these results demonstrate ZNF513 + KIF3C as an important genetic combination in HGF manifestation and suggest that ZNF513 mutation may be a major risk factor for HGF.
Collapse
Affiliation(s)
- Jianfan Chen
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Experimental Department of Obstetrics and Gynecology Institute, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xueqing Xu
- Department of Precision Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Song Chen
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Lu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingchun Zheng
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongzhi Gan
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zongrui Shen
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shunfei Ma
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Duocai Wang
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Leyi Su
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fei He
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuan Shang
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huiyong Xu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Chen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leitao Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Fu Xiong
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China.
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Huang W, Hao Z, Mao F, Guo D. Small Molecule Inhibitors in Adult High-Grade Glioma: From the Past to the Future. Front Oncol 2022; 12:911876. [PMID: 35785151 PMCID: PMC9247310 DOI: 10.3389/fonc.2022.911876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary malignant tumor in the brain and has a dismal prognosis despite patients accepting standard therapies. Alternation of genes and deregulation of proteins, such as receptor tyrosine kinase, PI3K/Akt, PKC, Ras/Raf/MEK, histone deacetylases, poly (ADP-ribose) polymerase (PARP), CDK4/6, branched-chain amino acid transaminase 1 (BCAT1), and Isocitrate dehydrogenase (IDH), play pivotal roles in the pathogenesis and progression of glioma. Simultaneously, the abnormalities change the cellular biological behavior and microenvironment of tumor cells. The differences between tumor cells and normal tissue become the vulnerability of tumor, which can be taken advantage of using targeted therapies. Small molecule inhibitors, as an important part of modern treatment for cancers, have shown significant efficacy in hematologic cancers and some solid tumors. To date, in glioblastoma, there have been more than 200 clinical trials completed or ongoing in which trial designers used small molecules as monotherapy or combination regimens to correct the abnormalities. In this review, we summarize the dysfunctional molecular mechanisms and highlight the outcomes of relevant clinical trials associated with small-molecule targeted therapies. Based on the outcomes, the main findings were that small-molecule inhibitors did not bring more benefit to newly diagnosed glioblastoma, but the clinical studies involving progressive glioblastoma usually claimed “noninferiority” compared with historical results. However, as to the clinical inferiority trial, similar dosing regimens should be avoided in future clinical trials.
Collapse
Affiliation(s)
- Wenda Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Feng Mao,
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Feng Mao,
| |
Collapse
|
7
|
Comprehensive analysis of the LncRNAs, MiRNAs, and MRNAs acting within the competing endogenous RNA network of LGG. Genetica 2022; 150:41-50. [PMID: 34993720 DOI: 10.1007/s10709-021-00145-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
Abstract
Messenger RNA (mRNA) and long noncoding RNA (lncRNA) targets interact via competitive microRNA (miRNA) binding. However, the roles of cancer-specific lncRNAs in the competing endogenous RNA (ceRNA) networks of low-grade glioma (LGG) remain unclear. This study obtained RNA sequencing data for normal solid tissue and LGG primary tumour tissue from The Cancer Genome Atlas database. We used a computational method to analyse the relationships among the mRNAs, lncRNAs, and miRNAs in these samples. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was used to predict the biological processes (BPs) and pathways associated with these genes. Kaplan-Meier survival analysis was used to evaluate the association between the expression levels of specific mRNAs, lncRNAs, and miRNAs and overall survival. Finally, we created a ceRNA network describing the relationships among these mRNAs, lncRNAs, and miRNAs using Cytoscape 3.5.1. A total of 2555 differentially expressed (DE) mRNAs, 218 DElncRNAs, and 192 DEmiRNAs were identified using R. In addition, GO and KEGG pathway analysis of the mRNAs and lncRNAs in the ceRNA network identified 10 BPs, 10 cell components, 10 molecular functions, and 48 KEGG pathways as selectively enriched. A total of 55 lncRNAs, 50 miRNAs, and 10 mRNAs from this network were shown to be closely associated with overall survival in LGG. Finally, 59 miRNAs, 235 mRNAs, and 17 lncRNAs were used to develop a ceRNA network comprising 313 nodes and 1046 edges. This study helps expand our understanding of ceRNA networks and serves to clarify the underlying pathogenesis mechanism of LGG.
Collapse
|
8
|
Liu H, Liu R, Hao M, Zhao X, Li C. Kinesin family member 3C (KIF3C) is a novel non-small cell lung cancer (NSCLC) oncogene whose expression is modulated by microRNA-150-5p (miR-150-5p) and microRNA-186-3p (miR-186-3p). Bioengineered 2021; 12:3077-3088. [PMID: 34193018 PMCID: PMC8806907 DOI: 10.1080/21655979.2021.1942768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study is aimed at investigating the biological function of kinesin family member 3 C (KIF3C) in non-small cell lung cancer (NSCLC) progression and its upstream regulatory mechanism. Quantitative real-time PCR, Western blot and immunohistochemistry were adopted to examine microRNA-150-5p (miR-150-5p), microRNA-186-3p (miR-186-3p) and kinesin family member 3 C (KIF3C) expression levels. NSCLC cell proliferation, migration, and invasion were detected through cell counting kit-8 (CCK-8) assay, EdU assay, and Transwell assay. The metastasis of NSCLC cells was evaluated utilizing a pulmonary metastasis model in nude mice in vivo. The targeted relationship among KIF3C 3ʹUTR, miR-186-3p, and miR-150-5p were verified by dual-luciferase reporter gene assays. It was confirmed that in NSCLC tissues and cells, KIF3C expression level was increased and KIF3C overexpression promoted NSCLC cell proliferation and metastasis. Additionally, miR-150-5p and miR-186-3p directly targeted KIF3C to repress its expression. Our data suggest that KIF3C, which is negatively regulated by miR-150-5p and miR-186-3p, is an oncogenic factor in NSCLC progression.
Collapse
Affiliation(s)
- Haiwang Liu
- Department of Pathology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Ran Liu
- Anesthesiology Department of Southern District, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Meiling Hao
- Department of Pathology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Xing Zhao
- Department of Pathology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Chunhui Li
- Department of Pathology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| |
Collapse
|
9
|
Chen X, Sun L, Wei X, Lu H, Tan Y, Sun Z, Jiang J. Antitumor effect and molecular mechanism of fucoidan in NSCLC. BMC Complement Med Ther 2021; 21:25. [PMID: 33430854 PMCID: PMC7802245 DOI: 10.1186/s12906-020-03191-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Fucoidan, a water-soluble polysaccharide, exerts anticoagulant and antiviral functions. It was recently reported that fucoidan also exerts an antitumor function. Lung cancer is one of the most common cancers in the world. The aim of this study was to investigate anti-tumor,apoptosis and anti-metastasis effects of fucoidan in both cell-based assays and mouse xenograft model, as well as to clarify possible role of m-TOR pathway in the protection. Methods In vitro: Different concentrations of fucoidan were given to act on non-small cell lung cancer (NSCLC) cell lines A549 and H1650. The effects of fucoidan on cell proliferation were observed by detecting cyclin expression levels, CCK8 and EDU experiments and cloning experiments. The apoptotic level was detected by flow cytometry and the apoptotic protein level was detected by Westernblot. By detecting the expression of adhesion molecules, the expression of matrix metalloproteinase (MMP) family, and Transwell cell invasion and migration experiment, the effect of fucoidan on cell adhesion, invasion and migration was observed. Meanwhile the effect of fucoidan on angiogenesis was observed by detecting the expression of vascular endothelial growth factor (VEGF). In vivo experiment: An animal model of NSCLC cell mouse subcutaneous xenograft tumor was established to analyze the correlation between the consumption of fucoidan and the size and volume of xenograft tumor through gross observation. Through immunohistochemical staining and immunofluorescence double staining, ki67 and cell adhesion molecules (E-cadherin, N-cadherin and CD31) and VEGF-A in the tumor were detected, and the correlation between the amount of fucoidan and the above indexes was analyzed. Results Fucoidan inhibited the proliferation and angiogenesis of NSCLC cells via the mTOR pathway and promoted their apoptosis by increasing the Bax/Bcl-2 ratio. Not only that, fucoidan inhibited NSCLC cell invasion via epithelial–mesenchymal transformation (EMT). The mice fed fucoidan exhibited significant reductions in tumor volumes and weights. These indicators (Ki67, VEGF-A,N-cadherin) were decreased and E-cadherin expression was up-regulated in A549 mice that treated with fucoidan. The results showed that fucoidan inhibited tumor proliferation in vivo by affecting the expression of related proteins. Conclusion Fucoidan conveys antitumor effects and our results represent an ideal therapeutic agent for NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-020-03191-0.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Oncology, The Affiliated Hospital of Qingdao University, Shandong Province, Qingdao, 266003, China
| | - Li Sun
- Department of Oncology, Heze Municipal Hospital, Heze, 274000, Shandong Province, China
| | - Xiaojuan Wei
- Department of Oncology, The Affiliated Hospital of Qingdao University, Shandong Province, Qingdao, 266003, China
| | - Haijun Lu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Shandong Province, Qingdao, 266003, China.
| | - Ye Tan
- Department of Oncology, The Affiliated Hospital of Qingdao University, Shandong Province, Qingdao, 266003, China
| | - Zhanyi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co Ltd, Qingdao, 266400, China
| | - Jinju Jiang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co Ltd, Qingdao, 266400, China
| |
Collapse
|
10
|
KIF3C Promotes Proliferation, Migration, and Invasion of Glioma Cells by Activating the PI3K/AKT Pathway and Inducing EMT. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6349312. [PMID: 33150178 PMCID: PMC7603552 DOI: 10.1155/2020/6349312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/06/2020] [Indexed: 01/01/2023]
Abstract
Kinesin superfamily protein 3C (KIF3C), a motor protein of the kinesin superfamily, is expressed in the central nervous system (CNS). Recently, several studies have suggested that KIF3C may act as a potential therapeutic target in solid tumors. However, the exact function and possible mechanism of the motor protein KIF3C in glioma remain unclear. In this study, a variety of tests including CCK-8, migration, invasion, and flow cytometry assays, and western blot were conducted to explore the role of KIF3C in glioma cell lines (U87 and U251). We found that overexpression of KIF3C in glioma cell lines promoted cell proliferation, migration, and invasion and suppressed apoptosis, while silencing of KIF3C reversed these effects. Ectopic KIF3C also increased the expression of N-cadherin, vimentin, snail, and slug to promote the epithelial-mesenchymal transition (EMT). Mechanistically, overexpression of KIF3C increased the levels of phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (p-AKT). These responses were reversed by KIF3C downregulation or AKT inhibition. Our results indicate that KIF3C promotes proliferation, migration, and invasion and inhibits apoptosis in glioma cells, possibly by activating the PI3K/AKT pathway in vitro. KIF3C might act as a potential biomarker or therapeutic target for further basic research or clinical management of glioma.
Collapse
|