1
|
Nakamura H, Izumi M, Omori Y, Numoto S, Fujimoto A. Complex Factors in Hydrocephalus Development in Tuberous Sclerosis Complex: A Case Report of Subependymal Giant Cell Astrocytoma. Cureus 2024; 16:e65132. [PMID: 39040610 PMCID: PMC11262810 DOI: 10.7759/cureus.65132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2024] [Indexed: 07/24/2024] Open
Abstract
Subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC) occurs in 5-20% of TSC patients, with a subset developing hydrocephalus. We present a case of a 14-year-old male diagnosed with TSC in the neonatal period who developed SEGA and subsequent hydrocephalus. Despite reducing the tumor size with the mammalian target of rapamycin (mTOR) inhibitors, ventricular enlargement persisted, indicating that obstructive hydrocephalus due to the foramen of Monro blockage was not the sole mechanism. Elevated cerebrospinal fluid (CSF) protein levels suggested additional factors like impaired CSF outflow. This case underscores the need for comprehensive treatment strategies and further research to better understand and manage hydrocephalus in TSC patients with SEGA.
Collapse
Affiliation(s)
- Hajime Nakamura
- Neurosurgery, Seirei Hamamatsu General Hospital, Hamamatsu, JPN
| | - Masaki Izumi
- Center of Epilepsy and Functional Neurology, Seirei Hamamatsu General Hospital, Hamamatsu, JPN
| | - Yoshinori Omori
- Center of Epilepsy and Functional Neurology, Seirei Hamamatsu General Hospital, Hamamatsu, JPN
| | - Shingo Numoto
- Pediatric Neurology, Seirei Hamamatsu General Hospital, Hamamatsu, JPN
| | - Ayataka Fujimoto
- Center of Epilepsy and Functional Neurology, Seirei Hamamatsu General Hospital, Hamamatsu, JPN
| |
Collapse
|
2
|
Subependymal Giant Cell Astrocytomas in Tuberous Sclerosis Complex-Current Views on Their Pathogenesis and Management. J Clin Med 2023; 12:jcm12030956. [PMID: 36769603 PMCID: PMC9917805 DOI: 10.3390/jcm12030956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction, Tuberous sclerosis complex (TSC) is an autosomal-dominant disorder caused by mutations inactivating TSC1 or TSC2 genes and characterized by the presence of tumors involving many organs, including the brain, heart, kidneys, and skin. Subependymal giant cell astrocytoma (SEGA) is a slow-growing brain tumor almost exclusively associated with TSC. STATE OF THE ART Despite the fact that SEGAs are benign, they require well-considered decisions regarding the timing and modality of pharmacological or surgical treatment. In TSC children and adolescents, SEGA is the major cause of mortality and morbidity. CLINICAL IMPLICATIONS Until recently, surgical resection has been the standard therapy for SEGAs but the discovery of the role of the mTOR pathway and the introduction of mTOR inhibitors to clinical practice changed the therapeutic landscape of these tumors. In the current paper, we discuss the pros and cons of mTOR inhibitors and surgical approaches in SEGA treatment. FUTURE DIRECTIONS In 2021, the International Tuberous Sclerosis Complex Consensus Group proposed a new integrative strategy for SEGA management. In the following review, we discuss the proposed recommendations and report the results of the literature search for the latest treatment directions.
Collapse
|
3
|
Subependymal giant-cell astrocytoma: a surgical review in the modern era of mTOR inhibitors. Neurochirurgie 2022; 68:627-636. [PMID: 35907444 DOI: 10.1016/j.neuchi.2022.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/05/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Surgical removal has been the historical treatment for subependymal giant-cell astrocytoma (SEGA) in tuberous sclerosis complex (TSC) patients. In the past decade, mTOR inhibitors have shown efficacy in the treatment of SEGA, significantly reducing tumor size. The aim of this study was to assess the safety and efficacy of surgical treatment at a time when mTOR inhibitors have changed standard treatment. MATERIAL AND METHODS We conducted a single-center retrospective study including all patients treated by surgery for SEGA from October 2003 to September 2019, with a review of all SEGA surgical case series, following PRISMA guidelines. Research focused on demographics, surgical indications, surgical approach, use of CSF shunt, morbidity and mortality, resection quality, recurrence rate and treatment of recurrence, follow-up and long-term clinical status. RESULTS Eleven patients were included, with a median age at surgery of 16.0 years. Gross total resection was achieved in 8 patients (72%), with no permanent morbidity. One patient needed further surgery for tumor recurrence. Eighteen studies were reviewed, totaling 263 TSC patients affected by SEGA and 286 surgical procedures. Gross total resection was achieved in 81.1% of cases, mortality was 4.9% and permanent morbidity 6.1%. Tumor recurrence occurred in 11.5% of cases, and was secondary to partial tumor resection at first surgery in the majority of cases. CONCLUSION Surgical treatment of SEGA is still a valid and effective option. Morbidity is low and complete disappearance of SEGA can be achieved in selected cases.
Collapse
|
4
|
Abstract
Hydrocephalus, the abnormal accumulation and impaired circulation/clearance of cerebrospinal fluid, occurs as a common phenotypic feature of a diverse group of genetic syndromes. In this review, we outline the genetic mutations, pathogenesis, and accompanying symptoms underlying syndromic hydrocephalus in the context of: L1 syndrome, syndromic craniosynostoses, achondroplasia, NF 1/2, Down's syndrome, tuberous sclerosis, Walker-Warburg syndrome, primary ciliary dyskinesia, and osteogenesis imperfecta. Further, we discuss emerging genetic variants associated with syndromic hydrocephalus.
Collapse
Affiliation(s)
- Kaamya Varagur
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sai Anusha Sanka
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
5
|
PTEN mutations in autism spectrum disorder and congenital hydrocephalus: developmental pleiotropy and therapeutic targets. Trends Neurosci 2021; 44:961-976. [PMID: 34625286 DOI: 10.1016/j.tins.2021.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
The lack of effective treatments for autism spectrum disorder (ASD) and congenital hydrocephalus (CH) reflects the limited understanding of the biology underlying these common neurodevelopmental disorders. Although ASD and CH have been extensively studied as independent entities, recent human genomic and preclinical animal studies have uncovered shared molecular pathophysiology. Here, we review and discuss phenotypic, genomic, and molecular similarities between ASD and CH, and identify the PTEN-PI3K-mTOR (phosphatase and tensin homolog-phosphoinositide 3-kinase-mammalian target of rapamycin) pathway as a common underlying mechanism that holds diagnostic, prognostic, and therapeutic promise for individuals with ASD and CH.
Collapse
|
6
|
Tomoto K, Fujimoto A, Inenaga C, Okanishi T, Imai S, Ogai M, Fukunaga A, Nakamura H, Sato K, Obana A, Masui T, Arai Y, Enoki H. Experience using mTOR inhibitors for subependymal giant cell astrocytoma in tuberous sclerosis complex at a single facility. BMC Neurol 2021; 21:139. [PMID: 33784976 PMCID: PMC8011204 DOI: 10.1186/s12883-021-02160-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Subependymal giant cell astrocytoma (SEGA) is occasionally seen in tuberous sclerosis complex (TSC). Two main options are currently available for treating SEGA: surgical resection or pharmacotherapy using mammalian target of rapamycin inhibitors (mTORi). We hypothesized that opportunities for surgical resection of SEGA would have reduced with the advent of mTORi. METHODS We retrospectively reviewed the charts of patients treated between August 1979 and July 2020, divided into a pre-mTORi era group (Pre-group) of patients treated before November 2012, and a post-mTORi era group (Post-group) comprising patients treated from November 2012, when mTORi became available in Japan for SEGA. We compared groups in terms of treatment with surgery or mTORi. We also reviewed SEGA size, rate of acute hydrocephalus, recurrence of SEGA, malignant transformation and adverse effects of mTORi. RESULTS In total, 120 patients with TSC visited our facility, including 24 patients with SEGA. Surgical resection was significantly more frequent in the Pre-group (6 of 7 patients, 86 %) than in the Post-group (2 of 17 patients, 12 %; p = 0.001). Acute hydrocephalus was seen in 1 patient (4 %), and no patients showed malignant transformation of SEGA. The group treated using mTORi showed significantly smaller SEGA compared with the group treated under a wait-and-see policy (p = 0.012). Adverse effects of pharmacotherapy were identified in seven (64 %; 6 oral ulcers, 1 irregular menstruation) of the 11 patients receiving mTORi. CONCLUSIONS The Post-group underwent surgery significantly less often than the Pre-group. Since the treatment option to use mTORi in the treatment of SEGA in TSC became available, opportunities for surgical resection have decreased in our facility.
Collapse
Affiliation(s)
- Kyoichi Tomoto
- Department of Neurosurgery, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Ayataka Fujimoto
- Department of Neurosurgery, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan.
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan.
| | - Chikanori Inenaga
- Department of Neurosurgery, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Tohru Okanishi
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Shin Imai
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Masaaki Ogai
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Akiko Fukunaga
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Hidenori Nakamura
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Keishiro Sato
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Akira Obana
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Takayuki Masui
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Yoshifumi Arai
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| | - Hideo Enoki
- Tuberous Sclerosis Complex Board, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Nakaku, Hamamatsu, 430-8558, Shizuoka, Japan
| |
Collapse
|
8
|
Doddamani RS, Meena R, Samala R, Agrawal M, Tripathi M, Chandra PS. Expanding the Horizons of mTOR Inhibitors for Treating Subependymal Giant Cell Astrocytomas with Obstructive Hydrocephalus. Pediatr Neurosurg 2021; 56:102-104. [PMID: 33508851 DOI: 10.1159/000512720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/30/2020] [Indexed: 11/19/2022]
Affiliation(s)
| | - Rajesh Meena
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Raghu Samala
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Mohit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|